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0. Introduction
There are many important models of information processors in computer science [19]. Perhaps the
most fundamental is that of a sequential machine, which is a six-tuple M = (Q,δ, I,Y,h,qo), with Q
the state set, I the input set, and δ : Q× I → Q the state-transition function. Y is the output set and
h : Q → Y , also a function, is the output map. qo ∈ Q is the initial state of M. We may thus think of
the internal transitions of M as being described by equations of the form

q(t +1) = δ(q(t), i(t)) (1)

y(t) = h(q(t)).

In the theory of control and dynamical systems [30, Ch. 2], the same set of equations is studied,
although Q, I, and Y are usually taken to be linear spaces in this case. Unquestionably, the most
important special case in this latter context is that of linear systems [47], in which δ is an affine
mapping, leading to equations of the following form.

q(t +1) = f (q(t))+g(i(t)) (2)

y(t) = h(q(t))

Both (1) and (2) describe systems which operate in discrete time, meaning that transitions of the
system occur in discrete steps which we assume to be of unit time duration; therefore time is modelled
by the nonnegative integers N+, the integer k representing time t = k. Here q(t), q(t +1)∈ Q, i(t)∈ I,
and y(t) ∈ Y represent the values of the state, input, and output, at the times specified by the variable
t ∈ N+.

Although the detailed use of these models in computer science may differ substantially from that
in the theory of dynamical systems, it is nonetheless an inescapable observation that there is common
ground. In each case, we may speak of the behavior of the system. Specifically, let I∗ denote the set of
all finite sequences of elements of I, and define Y ∗ similarly for Y . In an input/output representation
or behavior, we think of the machine as being described as a sort of “black box” function F : I∗ →Y ∗,
in which an input sequence i0i1..ik ∈ I∗ represents a stream of inputs to the system, with it occurring
at time t. The resulting output is also a sequence y0y1..yk ∈ Y ∗, with yt occurring at time t. Such a
description may be visualized thusly.

Black
Box
F

-I∗ -Y ∗

For a sequential machine M, starting in the state qo and described by the equations (1), the associated
behavior FM : ioi1..ik 7→ y0y1..yk is given by y0 = h(qo), y1 = h(δ(qo, i0)), y2 = h(δ(δ(qo, i0), i1)), etc.
The fundamental question which we ask in a universal theory of behavior is how the construction
M 7→ FM arises using a particular type of algebraic construction, known as a universal construction.

In the other direction, we ask the question of realization of a behavior. That is, given a black box
F as depicted above, we seek to identify a canonical sequential machine M with FM = F . We must
eschew a formal definition of canonical until later, but, informally, the canonical realization of F (for
a sequential machine) is the “best” realization in the sense that it has the minimal number of states
possible for a machine with behavior F .
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The thesis that this bidirectional association between realizations and behaviors may be addressed
in a unified fashion for systems arising from both computer science and from control and dynamical
systems was first put forth in the literature by Arbib in 1965 [1]. Subsequently, the decade of the
1970’s saw the development of a generalized algebraic theory of behavior, realization, and duality1

for such systems based upon the foundational mathematical discipline of category theory [37, 25],
which is the natural setting for universal constructions. Some of the more prominent papers on this
topic include the work of Arbib and Manes [3, 4, 6, 7, 8], Bainbridge [10], Ehrig and his co-workers
[16, 17] and Goguen [18]. The scope of the types of systems covered in this work includes not only
sequential machines of the form (1) and linear machines of the form (2), but also fuzzy machines,
tree automata, algebra automata, and group machines, just to name a few. Indeed, the strength of
this theory lies in its ability to characterize, in a unified fashion, realization and behavior for a very
wide class of machines. It also provided needed insight into the correct interpretation of these notions
for more complex notions of systems. For example, the correct interpretation of realization and
behavior for some classes of machines, such as group machines [2] and fuzzy automata [6], were
only understood after placing them in this unifying categorical framework. An excellent summary of
the key work in this field, with an extensive bibliography, may be found in [9].

A very significant feature of all of the work cited above is that it deals exclusively with discrete-
time systems. While computer science is concerned almost exclusively with discrete-time systems,
other dynamical models are often continuous in time. If we change the equations (1) above to their
continuous-time equivalents, in which we replace N+ by the nonnegative reals R+ and we replace
iteration by differentiation, we get the following.2

dq(t)/dt = δ(q(t), i(t)) (3)

y(t) = h(q(t))

In this context, it becomes highly nontrivial to construct a behavior, and global characterizations are
not known, except in quite special cases. The equations (3) above can only be solved under very
special circumstances, and then so often only locally. Furthermore, although our intuition suggests
that I∗ and Y ∗ must be replaced with spaces of continuous functions on the nonnegative real numbers,
the precise nature of these functions is not immediate.3 The universal approach to realization, by
its very nature, requires a uniform characterization, in which every internal dynamics (such as those
represented by equations (3)) has a natural4 behavior associated with it, and conversely. However,
equations of the form (3) have solutions only under special conditions, and even then such solutions
are often only local in nature. Therefore, a general representation of the realization/behavior corre-
spondence (as outlined above for discrete-time systems) of such systems is simply not feasible at this
time. To make any headway in the continuous-time case, we must restrict our attention to special
cases. In this work, we focus upon the following continuous-time equivalents of the linear equations

1The theory of duality in system theory develops the thesis that important concepts about systems come in pairs; we
will not address duality to any significant degree in this paper.

2Of course, we must now assume that all spaces are topological vector spaces over the real numbers R or the complex
numbers C, at least locally.

3Indeed, this intuition is not quite correct; we shall see that I∗ must be replaced by a space of generalized continuous
functions, or distributions.

4Our use of the term natural here and throughout the paper has no special technical significance here; we simply intend
to convey that the correspondence has some meaningful structure.
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(2).

dq(t)/dt = f (q(t))+g(i(t)) (4)

y(t) = h(q(t))

Even then, the underlying mathematics is far more involved than in the discrete-time case, as it re-
quires results from topological algebras and topological vector spaces, as well as the supporting alge-
braic framework of algebra and category theory. As a consequence, most of the research in continuous
time has addressed the many important details of the systems modelled by equations of the form (4),
rather than placing it within the global algebraic context cited above for discrete-time systems. It is
the primary goal of a research program, which we have been following for some time, to develop a
categorical theory of behavior, realization, and duality for continuous-time systems which completely
parallels the already existing theory for discrete-time. Our principal results in this direction have been
reported in [22] and [23].

The overall goal of this paper is to provide, for the nonspecialist, an overview of the algebraic
theory of both discrete-time and continuous-time linear systems, with particular emphasis on how the
comparatively simple constructions of the discrete-time case may be translated to continuous time.
Insofar as possible, we have tried to avoid becoming involved in the rather technical details which
are an essential part of a full presentation, particularly in the continuous-time case, where the details
are extremely technical. As a consequence, proofs are generally omitted, and the finer points of
definitions and theorems are often not spelled out completely. The interested reader can refer to the
cited references to fill in the details.

No knowledge of category theory is necessary for the reading of this paper, although an acquain-
tance with the basic definitions, as may be found in [5] or [25], would be beneficial. We must assume
an elementary knowledge of the theory of rings and modules, but the presentation found in [27]
should prove sufficient. We also assume some knowledge of the basic definitions of locally convex
topological vector spaces [35, 36], although we have made every effort to avoid difficult details.

To understand the continuous-time case, it is necessary to have some understanding of its discrete-
time counterpart. Therefore, we start, in Section 1, with a brief but fairly rigorous exposition of the
principal results of the discrete-time theory. Then, in Section 2, we show how these ideas may
be translated to the continuous-time context. Because of the much more technical nature of the
continuous-time case, the presentation in Section 2 is less rigorous than that of Section 1. However,
we hope that it is substantial enough to give the interested reader a feel for the nature and complexity
of the results.

We do not assume any specific knowledge of mathematical system theory. However, we expect
that the reader will have had some exposure to the ideas of modelling dynamical systems by differen-
tial equations, and hopefully by difference equations as well.

1. Discrete-Time Linear Systems
In this section, we provide a brief overview of the algebraic theory of discrete-time linear systems.
The fundamentals of these results are based upon the pioneering work of Kalman [28, 29], while
the representation and generalization within category theory is due to Arbib and Manes [3]. We have
borrowed freely from both sources in preparing this section. Our discussion is limited to those aspects
of this theory required as a foundation for our presentation of the continuous-time theory. The reader
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who is interested in more detail is encouraged to consult the above references. For more elementary
information on linear systems from an algebraic point of view, the reader is referred to [38].

Basic Definitions for Linear Systems

We fix a commutative ring K with unit.5 Formally, a discrete-time linear system over K is a 6-tuple
M = (Q, f , I,g,Y,h) where Q (the state space), I (the input space), and Y (the output space) are all
K-modules, and f : Q → Q (the state-transition map), g : I → Q (the input map), and h : Q → Y (the
output map) are all K-linear mappings. Throughout this section, we fix for reference notation such a
discrete-time linear system M. The dynamics are described by the equations (2), and the initial state
is implicitly taken to be 0.

Since all of our systems in this section will be over K, we shall refer to them as simply discrete-
time linear systems. Such systems have been very widely studied in the literature on decision and
control, particularly when K is the field of real or complex numbers, and I, Y , and Q are finite-
dimensional vector spaces. See, e.g., [38].

Following [3], let us call any pair (P,γ) with P a K-module and γ : P → P a K-dynamics. The
internal dynamics of the system M as defined above is just (Q, f ).

Given dynamics (P,γ) and (P′,γ′), a dynamorphism λ : (P,γ) → (P′,γ′) is a K-linear function
λ : P → P′ such that the following diagram commutes.

P P

P′ P′

-
γ

-

γ′
?

λ
?

λ

(5)

Let K[z] denote the space of all (formal) polynomials in the single variable z with coefficients in
K. A typical element of K[z] is written as ∑∞

k=0 akzk with ak ∈ K; by the definition of polynomial only
finitely many of the ak’s may be nonzero. We often drop the bounds and just write ∑akzk. It is well
known that K[z] admits a natural ring structure, corresponding exactly to the well-known addition
and multiplication of ordinary polynomials over the real numbers [27, Sec. 2.10]. The multiplication
operation is called convolution, which we denote by “∗”; thus

∗ : K[z]×K[z] → K[z] (6)

(∑
k≥0

akzk, ∑
k≥0

bkzk) 7→ ∑
k≥0

∑
m+n=k

ambnzk

Clearly, K[z] also admits the structure of a K-module. The following critical observation is due to
Kalman.

5Typically, in an application, we would expect K to be a field, often the real numbers R or the complex numbers C.
Thus, when we speak of K-modules, the reader may intuitively think of them as generalizing vector spaces over familiar
fields.
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1.1 Structural lemma for discrete dynamics There is a natural bijective correspondence be-
tween K-dynamics and K[z]-modules. With the K-dynamics (Q, f ) we associate the K[z]-module
whose action on Q is given by (∑akzk)q = ∑ak· f k(q), with the latter a “real” (as opposed to formal)
sum, which is well defined since only finitely many of the ak’s are nonzero. 2

The preceding lemma is essentially a restatement of the well-known fact that z freely generates the
ring K[z], or, speaking categorically, that K[z] is the free K[z] module over K [27, Thm. 2.11]. In the
dynamics (P,γ), the mapping γ just corresponds to multiplication by z. From that, we can identify
uniquely multiplication by zk for any k ∈ N+, and hence recover the K[z] action.

The system-theoretic significance of 1.1 is that it provides two distinct representations for the
dynamics of a discrete-time linear system. We may think of the K-dynamics representation (Q, f ) as a
“local” representation, which tells us how to do a transition of a single time step, and the K[z]-module
representation as a “global” description of how to process sequences of transitions. Interestingly, the
entire development of discrete-time behavior and realization is possible while working solely with K-
dynamics, as witnessed by the elegant presentation of Arbib and Manes [3]. However, as we shall see,
the ability to have two distinct representations, one for local dynamics and another for global behavior,
becomes crucial in the continuous-time case. In anticipation of paralleling our discrete-time methods
in continuous-time, we therefore develop both representations in this section.

Universal Reconstruction of the Reachability Map

We now turn to the issue of reachability for the discrete-time linear system
M = (Q, f , I,g,Y,h). Informally, the reachability map of M sends input sequences to the state re-
sulting from that input, assuming that the machine begins in the zero state. To formalize this notion,
it is mathematically most convenient to think of sequences of inputs as ending at time 0, rather than
starting at 0. Thus, we represent a sequence of inputs to M as ik, ik−1 . . . i1, i0, with i j occurring at
time − j. Now, with the system initially in state 0 ∈ Q, after applying input ik, we see directly from
equations (2) that at time −k the system will be in state g(ik). At time −k +1, after applying ik−1, M
will be in state f (g(ik))+g(ik−1). Proceeding along in this fashion, we arrive at the conclusion that,
at time 0, M will be in the state f k(g(ik))+ f k−1(g(ik−1))+ . . .+ f (g(i1))+g(i0) = ∑k

i=0 f i(g(i j)).
We would like to express reachability as a linear map. To do so, define I[z] to be the space of all

polynomials over I in the single variable z. I[z] is very much like K[z], except of course that it is not
in general a ring, since we have no way to multiply the elements of I. Of course, it is a K-module
under the obvious action. We regard I[z] as the linear space of all possible input sequences to M, with
zk identifying time t = −k in the above convention. Thus, ∑∞

k=0 ikzk represents an input to M with
ik occurring at time t = −k. Since only finitely many of the ik’s are nonzero, the input has a finite
starting time. Specifically, we regard the input as starting at t = −k, where ik 6= 0 and im = 0 for all
m > k. We define the reachability map ρM of M as the following K-linear map.

ρM : I[z] → Q (7)

∑ ikzk 7→ ∑ f k(g(ik)),

Clearly this recaptures the system-theoretic notion described above.
Observe that (I[z],z) forms a K-dynamics, with z denoting the following shift operator.

z : I[z] → I[z] (8)
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∑ ikzk 7→ ∑ ikzk+1

Given a K-module I, a free dynamics over I is a pair ((I§,z),ηI), with (I§,z) a dynamics and ηI :
I → I§ a K-linear mapping, such that for any other dynamics (Q, f ) and K-linear mapping g : I → Q,
there is a unique dynamorphism ρ : (I§,z) → (Q, f ) rendering the following diagram commutative.
(Note that the rectangle is commutative just because ρ is a dynamorphism. The central condition here
is that the triangle commutes.)

I I§ I§

Q Q

-
ηI

-
z

-
f?

ρ
?

ρ
Q

Q
Q

Q
Q

QQs

g

(9)

1.2 Theorem – existence of free dynamics Let I be a K-module. The free dynamics ((I§,z),ηI)
over I exists, and is given by I§ = I[z]. The mapping z : I[z] → I[z] is just multiplication by z. If M =
(Q, f , I,g,Y,h) is a discrete time-linear system, then the resulting dynamorphism ρ : (I§,z) → (Q,F)
is exactly the reachability map ρM of M. 2

The construction of a free object (such as a free dynamics) is called a universal construction in
category theory. Thus, the reachability map arises as the part of a universal construction, as the
unique dynamorphism from the free dynamics over I to the machine dynamics (Q, f ), relative to
the input map g. This is a critical observation, because it gives us an abstract construction. In the
continuous-time case, where we will have much less of an intuitive idea what the reachability map
should be, we will imitate this construction within the appropriate context.

The representation of the free dynamics in the K[z]-module interpretation is exactly the free K[z]
module over I. It is well known that this module is the algebraic tensor product K[z]⊗ I, with the
module action just the extension of convolution [14, Ch. 2]

K[z]× (K[z]⊗ I) → K[z]⊗ I (10)

(α, β⊗ i) 7→ (α∗β)⊗ i ,

extended by linearity. The natural isomorphism between I[z] and K[z]⊗ I is simply

I[z] → K[z]⊗ I (11)

∑ ikzk 7→ ∑(zk ⊗ ik).

Universal Reconstruction of the Observability Map

Observability is dual to reachability. Intuitively, the observability map tells us, for each state q, the
output sequence that we will see when M is started in state q with only zero inputs applied. More
precisely, from state q, if we apply no further inputs, equations (2) tell us that we will observe the
output sequence h(q),h( f (q)),h( f 2(q)), . . .. This sequence is often called the natural response of M
from state q.
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To formalize this notion algebraically, let Y [[z−1]] denote the K-linear space of all formal power
series in the variable z−1. We regard an element of this space as a formal sum ∑∞

k=0 ykz−k, with no
finiteness restrictions. (Note that z−1 is just a symbol like z; we use the variable z−1 rather than z for
compatibility reasons to become apparent shortly.) We may identify Y [[z−1]] with the set of possible
output sequences of M by regarding ∑∞

k=0 ykz−k as defining the output sequence whose value at time
k is yk.6 Formally, the observability map σM of M is defined as follows.

σM : Q → Y [[z−1]] (12)

q 7→
∞

∑
k=0

h( f k(q))z−k,

We now show how this arises as a universal construction. Let (Y [[z−1]],z) denote the K-dynamics
with z the following shift operator.

z : Y [[z−1]] → Y [[z−1]] (13)

∑ykz−k 7→ ∑yk+1z−k

Note that the symbol z is serving double duty; it also denotes the shift operator in the dynamics
(I[z],z). Since it denotes “multiplication by z” in each case, this overloading is a natural one. Note
also that, unlike the shift for the (I[z],z) case, z here is not injective, as y0 is lost in the above mapping.

Given a K-module Y , a cofree dynamics over Y is a pair ((Y§,z),εY ), with (Y§,z) a dynamics
and εY : Y§ → Y a K-linear mapping such that for any other dynamics (Q, f ) and K-linear mapping
h : Q → Y , there is a unique dynamorphism σ : (Q, f ) → (Y§,εY ) such that the following diagram
commutes. (Again, it is the triangle which is central here; the rectangle commutes by virtue of σ
being a dynamorphism.)

Q Q

YY§ Y§

-
f

-
z?

σ
?

σ
Q

Q
Q

Q
Q

QQs

h

-
εY

(14)

1.3 Theorem – existence of cofree dynamics Let Y be a K-module. The cofree dynamics ((Y§,z),εY )
over Y exists, and is given by Y§ = Y [[z−1]]. The mapping z : Y [[z−1]] → Y [[z−1]] is just multiplica-
tion by z. If M = (Q, f , I,g,Y,h) is a discrete time-linear system, then the resulting dynamorphism
σ : (Q,F) → (Y§,z) is exactly the observability map σM of M. 2

The shift z here is forward in time, as in the similar operation for the free dynamics, but it has the
opposite effect. Here it discards the z0 term y0 of a series ∑∞

k=0 ykz−k and shifts the rest down, yielding
∑∞

k=0 yk+1z−k.

6In light of this convention and the previous one for I[z], it would perhaps be more logical to reverse the roles of z and
z−1, and work with I[z−1] and Y [[z]], for then zk would correspond to time k and not −k. However, the convention which
we use here is that introduced by Kalman, and has become standard in the literature.
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To recapture the cofree dynamics within the K[z]-module context, let L(K[z],Y) denote the space
of all K-linear maps from K[z] to Y . It is easy to see that we have a natural isomorphism

L(K[z],Y ) ∼= Y [[z−1]] (15)

ϕ 7→ ∑
k≥0

ϕ(zk)z−k.

The K[z]-module action in this context translates to

K[z]×L(K[z],Y) → L(K[z],Y ) (16)

(α,ϕ) 7→ (β 7→ ϕ(α∗β))

A construction which yields a cofree object (such as the cofree dynamics) is called a co-universal
construction. Although the notion of duality has not been formally introduced, it is not difficult to
see that diagram (14) may be obtained from diagram (9) by replacing input with output and turning
around all of the arrows. Thus, universal and co-universal constructions are closely related, and we
sometimes refer to them both as universal constructions.

Universal Representation of Behavior

We have thus shown how both the reachability map ρM and the observability map σM of a discrete-
time linear system arise as universal constructions. Now we define the total behavior BM of M as
the composition σM ◦ρM : I§ → Y§. This provides us with a completely algebraic construction of the
behavior of M, which we may represent pictorially by gluing diagrams (9) and (14) together (and
replacing σ and ρ with σM and ρM, respectively), as follows.

I I§ I§

Q Q

-
ηI

-
z

-
f?

ρM

?

ρM

Q
Q

Q
Q

Q
QQs

g

Q Q

YY§ Y§

-
f

-
z?

σM

?

σM

Q
Q

Q
Q

Q
QQs

h

-
εY

(17)

In the next section, we shall imitate these constructions in the context of continuous-time linear
systems to discover what the reachability map, observability map, and total behavior should look like
for such systems.

Algebraic Representation of Realization

We know that every discrete-time linear system M naturally defines its behavior BM. Now let us
examine the converse. Suppose that we are given K-modules I and Y , and a dynamorphism

B : (I[z],z)→ (Y [[z−1]],z). (18)
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It is natural to ask under what conditions (18) defines the behavior of a discrete-time linear sys-
tem. The immediate answer is always, for we may define MB§ = (I[z],z, I,ηI,Y,εY ◦B) and MB§ =

(Y [[z−1]],z,Y,B ◦ηI,Y,εY ); it is trivially verified that each has behavior B. These are extreme cases;
the former is called the free realization of B, and the latter the cofree realization. Thus, each behavior
yields at least two realizations. Generally, it will have many more. However, there is one realization
which is most natural.

Given a discrete-time linear system M, we say that it is reachable if its reachability map ρM is
surjective, and we say that it is observable if its observability map σM is injective. Intuitively, if
M is reachable, there are no “useless” states which cannot be reached from 0 by the application of
any input. Similarly, if M is observable, no two states are equivalent in the sense that they lead to
exactly the same output sequences. We say that M is canonical if it is both reachable and observable.
Intuitively, a canonical system is minimal in that it contains the fewest possible states. We have the
following algebraic representation of canonicity.

1.4 Theorem – existence and uniqueness of canonical realizations Let I and Y be K-modules,
and let B : (I[z],z) → (Y [[z−1]],z) be a dynamorphism. Then, up to isomorphism (a renaming of
states), there is a unique canonical discrete-time linear system whose behavior is B.

PROOF OUTLINE: The idea is quite simple. We know that we may factor B as a function as I[z]
ρB
−→

Q
σB−→, with ρB surjective and σB injective. We simply take Q to be I[z]/B, the set of blocks of the

equivalence relation defined by the function underlying B. Furthermore, Q is unique, up to renaming,
as a set. The question is whether or not Q may be uniquely endowed with the structure of a dynamics.
In other words, we ask whether or not we may fill in the diagram below with the dashed arrow labelled
f , so that (Q, f ) becomes a dynamics.

I[z] I[z]

Q Q

Y [[z−1]] Y [[z−1]]

-
z

f

-
z

?

ρB

?

ρB

?

σB

?

σB

(19)

This is guaranteed by a result known as the dynamorphic image lemma [3, 4.4], which is a general-
ization of what was known in earlier contexts as the Zeiger fill-in lemma [29, 6.2]. This may also be
recovered on purely algebraic grounds [37, Prop. 1, p. 195]. 2

Summary

The following is the key identification for discrete-time linear systems, which we wish to extend to
continuous time.

9



1.5 System representation theorem Given any K-modules I, and Y , there is a natural bijective
correspondence between behaviors B : (I[z],z)→ (Y [[z−1]],z) and isomorphic equivalence classes of
canonical systems with input space I and output space Y . 2

In words, behaviors and canonical realizations are coextensive, up to mathematical equivalence.
Knowing the input/output action of a canonical system is sufficient to allow us to recover its internal
structure, and conversely.

2. Dynamics and Behavior of Continuous-Time Linear Systems
In this section, we attempt to illustrate the main ideas behind our efforts to transport the theory of
the previous section to continuous-time linear systems. Due to the extremely technical nature of the
results, we have adopted a fairly informal style of presentation in which we illustrate the principal
ideas without becoming unnecessarily involved in details. The reader who finds the presentation
insufficiently rigorous or incomplete, or who simply wants to learn more of the details, is invited to
consult the references [22, 23, 24]. Virtually all of the presentation given here is based upon [23], and
so we have not made explicit citations to that reference.

The reader may legitimately ask at this point why the abstract representation of the continuous-
time case is not just a simple recasting of that of discrete time. In a very abstract sense it is, save
that we must show that the continuous-time analogs of I§ and Y§ exist. However, demonstrating this
existence requires that we pay close attention to topological as well as algebraic aspects, and this com-
plicates the picture substantially. But in a more concrete sense, we seek not just an existence proof,
but rather concrete representations of the analogs of I§, Y§, ρM , σM, and so forth. Obtaining these
concrete representations (which require a translation from the discrete-time concept of iteration to the
continuous-time notion of integration), requires that we employ a rather complex area of mathematics
known as distribution theory.

The Internal Model

To place the equations (4) on more precise ground, we must take K to be either R (the field of real
numbers) or else C (the field of complex numbers). Beyond that, several further choices must be
made. First of all, we must identify a suitable setting for the spaces Q, I, and Y . There is a number
of possibilities. One would be to work within the setting of Hilbert spaces or Banach spaces, as this
is a natural setting for much of infinite-dimensional linear system theory [11], due to its enormously
rich associated theory of one-parameter semigroups of operators [26]. Unfortunately, it does not
appear to be possible to develop a completely satisfactory translation of the discrete-time results to
this setting, although [21] contains some suggestions for pursuing a theory of behavior within the
Banach space framework. Our approach, rather, is to allow the underlying spaces to be quite arbitrary
locally convex topological vector spaces, in the sense of [35, 36]. A locally convex topological vector
space, or locally convex space for short, is a topological vector space (= topological module) over K
for which the operations of addition and scalar multiplication are continuous, and which in addition
satisfies a technical condition known as local convexity. Almost all classes of spaces which arise in
practice are locally convex, including all Banach and Hilbert spaces.

We must also state what the mappings f , g, and h are to be. The most obvious choice is to require
each of them to be linear and continuous. Indeed, this is exactly what we did in our earlier work
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[22]. Linearity is essential — after all, we are dealing with linear systems — but this assumption
of continuity turns out to be needlessly restrictive. Rather, we need to ask which conditions are
necessary in order that the equations (4) admit a unique solution. It is well-known from the classical
theory of semigroups of operators on Banach spaces [39, 13.35] that f need not be continuous to
provide existence and uniqueness of solutions; rather, certain closed but not necessarily continuous
operators suffice. The key is that f must be the infinitesimal generator of a semigroup of operators
parameterized by R+, the nonnegative reals. Kōmura [34] has demonstrated that a similar approach
applies in the more general context of locally convex spaces. Specifically, a locally equicontinuous
semigroup of operators of class (Co) is a pair (T,E) in which E is a locally convex space and T :
R+ → L(E) is a function from the nonnegative reals R+ into the space L(E) of all continuous linear
mappings on E, which is a monoid homomorphism (i.e., T (0) = 1E and T (t1)◦T (t2) = T (t1 + t2) for
all t1, t2 ∈ R+), which is pointwise continuous at zero (limt→0 T (t)e = e for any e ∈ E), and which
is locally equicontinuous ({T (t) | 0 ≤ t ≤ ε} is equicontinuous for some ε > 0.) The infinitesimal
generator of such a semigroup is the function gT : E → E given by

gT (e) =

{

lim
t→0

T (t)e−e
t if the limit exists;

undefined otherwise.
(20)

It is important to note that gT need not be total, although it is closed, and if E is sequentially
complete (i.e., Cauchy sequences converge), the domain of definition is dense in E [34, Sec. 1].
Hereafter, we shall abbreviate “locally equicontinuous semigroup of class (Co)” to just semigroup.

2.1 Theorem – existence and uniqueness of solutions In the equations (4), assume that Q, I,
and Y are locally convex spaces, that f is the infinitesimal generator of a semigroup T , that g and h
are continuous and linear, and that Q is sequentially complete. Then f and T determine each other
uniquely, and for every continuous function i : R+ → I, the function defined by

q(t) = T (t)q0 +
Z t

0
T (t − s)g(i(s))ds (21)

is the unique continuously differentiable solution to (4) with initial condition q0 at t = 0. 2

The solution equation (21) is well-known in the more classical case in which all spaces are finite
dimensional [38, 6-1, Thm. 1]. Actually, as we shall see later, 2.1 holds even when Q is not sequen-
tially complete, provided that other conditions are met. Therefore, we shall not explicitly require state
spaces to be sequentially complete.

Formally, a continuous-time linear system is a 6-tuple M = (Q, f , I,g,Y,h) where Q (the state
space), I (the input space), and Y (the output space) are all locally convex spaces, f : Q → Q (the
state-transition map) is the infinitesimal generator of a semigroup, and g : I → Q (the input map) and
h : Q → Y (the output map) are both continuous linear mappings. We call (Q, f ) a smooth dynamics
to emphasize that it has special properties to allow us to reconstruct the continuous-time behavior.
A dynamorphism is defined as per diagram (5), with λ a continuous linear mapping, but we must be
careful since γ and γ′ need not be total functions. Precisely, commutativity in this case means that
whenever one path is defined, then so is the other, and they are equal.
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A Simple Example

Before moving on to the abstract theory, we present a simple example which will help to illustrate both
the generality and the limitations of this framework. For this example, we assume some familiarity
with the use of distributions (in the sense of [42]) to represent the modelling of wave phenomena.
For those without the requisite background, this entire example may safely be skipped without loss
of continuity. This example is also discussed in [23].

The setting is a unit length of ideal transmission line with series inductance L, series resistance
R, shunt capacitance C, and shunt conductance A, all per unit length. The line is driven at its right
endpoint x = 1 and terminated at its left endpoint x = 0 with a short circuit. It is assumed that the
behavior of this line is governed by the standard wave equations, and that the loss is small enough
that the characteristic impedance is given by Zo =

√

L/C. See, e.g., [13]. We let V (x, t) represent
the voltage across the line at position x (0 ≤ x ≤ 1) at time t, and let J(x, t) similarly represent the
current on the line. The state space Q is {(V (x),J(x)) ∈ C ′

c(0,1]×C ′
c[0,1] | V (x)−Zo · J(x) = 0 in

some neighborhood of x = 1}. Because the right end of the line is short-circuited, the voltage is 0
at x = 0; this is recaptured by the fact that the voltage distribution be in C ′

c(0,1], the space of all
scalar-valued distributions with compact support contained in the half-open interval (0,1]. C ′

c[0,1] is
defined similarly, and V (x)−Zo · J(x) = 0 in some neighborhood of 1 recaptures the stipulation that
the impedance at x = 1 be matched.

The line is driven with an impedance matched generator at x = 1, so that the input space I takes
values in the field K, and the input over time (the continuous-time equivalent of I§) has the form
(

Zo

−1

)

· i(t), with i(t) a real-valued signal (represented as a distribution). (The current carries a

negative sign since it is travelling to the left.) The internal dynamics of this system are represented by
the following differential equation.

d
dt

(

V (x, t)
I(x, t)

)

=

(

−R
L − 1

L ·
∂
∂x

− 1
C · ∂

∂x −A
C

)

(

V (x, t)
J(x, t)

)

+

(

Zo

−1

)

i(t) (22)

As for modelling the output of this system, we would like to observe the voltage-current pair at
x = 1. However, the state is a distribution which may not be representable as an ordinary function
of time. Therefore, it is not possible to employ a representation which samples the values at x = 1
directly. There are two ways around this difficulty. The first is to regard the output space itself as a
space of distributions about some small half-open interval (1− ι,1], where ι is some small number.
This output is easily obtained by restricting the state distribution by using the natural surjections
ρ1 : C ′

c(0,1] → C ′
c(1− ι,1] and ρ2 : C ′

c[0,1] → C ′
c(1− ι,1] (see [43]). In this case, the output space Y

is C ′
c(1− ι,1], and we get an output equation of the form

y(t) =

(

ρ1 0
0 ρ2

)

q(t) (23)

The second approach is to regard the output space Y as consisting of just pairs of real numbers
(V, I) ∈ K×K, representing values averaged about the point right endpoint x = 1. In this case, the
output mapping h is an evaluation of the state distribution on a certain test function pair (ϕ1,ϕ2) ∈
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C ′
c(1− ι,1]2. Typically, this test function would have unit area. The output equation would then take

the following form, with “∗” representing distributional convolution.

y(t) =

(

ϕ1 ∗ (−) 0
0 ϕ2 ∗ (−)

)

q(t) (24)

Perhaps the key observation to be made from this example is that the equations (3) are quite
general; we may even recapture systems modelled by partial differential equations with delays (as is
our example).

R+ Rings and Modules

In translating the discrete-time theory to continuous time, the key step is to replace K[z] with any
member of a class of commutative topological rings, which we term R+-rings. In these rings, the
multiplication is not necessarily continuous, but rather it is hypocontinuous with respect to the pre-
compact sets, or c-hypocontinuous. That is, if R is an R+ ring, then the multiplication is continuous
when restricted to sets of the form K ×R and R×K, with K a precompact subset of R.

To identify an R+-ring, we start by specifying an R+-ring generator F , which is an operator
which gives, for each locally convex space E, a locally convex space F (R+,E) of continuous func-
tions from R+ into E. This space characterizes the desired system responses; for a continuous-time
linear system M = (Q, f , I,g,Y,h) modelled under F , the outputs over time (i.e., the continuous-time
analog of Y§) will be precisely F (R+,Y ). The range of choices for F is extensive, and includes most
of the spaces of differentiable vector-valued functions identified in the classic paper of L. Schwartz
[40]. Perhaps the two most important examples for F are C and E . C (R+,Y ) denotes the space of all
continuous functions from R+ into Y , endowed with the topology of uniform convergence on compact
subsets of R+ [43, Ch. 40]. E(R+,Y ) denotes the subspace of C (R+,Y ) consisting of the infinitely
differentiable functions, and endowed with the topology of uniform convergence on compact sets of
all derivatives. There is a multitude of other choices which we will mention later.

The R+-ring corresponding to F is obtained as the dual space F ′(R+) (space of all continuous
linear functionals) of F (R+,K) = F (R+). C ′(R+) consists of all measures on R+, in the sense of
Bourbaki [12], which have compact support. E ′(R+) consists of all infinitely differentiable measures
or distributions in the sense of L. Schwartz [42]. In each case, the ring multiplication is convolution
of measures. See [43, Chap. 27] for an extensive discussion of convolution. The topology in all cases
is that of uniform convergence on precompact subsets of F (R+).

Each R+-ring contains, as a (topologically) dense subring, a special ring which we denote by
K〈z〉. This ring is exactly like K[z], save that instead of allowing only integer exponents of z, we
allow any nonnegative real number. More precisely, define the ring K〈z〉 to be the linear space of all
formal polynomials of the form ∑t∈R+

atzt , with each at ∈ K. It is important to realize that, as with
K[z], the sum must be finite in the sense that all but finitely many of the at’s must be zero. The ring
multiplication is defined analogously to that of equation (6).

∗ : K〈z〉×K〈z〉 → K〈z〉 (25)

( ∑
t∈R+

atz
t , ∑

t∈R+

btz
t) 7→ ∑

t∈R+

∑
r+s=t

arbsz
t

In all cases, the element zt identifies the point (or Dirac) measure δt , defined by δt( f ) = f (t). δ0 is
the multiplicative identity element of the ring F ′(R+).
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On each R+-ring R = F ′(R+), we define the differentiation operator D : R → R as the transpose
of differentiation of functions. That is, if µ ∈ F ′(R+), then for ϕ ∈ F (R+),

D(µ)(ϕ) =

{

µ(dϕ/dt) if ϕ is differentiable
undefined otherwise

. (26)

In E(R+), D is a continuous and everywhere defined function. However, in C (R+), it is not every-
where defined, since not every continuous function is differentiable. Nonetheless, it is closed and
densely defined on any R+-ring.

Given an R+-ring R, an (R)-module is a pair (E,b) in which E is a locally convex space and
b : R×E → E is a bilinear mapping which is c-hypocontinuous and which satisfies the usual axioms
for a module. Given such an (R)-module, the associated semigroup Tb : R+ → L(E) is defined by
t 7→ (e 7→ b(zt,e)). A semigroup realized in this fashion is termed an (R)-semigroup.

2.2 Theorem Let R = F ′(R+) be an R+-ring, and let (E,b) be an (R)-module. Then Tb is a
semigroup, and for any e ∈ E, the function t 7→ Tb(t)e is in F (R+,E). 2

Thus, for any R+-ring R, each (R)-module defines a semigroup in a natural way. This is effectively
the continuous-time analog of one direction of 1.1. To get the other direction, for a semigroup T :
R+ → L(E), define the K〈z〉-module bT as follows.

bT : K〈z〉×E → E (27)

(∑atz
t ,e) 7→ ∑at ·T (t)e

2.3 Theorem Let R = F ′(R+) be an R+-ring, and let T be a semigroup on E. Then bT extends
uniquely to an (R)-module action bT,R : R×E →E if and only if the function t 7→ T (t)e is in F (R+,E)
for each e ∈ E. 2

We are now in a position to assert the full continuous-time counterpart to 1.1.

2.4 Structural lemma for continuous dynamics There is a natural bijective correspondence be-
tween (R)-semigroups and (R)-modules. With the (R)-semigroup (Q, f ) we associate the (R)-module
whose action on Q is given by (∑atzt)q = ∑at ·T f (t)q, extended by continuity using the denseness of
K〈z〉 in R. 2

A smooth dynamics (Q, f ) in which f is the infinitesimal generator of an (R)-semigroup is called
an (R)-dynamics. The fact that we are working relative to an R+-ring automatically guarantees that f
will be densely defined and will determine a unique semigroup. There is no need to explicitly require
Q to be sequentially complete.

The Reachability Map in Continuous Time

We fix an R+-ring R. A free (R)-dynamics is defined in exact analogy to the discrete-time case;
namely, given a locally convex space I, a free (R)-dynamics over I is a pair ((I$,d),ηI), with (I$,d)
an (R)-dynamics and ηI : I → I$ a continuous linear mapping, such that for any other (R)-dynamics
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(Q, f ) and continuous-linear mapping g : I → Q, there is a unique dynamorphism ρ : (I$,d) → (Q, f )
rendering the following diagram commutative.

I I$ I$

Q Q

-
ηI

-d

-
f?

ρ
?

ρ
Q

Q
Q

Q
Q

QQs

g

(28)

If M = (Q, f , I,g,Y,h) is a continuous-time linear system with (Q, f ) an (R)-dynamics, the function
ρ is called the reachability map of M, and is denoted ρM, in exact analogy to the discrete-time case.
Note that ρM depends upon R, although our notation does not make this dependency explicit.

We construct the free (R)-dynamics using the module representation. Given two locally convex
spaces E and F , the c-hypocontinuous tensor product E ⊗c F has as underlying space the algebraic
tensor product E ⊗F , and carries the strongest locally convex topology which renders the canonical
bilinear mapping E ×F → E ⊗F defined by (e, f ) 7→ e⊗ f c-hypocontinuous.

2.5 Theorem – existence of free dynamics Let I be a locally convex space. The free dynamics
((I$,d),ηI) over I exists, and is given by I$ = R⊗c I, with

d : R⊗c I → R⊗c I (29)

µ⊗ i 7→ D(µ)⊗ i.

If M = (Q, f , I,g,Y,h) is a continuous time-linear system with (Q, f ) an (R)-dynamics, then the re-
sulting dynamorphism ρM : (I$,d) → (Q, f ) is defined on the subspace K〈z〉⊗ I ⊆ R⊗ I by

ρM : K〈z〉⊗ I → Q (30)

∑(atz
t ⊗ it) 7→ ∑at ·Tf (t)it,

and is extended to all of R⊗ I by the density of K〈z〉 in R. 2

The (R)-module action of the free (R)-dynamics is completely analogous to that of equations (10).
We simply replace K[z] by R to get

R× (R⊗ I) → R⊗ I (31)

(α, β⊗ i) 7→ (α∗β)⊗ i ,

Note that the definition of ρM on K〈z〉 is independent of the choice of R, and closely parallels
the discrete-time case. It is the extension to R, using the topological density of K〈z〉 in R, which
admits the smooth inputs which makes the continuous-time case so much richer. To elaborate, let
M = (Q, f , I,g,Y,h) be a continuous-time linear system with (Q, f ) an (R)-dynamics. Let us first
consider inputs in K〈z〉⊗ I. Regard the element zt ⊗ i as an impulse input applied to the system at
time −t with weight i. (Note the time reversal.) The response ρM(zt ⊗ i) is the resulting state at time
0. Thus, K〈z〉⊗ I is regarded as an input space of finite linear combinations of I-valued impulses
occurring at times ≤ 0. The reachability map ρM gives the response at time 0 to such a train of

15



impulses. That is, ρM(∑ztk ⊗ ik) = ∑bT f ,R(ztk ,g(ik)) = ∑T f (tk)g(ik). Note the direct analogy to the
discrete-time case, in which an input may be regarded to be of the form ∑zk ⊗ ik and the response
to be ∑T f (k)g(ik) = ∑ f kg(ik), where f = T f (1). The only difference, other than the topological
considerations required for differentiation, is that the set of times at which an input is allowed to occur
is the nonpositive reals R− in the continuous-time case (recall the time reversal) and the nonpositive
integers N− in the discrete-time case, and that f assumes the rôle of a continuous rather than discrete
generator. Thus, if we first examine the input signals and reachability map of a continuous-time
linear system in terms of its skeleton input set K〈z〉⊗ I, we see that it is not all that different from its
discrete-time counterpart. What does make continuous-time linear systems richer than their discrete-
time counterparts is the ability to complete K〈z〉 and K〈z〉⊗ I to obtain a much more diversified set
of inputs, tailored to the specific situation.

Let r⊗ i ∈ R⊗c I. If r = zt for some t, we already know that ρM(r⊗ i) = T f (t)g(i). If r ∈ R more
generally, we can approximate r as closely as desired by a sum of the form ∑n

j=1 a j ·zt j with a j ∈ K,
since K〈z〉 is dense in R. (∑n

j=1 a j·zt j)⊗ i then approximates r⊗ i. Since ρM is continuous, ρM(r⊗ i)
is approximated by ∑n

j=1 a j·T f (t j)g(i).
Now suppose that r is represented by a function ϕr : R+ → K. Then, using the density of

K〈z〉 in R, there must be a net of sums ∑nα
j=1 a j ·T f (t j)g(i) which converges to the Q-valued integral

R ∞
0 ϕr(t)T f (t)g(i)dt. Regarding ϕr(t) as an input signal to the system M, the time scale is reversed,

so if we view ϕ : R− → K, the state at time t = 0 is q(0) =
R 0
−∞ T f (−t)(ϕr(t)·g(i))dt, which is in

agreement with (21). The extension to a sum of the form ∑n
k=1 rk ⊗ ik of such inputs is by simple

linearity. The inputs in the most general case may be regarded as vector-valued distributions in the
sense of Schwartz [41].

The Observability Map in Continuous Time

The construction of the observability map in continuous time is no more difficult than in discrete time.
With respect to an R+-ring R, given a locally convex space Y , a cofree (R)-dynamics over Y is a pair
((Y$,d),εY ), with (Y$,d) a dynamics and εY : Y$ → Y a continuous linear mapping such that for any
other (R)-dynamics (Q, f ) and continuous linear mapping h : I → Q, there is a unique dynamorphism
σ : (Q, f ) → (Y$,εY ) such that the following diagram commutes.

Q Q

YY$ Y$

-
f

-d?

σ
?

σ
Q

Q
Q

Q
Q

QQs

h

-
εY

(32)

If M = (Q, f , I,g,Y,h) is a discrete time-linear system, then the resulting dynamorphism σ : (Q,F)→
(Y$,d) is exactly what we define to be the observability map σM of M.

2.6 Theorem – existence of cofree dynamics Let R = F ′(R+) be an R+-ring, and let Y be a
locally convex space. The cofree dynamics ((Y$,d),εY ) over Y exists, and is given by Y$ = F (R+,Y ).
The mapping D : F (R+,Y ) → F (R+,Y ) is the differentiation operator D, which may be a partial
function. If M = (Q, f , I,g,Y,h) is a continuous-time linear system with (Q, f ) an (R)-dynamics, then
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the resulting dynamorphism σM : (Q, f ) → (Y$,d) is defined by

σM : Q → F (R+,Y ) (33)

q 7→ (t 7→ h(T f (t)q))

2

Thus, the observability maps just reads out the “natural response” of the semigroup of the dynamics
(Q, f ), after the output function h has been applied. σM depends upon R only to the extent of defining
its range.

In analogy to (15), there is an natural isomorphism of locally convex spaces

Lc(F ′(R+),Y ) ∼= F (R+,Y ) (34)

ϕ 7→ (t 7→ ϕ(zt)).

Here Lc(F ′(R+),Y ) denotes the space of all continuous linear maps from F ′(R+) into Y , with the
topology of uniform convergence on precompact subsets of F ′(R+). The (R)-module action in this
context translates to

R×Lc(R,Y ) → Lc(R,Y ) (35)

(α,ϕ) 7→ (β 7→ ϕ(α∗β))

Other Contexts

We remarked earlier that there are a great many possible choices for the R+-ring R. It is impossible
to give a full account of this here, but the following table gives some idea of the possibilities.

Type of Dynamics Inputs in I$ Outputs in Y$

locally equicontinuous measures with continuous
semigroups compact support functions

infinitely differentiable distributions with C∞

semigroups compact support functions
equicontinuous uniform bounded bounded and uniformly

semigroups additive measures continuous functions
bounded L1 bounded continuous

semigroups measures functions
stable L1 continuous functions

semigroups measures which vanish at ∞
finite-response Radon continuous functions with

semigroups measures scalar-compact support

Note that there is a fundamental measure/test-function duality between I$ and Y$, so that, in general,
the more measures in I$, the fewer functions in Y$. There is no single choice of topological ring
which provides a biggest version of each. Rather, the choice is a modelling problem; one of selecting
the best framework for the systems being considered. Note also that bounded semigroups and stable
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semigroups take the same space of inputs. The distinction comes in that this space is topologized
differently in each case, so that the underlying topological ring is not the same. In all cases, though,
the inputs are allowed to be not only continuous functions, but also continuous measures. Therefore,
the restriction of “sufficiently smooth” identified in 2.1 is really not much of a restriction at all. Of
course, to interpret equation (21) pointwise rather than operationally, the input must be an ordinary
function with certain constraints.

It is also possible to work within the context of locally convex spaces which possess a certain
degree of completion (such as complete or quasi-complete spaces), rather than with all locally convex
spaces. Basically, we just apply the appropriate completion operator to all constructions. We refer the
reader to the complete papers for details.

Algebraic Connection of Behavior and Realization

In the discrete-time case, we said that a system M was reachable if its reachability map ρM is sur-
jective, and observable it its observability map σM is injective. This definition is not adequate in the
continuous-time case, since (surjection,injection) factorizations of continuous linear mappings are not
unique up to isomorphism. To get uniqueness, we must take the topological aspects into account. Cat-
egorically speaking, we must work with an image-factorization system (or (E ,M )-system [25, §33])
for the category of locally convex spaces.7 The three most fundamental of such systems are:

(i) (topologically dense mappings, closed topological embeddings)

(ii) (surjections, topological embeddings)

(iii) (closed surjections, injections)

Since the dynamorphic image lemma [3, 4.4] is formulated abstractly in terms of image-factorization
systems, any continuous linear mapping between locally convex spaces has a unique (up to iso-
morphism) factorization in any of these systems. Thus, within the context of a particular image-
factorization system, 1.4 extends directly to the continuous-time context, provided we speak of (E ,M )-
canonical systems. We then have the following continuous-time analog of 1.5.

2.7 System representation theorem for continuous time Given an R+-ring R = F ′(R+), an
image factorization system (E ,M ), and locally convex spaces I, and Y , there is a natural bijective
correspondence between behaviors B : (F ′(R+)⊗c I,d) → (F (R+,Y ),d) and isomorphic equiva-
lence classes of (E ,M )-canonical systems with input space I and output space Y . 2

Remarks on the Literature

In addition to our own work, there was substantial earlier work on the algebraic theory of continuous-
time linear systems using a module-based approach. In an early paper, Kalman and Hautus [31],
a theory with R = E(R+) and I and Y finite dimensional is presented. However, the constructions
were purely algebraic, with no attention paid to the topological aspects, so that a reconstruction of
the infinitesimal dynamics was not possible. Also, Kamen developed an early theory based upon the
module E(R+) [32], and later upon the space D(R+) of distributions which do not necessarily have

7Actually, such factorizations are necessary in discrete time as well if one works with topologized systems. See [20]
for details.
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compact support [33], but he too did not address the topological issues, and so was unable to recover
the infinitesimal dynamics.

In later work, Yamamoto [45, 46, 44] developed a theory of continuous-time linear systems which
did construct infinitesimal dynamics from behaviors. However, because his work emphasized other
aspects of continuous-time linear systems, his definition of behavior did not involve universal con-
structions. Thus, he was not able to formulate a natural bijective correspondence between behavior
and internal dynamics.

There has also been much other recent work on the algebraic theory of continuous-time linear
systems, particularly over Hilbert and Banach spaces. In [15], Curtain provides a survey of the major
results along these lines. However, this work does does not provide a universal approach to the
representation of behavior as we have described in our paper. Indeed, if we require that all of the
spaces with which we work be Hilbert spaces (or even Banach spaces), then it is possible to show
that free and cofree dynamics do not always exist. It is for this reason that the direction surveyed
in [15] must take a fundamentally different perspective on the problems of system representation.
Nonetheless, there are important connections between the two approaches, which are unfortunately
beyond the scope of this survey.

The theory of continuous-time linear systems is an incredibly rich one, and we have only men-
tioned a few of the most relevant papers. The reader interested in further information should use the
bibliographies of these references, as well as our own papers, as a guide. In addition, we should point
out that there are many aspects of the categorical theory of discrete-time linear systems which we
have not touched upon. In particular, the papers [7] and [8] contain very elegant generalizations of
key ideas.
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