
Software Development
in

Assembly Language:
A Laboratory Manual

Stephen J. Hegner
Department of Computer Science and Electrical Engineering

Votey Building
University of Vermont
Burlington, VT 05405

USA

hegner@emba.uvm.edu

Copyright c© 1997 by Stephen J. Hegner. All rights reserved. No part of this
manual may be reproduced in any form or by any means, without the prior written
consent of the author.

Contents

Preface vii
Philosophy of this Manual . vii
Content Overview . ix
Acknowledgments . xi
Trademarks . xii

I Introductory Software Exercises 1

1 Becoming Acquainted with MASM and PWB 3
1.1 Purpose . 3
1.2 Procedure . 3

2 Basic Input and Output: Part 1 13
2.1 Purpose . 13
2.2 Procedure . 13

2.2.1 The First Program . 13
2.2.2 The Second Program . 15

3 Basic Input and Output: Part 2 19
3.1 Purpose . 19
3.2 Procedure . 19

3.2.1 The Third Program . 19
3.2.2 The Fourth Program . 20

II Program Organization and Development Techniques 23

4 Procedures in Assembly Language 25
4.1 Purpose . 25
4.2 Procedure . 25

4.2.1 Background — The Form of Procedures 26

iii

iv

4.2.2 Program — Part 1 . 27

4.2.3 Program — Part 2 . 28

5 Multiple Source Files and the Make Facility 31

5.1 Purpose . 31

5.2 Procedure . 31

5.2.1 Using Simple INCLUDE Directives 31

5.2.2 Separate Assembly and the Make Utility 33

III Selected Software Projects 37

6 Number Representation and Integer Arithmetic 39

6.1 Purpose . 39

6.2 Procedure . 39

6.2.1 Representation of Number in Various Bases 39

6.2.2 The Primary Package to Be Developed 40

6.2.3 The Demonstration Program . 42

6.2.4 Support Programs and Development Hints 43

7 A UNIX-Style Directory Listing Program: Part 1 47

7.1 Purpose . 47

7.2 Procedure . 47

7.2.1 The Overall Programming Project 47

7.2.2 Using Find First Matching File to Retrieve File Parameters 49

7.2.3 Formatting the Retrieved Data for Display 53

8 A UNIX-Style Directory Listing Program: Part 2 59

8.1 Purpose . 59

8.2 Procedure . 59

8.2.1 Finding all Matches to a File Descriptor 59

8.2.2 Obtaining Program Arguments from the Command Line 60

8.2.3 Extra Credit . 63

9 Simple File Encryption: Part 1 65

9.1 Purpose . 65

9.2 Procedure . 65

9.2.1 The Overall Programming Project 65

9.2.2 File Input and Output in DOS 67

9.2.3 Developing Software Assignment 9 70

9.2.4 Test conditions for Software Assignment 9 76

v

10 Simple File Encryption: Part 2 77
10.1 Purpose . 77
10.2 Procedure . 77

Appendices 79

A Notes on the Use of the Software and the System 81
A.1 The Components . 81
A.2 Documentation . 82
A.3 The MASM/PWB Environment Variables 82

A.3.1 Overview . 83
A.3.2 Environment Variables on a Personal System 84
A.3.3 Environment Variables on an EMBA-CF Microcomputer 84

A.4 Running MASM/PWB on an EMBA-CF Microcomputer 85
A.4.1 One-Time Initialization . 85
A.4.2 Certifying the Installation on an EMBA-CF Microcomputer . . 86
A.4.3 Further Security Issues . 87
A.4.4 Proper Etiquette When Using an EMBA-CF Microcomputer . . 88
A.4.5 Logical Drives on an EMBA-CF Microcomputer 88

A.5 Other Issues Relevant to MASM/PWB 89
A.5.1 Option Settings in PWB . 89
A.5.2 General Notes . 91
A.5.3 Running MASM/PWB on a Home System 91
A.5.4 Fifty-Line Mode in PWB . 91

B Submission Rules and Evaluation Criteria 93
B.1 Content of a Submission of a Software Assignment 93

B.1.1 The Written Submission . 93
B.1.2 The Demonstration . 94

B.2 Restrictions . 94
B.3 When and Where to Submit Software Assignments 94

Bibliography 95

vi

vii

Preface

Philosophy of this Manual

A curious distinction has evolved in university education in computer science, in com-
parison to education in engineering. In engineering, the curriculum consists of lectures
covering conceptual material, which are complemented by formal, scheduled laboratory
work. In these laboratories, the student is given a detailed written description of what
to do, and the approach to take. During the laboratory meeting, a skilled instructor
first makes a presentation to the students on some of the finer and more difficult points,
and the student then proceeds with the investigation, with the laboratory instructor
close at hand to provide assistance and encouragement. Upon completing the inves-
tigation, the student is expected to submit a detailed report on the procedures and
conclusions of the investigation, which is then evaluated by the laboratory instructor.

In computer science education, this approach is rare. While many, if not most,
courses involve a substantial amount of practical investigation in the form of software
development, this activity is typically viewed as one which is ancillary to the organi-
zation of the course meetings. In lieu of formal laboratory meetings, the student is
expected to pursue and complete the software exercises on his or her own, often with
only the vaguest of descriptions of what is to be done, and with little more than user
manuals (sometimes even those are not available) describing the use of the supporting
software. Not surprisingly, the student often invests far more time developing the soft-
ware than studying the concepts, while instructors express amazement at the inefficient
and inelegant approaches embodied in the student’s work.

In short, most computer science courses seem to consist of two components: formal
class meetings which cover conceptual material, and practical experience in the form
of software development for which little or no formal course support is provided. I
have come to term the latter components hidden labs. In the course of teaching many
computer science courses at all levels over the past twenty years, it has become my
firm conviction that, at least for lower-level courses in which the students are still
learning the principles of software development, hiding the laboratory experience as an
ancillary component of the course, without specific, formal laboratory meetings, results
in an ineffective mode of instruction for the vast majority of students. This laboratory
manual is the product of an effort to conduct instruction in an introductory course
in machine organization and assembly-language programming using the engineering-
style explicit laboratory, with detailed instructions for laboratory work and formal

viii

laboratory meetings staffed by skilled instructors. It presents a sequence of ten software
assignments, each of which is intended to be pursued at one or two laboratory meetings.

In harmony with the engineering approach, the description of each software experi-
ment contains a substantial amount of detail, not only on what the completed product
it to do, but also on how development of the solution is to be approached. I have
striven to identify a balance in which the student is provided with enough information
to establish a firm basis for organizing an approach to attacking the problem, while
still being required to display a significant amount of creativity. Ideas which are new
to a given software assignment are expanded in some detail, while those which are em-
bodied in earlier ones are merely suggested as appropriate, or even left to be identified
by the student.

It must be emphasized that the student is not expected to complete the entire
software assignment in one laboratory meeting. Rather, the laboratory meetings are
intended to provide fora in which the more difficult aspects of the exercise are clari-
fied by the laboratory instructor, and in which the student may seek individual help.
Students must still dedicate outside time to the completion of the exercises. However,
with the combination of these relatively detailed task descriptions and the guidance of
dedicated laboratory instructors, the software exercises become much more an integral
part of the course. It has been my sense that the level of student frustration is far less
with this arrangement than it has been with courses in which the students are expected
to pursue software development entirely outside of formal class meetings. Nonetheless,
there is no particular reason why the experiments of this manual could not be used in
a course without a formal laboratory, although it would probably be unreasonable to
expect the average student to be able to complete more than half of them under those
circumstances.

The experiments are designed to be performed using (version 6.11 of) the Microsoft
MASM assembly-language development system, From the start, the experiments intro-
duce the student to the use of the entire Programmer’s WorkBench (PWB) development
system, including the integrated editor, debugger (CodeView), and make facility. The
package which Microsoft makes available to students is the full professional version,
and not a stripped-down shell. The students thus have access to all of the powerful
features which the professionals do.

The experiments are keyed to both the current textbook which I use for the course
[Irv93], and the three main MASM/PWB reference manuals [MAS93], [MAS92b], and
[MAS92c]. (The MASM package belongs to the “old school” of software distribution,
and includes approximately 1600 pages of printed documentation.) However, the ex-
periments may easily be adapted for use with another textbook.

Appendix A provides some rather detailed notes on the use of MASM and PWB.
While much of this information is specific to the installation at the University of Ver-
mont EMBA Computing Facility, it also includes a fair amount which is relevant to
MASM/PWB in general.

ix

Content Overview

In this section, an overview of the experiments is provided, for the convenience of
the instructor developing a course, as well as for the interested student. The ten
experiments are divided into three groups, with the following emphases.

Part 1 — Introductory software exercises: The overall goal this part, which con-
sists of the first three software assignments, is to introduce the student to software
development using MASM and PWB. Software Assignment 1 simply requires the
student to enter, assemble, debug, and run a program which is given in full. Its
main purpose is to provide an introduction to the use of the development en-
vironment. In engineering style, the student is led to try many of the features
of the system, and to observe how they are used in software development. The
second and third experiments provide the student’s first experience in writing an
assembly-language program, and focus upon simple input from the keyboard and
output to the display. They begin with line-at-a-time output, and then progresses
to more complex behavior, including character-at-a-time output, proper process-
ing of the backspace input character, and unechoed input and masked output.
The final product is a password-validation module, which behaves much as a real
password entry interface would, by echoing asterisks as the password is typed and
responding with a statement as to whether or not the correct password was typed.

Part 2 — Program organization and development techniques: In the second
group of experiments, consisting of Software Assignments 4 and 5, the student is
introduced to two of the most important concepts in software engineering: proce-
dures and separately assembled modules. Often, assembly-language programming
is taken to be the last bastion of true hackery, in which the disciplines consid-
ered to be the core of software engineering have no place. It is my position that
quite the opposite is the case. Since assembly language provides fewer language-
specific tools for disciplined software development than do higher-level languages,
it becomes paramount to take full advantage of those which are present. Soft-
ware Assignments 4 and 5 are specially designed to familiarize the student with
the powerful software management tools and functional capabilities of MASM and
PWB. Software Assignment 4 introduces the student to the notion of a procedure
in assembly language, while Software Assignment 5 provides a first experience with
the module-management facility (the make facility) of Programmer’s WorkBench,
in which the program may be broken into several modules, which are separately
assembled. The latter notion is particularly critical for software engineering in
8086 assembly language, because there is no facility for locality of reference within
a given module. Rather than requiring the student to build new and different
software, the fundamental focus of Software Assignments 4 and 5 is to re-engineer
the work of Software Assignments 2 and 3, using modern software tools. In this

x

way, the student may focus upon the ideas at hand – the use of new tools for solv-
ing old problems – and may thus see the comparative advantages of the various
approaches. Furthermore, a set of libraries of common system and procedure calls
is developed in Software Assignment 5, and is used throughout the remainder of
the projects.

Part 3 — selected software projects: Upon the completion of the first five soft-
ware assignments, the student will have a firm foundation for software engineering
in assembly language. The purpose of the third group of experiments, consisting
of Software Assignments 6 through 10, is to provide selected excursions into more
advanced topics in software development in assembly language and interfacing to
the operating system. Throughout these exercises, the student is required to make
use of techniques learned in the introductory experiments, such as use of the make
facility, as well as of the system call libraries developed in Software Assignment 5.

Software Assignment 6 focuses upon the development of a service which higher
level languages provide, but which must be programmed explicitly in assembly
language — the translation of integer representations between internal and exter-
nal formats. Upon the completion of this assignment, the student should have
a firm understanding of how integers (positive and negative) are represented in
various formats, and what higher-level languages must do when reading or writing
an integer value.

Software Assignments 7 and 8 constitute a two-part exercise which has proven to
be one of the most popular amongst the students. In it, a directory-listing utility,
similar in behavior to “ls -l” of UNIX, is developed. In these assignments, the
student must not only issue the appropriate system calls to obtain the information
about the selected directory; this information must also be unpacked and trans-
lated into a format suitable for display. Thus, in addition to system calls, the use
of logical and shifting commands plays a central rôle, and an opportunity to re-use
portions of the software developed in Software Assignment 6 is provided. Further-
more, the use of assembler macros to generate both code and data structures is
introduced as a required component. Finally, Software Assignment 8 provides a
rather thorough coverage of the program segment prefix (PSP), and how to extract
command-line arguments from it.

Software Assignments 9 and 10 constitute a two-part exercise in which the student
develops a simple XOR file encryption program. While this form of encryption
is hardly secure, its realization does involve several new ideas, including particu-
larly random file access. Furthermore, the techniques of developing the programs
include constraints in which procedures must pass parameters via the stack.

In developing these exercises, a number of compromises had to be made. Perhaps
the most difficult was the exclusion of an exercise which would link a procedure written

xi

in assembly-language to one in a higher-level language, such as C. In the modern
systems environment, it is becoming less and less common to write entire programs in
assembly language. Rather, most of the software is written in a higher-level language,
with only a few key components developed in assembler. Linkage to programs in
other languages is thus a critical notion. Unfortunately, such linkage is only possible
(without great effort) when a standard object-file format is available. In plain English,
this means that that the assembler and compiler must come from the same vendor.
Unfortunately, at the time that these assignments were under development, the use of
Microsoft C was not a viable option, and so such an experiment had to be eschewed.
For those working in an environment which includes Microsoft C, the addition of a
multi-language linkage exercise would be most appropriate.

Another compromise which was made was the limitation of the exercises to 8086-
compatible code; instructions specific to higher-level processors were excluded. In terms
of “ordinary” programming, this is not much of a compromise, since in protected mode,
the additional instructions are largely 32-bit versions of existing ones. The real power
of the 80386-compatible processors is the ability to support virtual mode, which is used
largely in the development of operating systems. In addition to the advanced nature
of such programming, modern operating systems, such as Windows 95, will not permit
a user program to execute such commands. For these reasons, such topics were viewed
as too advanced for an introductory course.

Acknowledgments

Ronald Williams taught the course in machine organization and assembly-language
programming the semester before I assumed responsibility for it, and graciously pro-
vided a preliminary but well-thought-out sequence of experiments based upon that
offering, some of which evolved into those found in this manual. He also served as a
critical listener for my ideas on the design of experiments, and provided much-needed
encouragement for the formal-laboratory approach to the course.

The success of a laboratory-based course depends in no small measure upon the
contributions of the laboratory instructors. Both Gregg Stadtlander and David Noel
have served in this rôle, and have contributed in no small measure to the success of the
course, through their dedicated service as instructors and as well as through construc-
tive comments on preliminary versions of the written descriptions which comprise this
manual.

Finally, numerous students who have taken the course have provided valuable feed-
back.

xii

Trademarks

The following known trademarks are used in this manual:

MS-DOS, Windows, Windows for Workgroups, Windows 95, Windows NT, and
CodeView are trademarks of Microsoft Corporation.

UNIX is a trademark licensed exclusively through X/Open Company Ltd.

8086, 80386, and Intel are trademarks of Intel Corporation.

While every effort has been made to ensure completeness and accuracy of this list,
the absence of any legal trademark from this list, or an error in any listing, does not
in any way imply a claim that the legal registrations are incorrect or inappropriate.

Part I

Introductory Software Exercises

1

Software Assignment 1

Becoming Acquainted with MASM
and PWB

1.1 Purpose

The purpose of this laboratory exercise is to help you gain familiarity with the MASM
development environment, including the Programmer’s Workbench (PWB) and the
CodeView debugging environment.

Bring your copies of the MASM manuals to the laboratory session. You
may need them, and copies will not be available in the laboratory.

1.2 Procedure

As you work through this first part of the procedure, you may wish to reference Chap-
ters 2 through 7 of the Environment and Tools manual [MAS93], which documents
these concepts.

It is suggested that you “check off” each step in this laboratory exercise as you have
completed it.

1. Begin by installing MASM/PWB properly on your system. This includes in par-
ticular the initialization files. See Appendix A, and in particular A.4.1, for more
information.

2. Start up PWB, either by issuing the PWB command at an MS-DOS prompt, or
else by double-clicking on the appropriate Windows icon.

3. Check the option settings, as outlined in Appendix A, Section A.5.1..

4. Go to the Files menu, and select DOS Shell. This will open a subshell for
you. Create an appropriate directory in which you will save your programming

3

4 Software Assignment 1

assignments for the course. If you are using an EMBA-CF microcomputer, issue
the command mkdir M:\assign. This will create a directory named assign in
the file space of the account which you are using.

5. Type the command exit to return to MASM/PWB.

6. Go to the Files menu, and select New. A new window, entitled something like
Untitled.001, will appear.

7. Go to the Files menu again, and select Save As. Now backspace the cursor at
the File name field at the top of the new command window which has appeared
on the screen, to erase that field. Then, type M:\assign\soft1.asm in that field.
Now click on OK at the bottom of the screen. Notice that the name which appears
at the top of the file window is now the name which you have given the file.

Note: Do not type just a file name, such as soft1.asm, as the name of the
file. If you do this, the file will be saved in the default directory. If you started
MASM/PWB directly by selecting MASM from the Programs menu of the Start
button, the file will be saved in the system Windows directory, C:\Windows. If you
are using your home system, this is a nuisance. If you are using an EMBA-CF sys-
tem running Windows 95, this is not only a nuisance; it is also not proper etiquette
for use of a shared system.1 It clutters up a key system directory. Furthermore, if
you leave your program sitting there in the Windows directory, someone else can
easily copy it. If you started MASM/PWB by typing pwb on the command line
of a DOS shell, then the default directory will be whatever directory you were in
when the shell was started.

8. Windows in PWB can be moved around easily. Put the cursor over the double
horizontal bar at the top of the window, and move the mouse. Notice that the
whole window can be moved in this fashion. Similarly, one can put the cursor over
the single vertical bar on the left side of the window and move it around.

9. Windows can also be resized easily. Put the cursor over the short horizontal bar at
the lower right corner of the window. Moving the cursor changes the height of the
window. Similarly, place the cursor over the short vertical bar at the lower right
of the window, move the cursor, and note that the width of the window changes.

10. Put the cursor on the arrow which points down which is at the upper right corner
of the window. Click the left mouse button, and note that the window has dis-
appeared. Actually, it has not really disappeared. Rather, it has been iconified,
but it may now be hidden by another window. By iconified, we mean that it has
been shrunk to a little window with just a name (in this case a number) inside.
To get it back, select the Window menu item from the top of the screen. Towards

1If you are using an EMBA-CF system running Windows NT, it will not let you write to the
directory C:\Windows, so you must choose another directory.

Becoming Acquainted with MASM and PWB 5

the bottom of the menu which appears, you should find the name of this window.
Select this item to restore the window. When you click on the window name, it
will reappear iconified. Just click on this small box to get the full display back.
Notice also that the window has a number, which appears both on this menu and
to the left of the name on top of the window.

11. Put the cursor on the arrow which is pointing up, located at the upper right corner
of the window. Click the left mouse button. Notice that the window fills the entire
screen. To restore it to its previous size, click on the double-headed arrow at the
upper right of the window.

12. If there is another window on the screen, notice that the same command works
with it, and that each window has a number. Any window may be selected by
clicking on it, or by selecting it from the Window menu.

13. Now it is time to start programming! For a starter, you will enter a program
which has already been written for you. Type in the program which is found in
Figure 1.1 on page 12. In doing so, you will gain some experience in using the
editor which comes with MASM/PWB. Just type the text of the program into
the window for soft1.asm which you created.

Unfortunately, Microsoft has chosen not to document systematically the opera-
tion of this editor in the massive manuals which come with MASM/PWB. Some
information is contained in Chapter 7 of the Environment and Tools manual, but
one really has to dig.

There is limited documentation on line. Try it as follows. Select Editor Settings

from the Options menu. Now scroll through the Switch List and select one of
them, say tabalign. Click on Switch Help to get information on what that switch
is about. Click on Cancel to return to the Editor Settings menu. This sort of
documentation is limited to switch settings, however. (Get out of the options
menu by clicking on Cancel again.)

You can find out the name of the command which a particular control key is bound
to by typing Ctrl-T followed by that key. Try it on a few keys, including Ctrl-L

(search). One can find out what a command does by looking it up in Chapter 7
of the Environment and Tools manual [MAS93].

While the editor is reasonably simple to use, it does have some quirks. The tab
key skips to a new field, and does not insert a tab. This can be frustrating if one
formats a line incorrectly, and later wishes to insert a tab. The easiest way around
this is to insert by using the correct number of spaces. Another quirk is that
the delete key will not delete an end-of-line. To delete an end-of-line, go to the
beginning of the next line and type backspace (or use the visual Cut command).

Notice that at the right lower corner, the line and column number is indicated.

6 Software Assignment 1

Also, some letters may be shown. The letter O denotes overwrite mode, is toggled
with the insert key. The letter R denotes read only, and is toggled from the
Read Only entry in the editor menu. The letter M indicates that the file has been
modified. See page 62 of the Environment and Tools manual [MAS93] for complete
information on the display at the bottom of the screen.

The Stream Mode, Box Mode, and Line Mode entries in the Edit menu determine
the type of capture that occurs when text is selected with a sweep of the mouse.
Try it. The other menu items, such as Cut, Copy, and Paste, are reasonably self-
explanatory. Surprisingly, search is not on the menu, but may be invoked with
Ctrl-L.

It is wise to save frequently. To save a file, one can either select the Save entry
from the File menu, or else type Shift-F2 — that is Shift plus the F2 key —
or just hit the SF2 key if your keyboard has one.

Finally, notice that the editor window may be scrolled both vertically and horizon-
tally by dragging the mouse on the movable rectangles on the right and bottom
of the window, by clicking on the arrows along the bottom and right side.

Before you go to the next step, make sure that you have typed in the program.

14. Once you have completed typing in the program, it is time to assemble and link
it. To do this, go to the Project menu and click on Build: or Rebuild All. One
of two things will happen. If you typed in the program correctly, a window giving
a message indicating zero errors will appear, and you will be given a number of
options. Select Run Program and it should print the message on the screen and
then prompt you to type any key to return to PWB. Do this.

If you typed in the program incorrectly, you will get a message that there are some
errors. Select View Results and an error window will appear at the bottom of
the screen. By examining the error messages, it is often possible to get a good
idea as to what the error is. If you can’t figure it out now, do not be concerned.
Just check the text carefully for typing errors.

Before you go on to the next step, make sure that your program works.

If you get a message such as

NMAKE : fatal error U1045: spawn failed : Arg list too long

see item 6 of Section A.5.1 of Appendix A to see how to declare a virtual drive,
with a resulting shorter argument list. To recover from this error, you will have
to open a new editor window, with your source file accessed via the virtual drive.

15. Notice that in the project menu, in addition to Compile File: <filename>.asm,
there is also Build: <filename>.exe and Rebuild All. The menu item

Becoming Acquainted with MASM and PWB 7

Compile File: <filename.asm> just assembles the file, while the Build com-
mand both assembles and links and loads the file. Since this is a one-module pro-
gram, no linking is necessary. Loading refers to the process of taking the assembler
output and configuring it for actual execution. (We will discuss this process in
more detail in the course. For now, it is best to avoid using the Compile File:

option by itself, because it will not link and load — it generates a new .obj file,
but not a new .exe file, and so you may inadvertently execute an old version of
the program.) The Rebuild All command differs from Build when there is more
than one file in the project. It rebuilds them all, and not just the one named.
Again, we will discuss this in more detail as the course progresses.

Once a program is assembled, the Execute entry may also be selected from the
Run menu.

It is now time to learn a little about the CodeView debugger. As you work through
this part of the exercise, you may wish to refer to Chapters 8 through 12 of the Envi-
ronment and Tools manual [MAS93].

16. From the Run menu, select the Debug option. This will place you in the CodeView
debugging environment. If you have set the options properly, the screen should
switch to 50-lines mode. If you would like the PWB main screen to be in 50-line
mode as well, follow the directions in Section A.5.4 of Appendix A.

17. CodeView provides a host of windows, including two Source windows, two memory

windows, a help window, a watch window, a locals window, a register window,
an 8087 window, and an command window. The existing window layout should
provide a good view, but if not, try to lay things out so that the following windows
are visible without too much overlap: source1, memory1, command, watch, reg,
and locals. It will be most informative if you can view all of these windows
simultaneously.

18. The source1 window provides a view of the source code of the program. (If it does
not, that probably means that you have not set the Use Debug Options in the
Build Options menu of PWB.) Note that the F3 key toggles the format of the
source1 window amongst three distinct formats: a disassembly of the executable,
a listing of the source, and mixture of the two. Notice that the first executable
instruction is highlighted. We can step through the program, step-by-step. To do
so, use the F8 key. This is known as the trace function. Each time that the F8

key is pressed, the program advances one step. Notice that the highlighted line
changes at each step. The F10 key invokes the step function, which is similar,
except that it skips functions which are called (excluding DOS calls). Since there
are no such functions in this program, F8 and F10 behave identically here.

The source2 window operates identically. It is of use when one is working with a
program with more than one source file.

8 Software Assignment 1

Notice that the screen flashes to the MS-DOS output screen at each step. To
turn this off, select the Screen Swap entry of the Options menu. This will toggle
this option. Now, stepping will not cause the screen output to be displayed at
each step. However, whenever output is generated, a message box will appear
indicating so; click on OK to continue. Also, the output may be viewed at any time
by selecting the View Output item from the Windows menu.

To repeat this process, select the Restart option from the Run menu. This will
restore the program to a starting configuration.

After selecting Restart, try selecting the Animate function from the Run menu.
The program will step automatically, at a slow rate. The speed of the animation
may be changed by selecting the Trace Speed item from the Options menu. Try
it.

19. The memory1 window provides a view of memory. The display changes dynamically
as the program steps through its instructions. There are twelve different formats
for memory display, with the Shift+F3 key (or SF3 if you keyboard has it) toggling
the display. Select the Memory1 window and try toggling the format.

One problem with using a memory window is that often it is not entirely obvious
just which data items one is viewing. How do we find out the address at which
a particular data item is stored? The answer is to use the command window. The
X command, with a suffix, will provide the addresses of data items. Try selecting
the command window, and then, at the prompt >, type XM. This will display all
data items in the current module. It may look something like this:

>xm
1915:0044 {,SAMP1.ASM,SAMP1.exe} var1
1915:0008 {,SAMP1.ASM,SAMP1.exe} message
1914:0000 {,SAMP1.ASM,SAMP1.exe} main
>

This tells us where the variables are stored. For example, var1 is stored at location
1915:0044. So, to follow its value, we have to make it visible in the Memory1

window. The problem is that the memory window might use a different segment.
For example, Memory1 might display as follows.

1914:0000 B8 15 19 8E D8 BA 08 00 B4 09 CD 21 83 8UYNX:H.4.M!C
1914:000D 06 44 00 01 B0 00 B4 4C CD 21 00 54 68 FD.A0.4LM!.Th
1914:001A 69 73 20 6D 65 73 73 61 67 65 20 73 68 is message sh
1914:0027 6F 75 6C 64 20 62 65 20 64 69 73 70 6C ould be displ
1914:0034 61 79 65 64 20 77 68 65 6E 20 74 68 65 ayed when the
1914:0041 20 70 72 6F 67 72 61 6D 20 69 73 20 72 program is r
1914:004E 75 6E 2E 0A 0D 24 00 00 4E 42 4E 42 30 un.$....NBNB0
1914:005B 38 90 02 00 00 00 00 00 00 01 00 43 56 8PB......A.CV
1914:0068 01 00 00 00 00 00 00 00 17 00 00 00 23 A.......W...#

Becoming Acquainted with MASM and PWB 9

1914:0075 44 3A 5C 43 4F 55 52 53 45 53 5C 43 53 D:\COURSES\CS
1914:0082 31 30 31 5C 50 52 4F 47 52 41 4D 53 5C 101\PROGRAMS\

Yet, the address we have for var1 uses segment 1915. We could compute the
equivalent address in segment 1914 manually, but that would be time consuming
and prone to error. Instead, we should let the machine do it. To change the
segment, just go to the memory1 window and rewrite the first 1914 to be 1915.
(Just type over the numbers — that is all that there is to it.) We then see the
following in the memory1 window.

1915:0000 01 B0 00 B4 4C CD 21 00 54 68 69 73 20 A0.4LM!.This
1915:000D 6D 65 73 73 61 67 65 20 73 68 6F 75 6C message shoul
1915:001A 64 20 62 65 20 64 69 73 70 6C 61 79 65 d be displaye
1915:0027 64 20 77 68 65 6E 20 74 68 65 20 70 72 d when the pr
1915:0034 6F 67 72 61 6D 20 69 73 20 72 75 6E 2E ogram is run.
1915:0041 0A 0D 24 00 00 4E 42 4E 42 30 38 90 02 $..@@NBNB08PB
1915:004E 00 00 00 00 00 00 01 00 43 56 01 00 00A.CVA..
1915:005B 00 00 00 00 00 17 00 00 00 23 44 3A 5CW...#D:\
1915:0068 43 4F 55 52 53 45 53 5C 43 53 31 30 31 COURSES\CS101
1915:0075 5C 50 52 4F 47 52 41 4D 53 5C 53 41 4D \PROGRAMS\SAM
1915:0082 50 31 2E 6F 62 6A 01 00 00 00 0A 00 05 P1.objA.....E

Now, we know that the value of var1 is represented as the fourth two-hexdigit
number on the line labelled 1915:0041.

Perform a similar analysis for your version of the program. (The addresses will
probably be different, but the process is the same.) Now, step through the pro-
gram, watching the value of var1. Note that it is highlighted at the first step after
its value changes.

The memory2 window operates identically to memory1.

21. We can also modify data in the data window. Find an appropriate display mode, so
that you can locate the message “This data should be displayed when the program
is run.” Restart the program, and then type over the word “should,” replacing it
with “oughta.” After running the program, select View Output from the Windows
menu, and note that the message has been changed. Hit any case to return to the
CodeView display. Of course, the source program is not changed. In fact, if you
restart the program and run it again, “should” will reappear. Try it.

21. There is another way to keep an eye on the values of critical variables as a program
progresses — by using a watch. Select the command window, and type w? var1

at the prompt. Notice that var1 = 0 appears in the watch window. Now restart
the program (select Restart from the Run menu), and step through the program
again. Notice that the value of var1 changes when the instruction add var1,1 is
executed.

10 Software Assignment 1

Watches may also be added and deleted by using the Add Watch and Delete

Watch items from the Data menu. Try this with the var1 data item.

Watches may be set for processor registers. Go to the command window once again,
and type w? ax at the prompt. Now ax = appears in the watch window, and the
value changes as the ax register does.

Consult the Environment and Tools manual [MAS93], pages 436 and 442–443, for
more information on these commands.

22. All of the registers and flags of the processor may be monitored in the reg window.
Restart the program and step through it again, this time observing the changes
displayed in this window. Note that the entries which have just changed are
highlighted.

23. From the Options menu, choose Locals Options, and then mark Modules by
placing an X between the appropriate brackets. Notice that var1 and message

appear in the locals window, along with their addresses. (If the addresses do not
appear, go back to the Local Options menu and select Show Addresses.) This
is yet another way to view data objects, and to find out their addresses as well.
The values will change dynamically as the program is traced.

24. A final use of the debugger which we will examine is the use of breakpoints. There
are actually many types of breakpoints which may be set; see pages 339–341 of
the Environment and Tools manual [MAS93]. We will try one simple kind — a
location break. From the Data menu, choose Set Breakpoint. Now, in the grey
box that appears, choose Break When Expression has Changed, and then type
var1 in the expression field. Now select Restart and then Animate from the run
menu. The program will step automatically until it executes the statement add

var1,1. It will stop at the next statement, but may be resumed by using F8 or
F10 or by invoking Animate again.

The Edit Breakpoints item from the Data menu allows one to both view the
details of existing breakpoints and to modify them. Select this item and look at
the information which you are provided.

25. There is one more debugger command worth learning about at this time. Restart
the program, select the command window, and type a backslash, followed by a
return. The output screen will appear. To get back to the debugger environment,
hit any key.

26. To return to the Programmer’s Workbench, select Exit from the Files menu of
CodeView.

27. As a final exercise, print out the source (.asm) file, the listing (.lst) file, and the
map (.map) file. Consult Appendix B for information on how to print the .lst

file properly.

Becoming Acquainted with MASM and PWB 11

28. If you are using an EMBA-CF machine, make sure that you remove any source
files from the C: drive, and that you have not left any “garbage” files around,
except possibly in the TMP directory. Save your work to a floppy disk, as well as
to the M: drive, for safety.

12 Software Assignment 1

;; CS101 Software Assignment 1.
;; Author: Stephen J. Hegner.
;; Date Due: February 5, 1996.
;; Purpose: This is just a demonstration program, used to illustrate
;; the use of MASM/PWB.
;;

.MODEL small, farstack

.STACK 100h

.DATA
CR equ 0dh
LF equ 0ah
ENDTEXT equ ’$’
display_string equ 9h
return_code equ 0
exit_to_dos equ 4ch
dos_call equ 21h
message db ’This message should be displayed when the program is run.’

db CR, LF, ENDTEXT
var1 dw 0

.CODE
main proc
;; Identify the default data group.

mov ax, @data
mov ds, ax

;; Display the message on the screen.
mov dx, OFFSET message
mov ah, display_string
int dos_call

;; Increment a data item, just to see it work with the debugger.
add var1, 1

;; Return to DOS.
mov al, return_code
mov ah, exit_to_dos
int dos_call

main endp

end main

Figure 1.1: Text of Program 1.

Software Assignment 2

Basic Input and Output: Part 1

2.1 Purpose

The purpose of this laboratory exercise is to help you gain an initial familiarity with
writing assembly-language programs which interface to the MS-DOS operating system.

Bring your copies of the MASM software manuals to the laboratory ses-
sion. You may need them, and copies will not be available in the laboratory.

2.2 Procedure

In this exercise, you are to write two distinct programs. Each program will write a
prompt to the display, request simple input from the user, and then provide a response
based upon that input. The programs will differ in the way that they obtain and echo
that input.

2.2.1 The First Program

In this part of the exercise, you are to write a program which does the following.

1. The program displays the message

Please type your name, followed by a return:

2. The cursor of the display remains on the same line as the above message, posi-
tioned with one space between it and the final colon. At this point, the system
is waiting for input from the user.

3. The system reads the name which the user types, collecting the characters until
a return is typed. These characters are echoed as the user types them.

13

14 Software Assignment 2

4. The system then responds with the message Hello, followed by the name which
the user typed in, followed by a comma, a space, and then I hope that you

are having a nice day., all on the same line. Thus, a sample dialog might
be as follows. The text which the system prints is shown in typewriter font,
while the text which the user types is shown in italics.

Please type your name, followed by a return: Charlie Brown
Hello Charlie Brown, I hope that you are having a nice day.

5. The program then returns control to MS-DOS.

This program is very simple to write, but in so doing, you will learn about the
basic MS-DOS calls for string-at-a-time input and output to the display. To obtain
this input, use the int 21h MS-DOS call 0ah. See pages 119–120 of the text by Irvine
for details on how it is used [Irv93]. Basically, the command writes into a buffer, which
may be declared as follows.

buffer equ $

buffer_size db maxsize

buffer_count db ?

buffer_data db maxsize dup (?)

The symbol $ in the assembler evaluates to the address at which the next item will
be assembled. Thus, in the above example, buffer is set to the starting address of the
buffer. The buffer is, in effect, represented as a record. The byte buffer_size records
the maximum number of data bytes in the buffer; maxsize is a constant which must
be defined in the program. The next byte, named buffer_count, will be filled by the
system routine with the number of characters actually read by the routine. (The final
carriage return which the user types is not counted.) The symbol ? is used in the value
field to signal the assembler that the value need not be initialized. The final part of
this “record” is in fact an array of bytes, with the first byte located at the address
named by buffer_data. The number of bytes in the array is maxsize. The data entry
maxsize dup (?) tells the assembler to replicate the value ? (no value) maxsize times.
In other words, the array is uninitialized.

Once the program has received the input, it must, among other things, write it
out again. The int 21h call 09h may be used for this purpose. This call writes out
bytes until it encounters one whose value is the ASCII representation of $. Thus, to
write out the string which has been read in, it is necessary to place a $ at the end.
The $ must be placed in the first available byte in buffer_data, which is located
at buffer_data + value(buffer_count), with value(buffer_count) denoting the
value (not the address) of the byte stored at offset buffer_count in the data segment.

Basic Input and Output: Part 1 15

A way to store a value into this dynamically computed address is needed. The
most effective technique is that of indexing. An example will illustrate how this is
done, assuming that ENDTEXT is a symbol whose value is ’$’.

mov al, buffer_count

mov ah, 0

mov si, ax

mov buffer_data[si], ENDTEXT

The si register is used for indexing here. (The register di may also be used.) The
value of the index is placed into si, and then the indexed address buffer_data[si] is
used. We cannot use the instruction

mov si, buffer_count

directly because si is a 16-bit register and buffer_count is a byte value. (The sizes
of the arguments in a mov instruction must match.) The rest of the process is very
straightforward, and similar to that of the program of Software Assignment 1.

2.2.2 The Second Program

In the second program, instead of echoing the characters which the user types at the
prompt, the program echos asterisks. Thus, a typical session with this new program
might appear as follows.

Please type your name, followed by a return: *************

Hello Charlie Brown, I hope that you are having a nice day.

This sort of “disguised echoing” is used in the validation program which prompts
you for your password when you log onto an EMBA-CF microcomputer. To achieve
this behavior, the int 21h call 0ah cannot be used. Rather, the int 21h call 08h,
which reads one character at a time, without echoing the character, should be used.
The high level process may be described as shown in Figure 2.1.

An index register, such as si, should be used to store the buffer pointer. Using
the same record structure as for the first program described above, the buffer count

is just the byte stored at buffer_count.
To realize if and repeat constructs in assembly language, we make use of two

operations. The first is the comparison operation cmp. This operation compares two
quantities, and sets certain status flags in the flags register as a result. The second
is the set of operations known as jump instructions. A transfer of execution to a new
address is effected conditionally upon the value of a status flag. Here is an example.

16 Software Assignment 2

DONE := false;
Repeat
Read a character C without echo;
If C is the return character

then
DONE := true;

else
If the buffer is full

then
DONE with error;

else
write an asterisk to the display;
put C into the input buffer;
increase the buffer count by one;
move the buffer pointer ahead by one;

end if;
end if;

until DONE;

Figure 2.1: High-Level Description of Disguised Echoing.

loop: <some computations>

cmp ax, 0

jne loop

The mnemonic jne stands for jump on not equal, and so this program fragment is
operationally equivalent to the control expressed in the following pseudocode.

repeat

<some computations>

until ax=0

Here <some computations> is just some set of instructions, whose exact nature is
not important here. Of course, these instructions must eventually set the value in the
ax register to zero if the loop is to terminate. Similarly,

cmp ax, 0

jne ahead

<some computations>

ahead: <more computations>

is operationally equivalent to

Basic Input and Output: Part 1 17

if ax=0

then

<some computations>

end if;

<more computations>

The full array of jump instructions is given on pages 149–151 of the text by Irvine
[Irv93].

Using these ideas, you should be able to realize, in assembly language, the high-level
process outlined above.

Software Assignment 3

Basic Input and Output: Part 2

3.1 Purpose

The purpose of this laboratory exercise is to help you gain additional familiarity with
writing assembly-language programs which interface to the MS-DOS operating system,
with emphasis upon the use of indexing in simple linear buffers.

Bring your copies of the MASM software manuals to the laboratory ses-
sion. You may need them, and copies will not be available in the laboratory.

3.2 Procedure

In this exercise, you will write two distinct programs. Since they will extend the
programs of Software Assignment 2, they will be referred to as the third program and
the fourth program, respectively. This write-up also makes use of the notation and
ideas of the write-up of Software Assignment 2.

3.2.1 The Third Program

In the second program, in prompting for the name of the user, instead of echoing
the characters which were typed, the program echoes an asterisk for each character
typed. Thus, if your name is Calvin, and you type Calvo^Hin, with the ^H denoting a
backspace (to erase the erroneous o), all seven characters will be placed in the buffer,
including the backspace character ^H (which is 08 hexadecimal in the ASCII character
set). In other words, the sequence of bytes in the data part of the buffer looks like

C a l v o ^H i n

In the second program, this is not a problem, since the backspace character is displayed
by the int 21h display character call 02h as a backspace of the terminal cursor. The

19

20 Software Assignment 3

o is overwritten so quickly by the i that it is imperceptible to the human eye (unless
the program is slowed down via stepping or animation).

For other uses of the buffer (one of which will be illustrated in the fourth program)
however, it is far better to process the backspace characters “on the fly” as editing
characters, so that the final buffer contents would be

C a l v i n

Simultaneously, the display of asterisks should reflect the number of characters in the
buffer, and not the total number of characters typed. The critical sequence of values
may be visualized as follows, with the underscore _ representing the flashing cursor on
the display screen.

Typed Input Buffer Data Display

Calvo C a l v o *****_

Calvo^H C a l v ****_

Calvo^Hi C a l v i *****_

The Buffer Data column shows only the characters up to and including the position
indicated by the buffer pointer. The o is not really erased or replaced by a space, but
it is eventually overwritten by the i. To realize this, we must process the backspace
character specially. A high-level description of the algorithm appears in Figure 3.1
on the following page. This description is an extension of that given for the second
program in Software Assignment 2. Notice two things in particular.

1. When the buffer is empty, a backspace is ignored. This makes sense in terms of
a user interface, since one cannot back up beyond the beginning of the input.

2. When a backspace is encountered and the buffer is not empty, the asterisk
immediately to the left of the cursor must be “erased,” and the cursor must
be backed up one position. To do this, first echo a backspace (to back up the
cursor), then echo a space (to replace the asterisk in the current cursor position
with a space character), and then echo another backspace (to compensate for
the cursor moving ahead one position due to writing the space character). This
may seem a bit complex, but try it — you will see how it works.

3.2.2 The Fourth Program

In the fourth program, the user will be prompted not only for a name, but for a
password as well. A sample dialog might begin as follows.

Basic Input and Output: Part 2 21

DONE := false;
Repeat
Read a character C without echo;
If C is the return character

then
DONE := true;

else
if C is a backspace

then
if buffer is not empty

then
decrease buffer count by one;
move the buffer pointer back by one;
echo a backspace;
echo a space;
echo a backspace;

end if;
else
If the buffer is full
then
DONE with error;

else
write an asterisk to the display;
put C into the input buffer;
increase the buffer count by one;
move the buffer pointer ahead by one;

end if;
end if;

end if;
until DONE;

Figure 3.1: High-level description for processing input.

Please type your name, followed by a return: Charlie Brown
Hello Charlie Brown, I hope that you are having a nice day.

Please type the secret password, followed by a return: *****

This program echoes the user name, just as the first program did. (You may and should
use your code from the first program for this part.) The program then prompts for
a secret password, echoing asterisks as the candidate password is typed. The actual
password is declared in the program using a db command, such as

passwd db ’01234’

pwdsize equ $-passwd

The first line declares the password to be the byte sequence 01234, and the second
line reflects a little trick to compute the number of characters in the password. The

22 Software Assignment 3

password must contain at least one character, and no more than sixteen. The program
should provide one of three possible responses, depending upon the user’s response.

1. If the user types the correct password, followed by a return, the system responds
with

You gave the secret password. You are so wise!

and then returns to the operating system.

2. If the user types an incorrect password, followed by a return, the system responds
with

That is not the secret password. You are so stupid!

and then returns to the operating system.

3. If the user types a candidate password which is longer than the size of the buffer
which is used to store it, the system responds with

The secret password is no longer than 16 characters. You are so stupid!

and then returns to the operating system. It does this as soon as the candidate
password is longer than sixteen characters, and does not wait for a return to be
typed.

Otherwise, the program should not reject a candidate password until the user has
typed a return. In other words, it should allow the user the option of backspacing
to replace incorrect characters. The only exception is the case in which the user has
typed in a candidate which is longer than sixteen characters, in which case the program
should reject that candidate immediately.

To realize this final part, the candidate password is read into a buffer. After the user
types a return, the contents of this buffer must be compared, character by character,
to the actual password. This is done in two steps.

1. If the candidate password is either shorter or else longer than the actual pass-
word, the match fails immediately. This is checked by comparing the buffer
count with the value of pwdsize, as declared above.

2. If the candidate password and the actual password have the same length, then
the characters are compared, byte-by-byte. This is realized via a simple loop,
using an index register.

Part II

Program Organization and
Development Techniques

23

Software Assignment 4

Procedures in Assembly Language

4.1 Purpose

The purpose of this laboratory exercise is to introduce the concept of procedures in
the assembly language environment.

4.2 Procedure

In most high-level languages, one can write procedures which are reusable definitions of
algorithm fragments. It is possible to write and to call procedures in assembly language
as well, although, as you might expect, far less is done automatically than in high-level
languages, and one must pay attention to a substantial amount of detail. There are,
in fact, many facets to procedure calls in assembly language. First and foremost, there
is the notion of a procedure versus a macro. Roughly speaking, a procedure is a single
block of instructions which may be entered and exited many times, while a macro is
a declaration of a set of instructions which may be copied automatically to several
distinct places in the program. In this exercise, we will deal solely with procedures.
Software Assignments 7 and 8 will introduce programs with macros.

Within the context of procedures, there are at least two fundamental issues: the way
in which parameters are passed, and whether the procedure is separately assembled and
linked or just included in the calling program. In this exercise, we will write procedures
which (a) pass their parameters in a very basic way, via registers; and (b) which are
included in the calling program, so that issues of separate assembly and linking are not
considered. In later exercises, we will look at relaxing these constraints.

You will modify the program which you wrote for Software Assignment 3. This will
be done in two steps.

25

26 Software Assignment 4

4.2.1 Background — The Form of Procedures

The basic syntax for a procedure declaration is as follows:

proc_name proc
<procedure code>

proc_name endp

while the basic syntax for procedure invocation is

call proc_name

In the above, proc_name is the name of the procedure. Let us illustrate with a
simple example. A common int 21h DOS call is 08h, which gets a character from the
keyboard without echoing it to the display. Let us write a procedure call to realize
this function. First of all, we need to make some decisions about how parameters are
passed. This procedure has no input parameters, and it has one output parameter;
namely, the character which has been read. Let us adopt the convention that the
character will be returned in the al register. Here is a first try at such a procedure.

get_char_necho proc
;; Get a character from the keyboard without echoing to the display.
;; input: none
;; output: al <- character typed.

mov ah,08h
int 21h
ret

get_char_necho endp

Note that the ret command is used to return control of the procedure to the calling
program. Often, it is the last statement (lexically) of the procedure, but it need not
be. Beyond that, there is relatively little which is absolutely essential to know. The
handling of the return address is done automatically — the call command pushes
the return address onto the stack, and the return command pops it off. To use this
procedure in a program, we need simply write a line such as

call get_char_necho

and the al register will contain the character which has been typed, after execution of
the procedure.

There is a weakness in the procedure, as it is written, however. Namely, it uses and
overwrites the ah register, without warning the user. Thus, if a call to the procedure is
executed in a program which expects the ah register not to change, the program may
not work. As a matter of good practice, it is prudent to protect the contents of registers
which the procedure uses. The way to do this is to save the values of these registers on
the stack when the procedure is called, and to restore them when it finishes. For this
procedure, this becomes a bit complicated. An “obvious” solution is the following.

Procedures in Assembly Language 27

get_char_necho proc
;; Get a character from the keyboard without echoing to the display.
;; input: none
;; output: al <- character typed.

push ah
mov ah,08h
int 21h
pop ah
ret

get_char_necho endp

However, this is not legal assembly language. The reason is that the arguments to push

and pop instructions must be words, and not bytes. However, if we replace push ah

and pop ah with push ax and pop ax, respectively, then the return value contained
in al will be lost. The solution is to use a second register, as follows.

get_char_necho proc
;; input: none
;; output: al <- character typed.

push bx
push ax
mov ah,08h
int 21h
pop bx
mov ah,bh
pop bx
ret

get_char_necho endp

Notice that neither the contents of bx nor the contents of ah are altered by this proce-
dure.

4.2.2 Program — Part 1

In this part, you are to write procedures which exhibit the following behavior.

1. A procedure named display_string which uses the int 21h call 09h to display
a string on the monitor.

2. A procedure named get_string which uses the int 21h call 0ah to get a string
from the keyboard.

3. A procedure named display_char which uses the int 21h call 02h to display
a character on the monitor.

4. A procedure named exit_to_dos which uses the int 21h call 04ch to return
control to the operating system.

28 Software Assignment 4

Then, you are rewrite the last program of Software Assignment 3 (which reads both
the name and the password, and then verifies the correctness of the password), using
these four procedures, and the procedure get_char_necho given above. The main part
of your program must not make any direct int 21h calls; all of these services must be
realized via procedure calls.

There is one further point which needs to be mentioned. All of the procedures are
declared within the same .CODE segment of the program. One of these procedures is
the main program, which is executed when the program begins, and all of the others
are procedures to be called. The main program is indicated by the statement

end main_prog_name

with main_prog_name identifying the name of the procedure which is the main program.

4.2.3 Program — Part 2

In this part, you will write a procedure with somewhat more complex parameter passing
conventions. Consider the problem of comparing the contents of two buffers, as was
necessary in the last program of Software Assignment 3 during password verification.
For consistency, we assume that we have two buffers, declared as follows.

b1 equ $

b1_size db bufmax

b1_count db ?

b1_data db bufmax dup (?)

b2 equ $

b2_size db bufmax

b2_count db ?

b2_data db bufmax dup (?)

We wish to write a procedure which will compare the two buffers, and report back
as to whether they have the same contents. The procedure must be able to compare
two arbitrary buffers of the above form, and not just b1 and b2. Thus, the arguments
b1 and b2 must be passed to the procedure as parameters. A high-level pseudocode
description of this procedure is shown in Figure 4.1 on the following page..

To realize this procedure in assembly language, several points must be considered.
First of all, it is not possible to pass the actual buffers to the procedure in registers.
Rather, the starting address of the buffer is passed to the procedure in registers. This is
a low-level realization of the so-called pass-by-reference mode of parameter transmission
(called var parameters in Pascal, and realized by passing pointers in C.) Let us adopt
the convention that cx will point to the first buffer, and dx will point to the second.
(That is, they will contain the offset addresses for these buffers.) Second, the return

Procedures in Assembly Language 29

procedure compare_buffers(buf1, buf2: buffer): Boolean;
integer: index;
Boolean: flag;
if buf1.count <> buf2.count

then
flag := false;

else
index := buf1.count;
flag := true;
while ((index >= 0) and flag) do

if buf1.data[index] = buf2.data[index]
then
index := index-1;

else
flag := false;

end if;
end if;
return flag;

end procedure.

Figure 4.1: Pseudocode for compare buffers

value must be passed back in a register. Let us adopt the convention that this value
will be returned in al, with true represented by 01h and false by 00h. An example
invocation of this procedure would then be as follows.

mov cx, OFFSET b1
mov dx, OFFSET b2
call compare_buffers
cmp al, 01h
je bufs_equal
jmp bufs_not_equal

A useful declaration of the procedure is as follows.

compare_buffers proc
;; Comments on how to invoke the procedure.
buf1_ptr equ cx
buf2_ptr equ dx

<procedure code>
compare_buffers endp

The equ statements provide explicit and meaningful names for the data objects
passed to the procedure. Most of the code is relatively straightforward, and similar to
that which was used in Software Assignment 3. However, there are a few points for
which may give some difficulty. The most salient point is addressing within the buffers.
In Software Assignment 3, to access the ith position in buf1, you probably put i into
the si register, and used something like the following

30 Software Assignment 4

cmp ah,buf1_data[si]

In the procedure, it is not so straightforward. We do not have access to the names; all
we have is an address. We might try

cmp ah,buf1_ptr[si+2]

which is equivalent to

cmp ah,cx[si+2]

Unfortunately, the above line is not legal assembly code. The term cx[si+2] makes no
sense, since cx refers to the contents of the cx register, and not the memory location
whose offset within the data segment is the value of cx. Fortunately, the assembler
almost allows us to write [cx], which means the location indexed by register cx, so
that

cmp ah,[cx][si+2]

is almost what we want. Unfortunately, the above is not legal assembly code either.
Only certain registers may be used for indexing in this way, and cx is not one of them.
The only one which may be used safely in this situation is bx. Thus, we may write

mov bx,buf1_ptr
cmp ah,[bx][si+2]

to compare the byte in ah to the sith data byte in the buffer buf1. Equivalently, we
may write

mov bx,buf1_ptr
cmp ah,[bx+si+2]

In studying this code fragment, recall that the data part of the buffer begins with
the third byte. The +2 term is used to skip to the data field, which we cannot easily
refer to by name here.

With these tools in hand, it should be relatively straightforward to write this pro-
gram.

Make sure that your procedure restores the values of registers which it uses. Once
you have written and tested your procedure, integrate it into the program which you
developed in Part 1 above. In other words, the part of the program which tests for
the validity of the password must use the procedure compare_buffers which you have
written. Thus, your final program must use procedures not only for all of the int

21h calls, but for buffer comparison as well. Also, for this program, you may enter the
actual password and its size manually into a buffer; you need not do this automatically.

One final word of advice is in order. Because these procedures are all declared within
the same module, they share a common name space. Thus a name (e.g., buffer) used
within a procedure is also visible within any other procedure. Be careful to avoid name
collisions.

Software Assignment 5

Multiple Source Files and the Make
Facility

5.1 Purpose

The purpose of this laboratory exercise is to introduce the ideas of placing procedures
in separate files, and of separately assembling these files using the make facility.

5.2 Procedure

In Software Assignment 4, the idea of a procedure in assembly language was introduced.
Many of the procedures developed in that assignment, including the DOS int 21h calls,
could be reused in many different programs. However, there are several disadvantages
to the approach developed in that assignment, among them the following.

1. The code for the procedures must be inserted manually into each program in
which the procedures are used.

2. The names used in the code for the procedures are global to the entire program.
Therefore, care must be taken to ensure that the same name is not used more
than once.

We will now take a look at a few techniques which overcome these difficulties. In
so doing, the program of Software Assignment 4 will be modified.

5.2.1 Using Simple INCLUDE Directives

The semantics of the INCLUDE directive are very simple. If a statement of the form

INCLUDE support_file.inc

31

32 Software Assignment 5

is placed in an assembly language program, then the contents of the file
support_file.inc are included in the program, exactly at the point at which the
INCLUDE statement occurs. This provides an extremely simple way of packaging pro-
cedures or groups of procedures so that they do not need to be copied explicitly into
each program in which they are used. In the first part of this software assignment, you
will try out this technique.

Modify a copy of your program of Software Assignment 4 as follows.1 Call this
copy soft5a.asm. Create a file named doscalls.inc. From the copy of your pro-
gram for Software Assignment 4, move the lines which define the five procedures
get_char_necho, display_string, get_string, display_char, and exit_to_dos,
to the new file doscalls.inc. In the old file, at exactly the position where these
procedures once were, put the single line

INCLUDE doscalls.inc

Now, repeat this process for another new file, named compbufs.inc. That is, delete
the definition of the procedure compare_buffers from the old file and place it in the
new file. Place the single line

INCLUDE compbufs.inc

at the exact place where the definition of compare_buffers once was. These new files
must be placed in a directory which MASM will find. The best place is in the same
directory as the program.

Now, assemble, load, and run the new program. It should work! To the assembler
and linker, it is exactly the same as the old one. If it does not work, check carefully to
make sure that you have not made any typographical mistakes.

After you have run the program, go into the CodeView debugger for your program
soft5a.asm. Scroll through the Source1 window. Notice that only the text for the
main program, soft5a.asm, is visible. Now step through the program. Note that,
when the program executes statements in the file doscalls.inc, the window Source1

automatically switches to that file.
What does one do, though, when it is desired to set a breakpoint in an included file?

Proceed as follows. Restart your program. (Select Restart from the Run menu.) Now
open the window Source2 (from the Windows menu), and select the file doscalls.inc

by using the Open Source item from the File menu. Pick a line in this file which will
be executed; say a line in the exit_to_dos procedure. Set a breakpoint on this line
by placing the cursor on it and double-clicking the left mouse button. The text of the
line will become highlighted. Now, return to the Source1 window by clicking the left

1 Always keep the programs which you submitted for the previous software assignments intact.
This is your insurance in case a question regarding the grading arises.

Multiple Source Files and the Make Facility 33

mouse button in it. Hit the F5 key to run the program. Notice that the breakpoint is
captured in the Source1 window, even though it was set in Source2. Breakpoints are
set in the program, and are not localized to a particular window.

5.2.2 Separate Assembly and the Make Utility

While the technique just described has its place, it is somewhat unsatisfactory for
the management of software libraries and multi-component programs, for a number of
reasons, some of which are listed below.

1. Since the technique is functionally equivalent to having one large program, all
identifiers are global to the whole program. As a program becomes larger,
greater care must be taken to ensure that the same name is not inadvertently
used for two or more purposes. This problem becomes particularly acute when
a number of libraries are all included in a program; the possibility of conflicts
between procedures from different libraries becomes great.

2. Data objects are not protected. Any part of the program can modify any data
object. In modern terminology, information hiding is impossible.

3. Whenever any changes are made to the program, the whole thing must be re-
assembled. For large programs, this can be quite time consuming.

Fortunately, there is a simple technique which overcomes all of these difficulties.
The idea is to partition the program into separately assembled modules. Each such
module has its own local data area and its own code area. The same identifier may be
used in each module, as such names are local by default. Furthermore, these modules
may be assembled and saved separately. Thus, when a change is made to one of them,
only that module need be re-assembled.

Of course, if the modules are to communicate. not everything can be local. Data
objects which are to be shared must be declared to be so explicitly. There is a number
of ways to accomplish this sharing; Section 8.4 the textbook by Irvine [Irv93] describes
the EXTERN/PUBLIC approach which was used in version 5 of MASM, and which is
still available in version 6. Chapter 8 of the MASM Programmer’s Guide [MAS92b]
describes a number of techniques; we will use the most modern — the EXTERNDEF

approach. For a data object which is to be shared, an EXTERNDEF statement is placed
in each file which will share the object, including the file in which it is defined. Thus,
to share the procedure exit_to_dos, the statement

EXTERNDEF exit_to_dos:near

is placed in both the file containing the definition of the procedure, and in every
file which uses it. (For now, include the keyword near with every such procedure
declaration. We will discuss its significance later in the course.)

34 Software Assignment 5

Now, let us put this technique into practice. A program source file soft5b.asm will
be created. It will be linked to two other programs, doscalls.asm and compbufs.asm,
which we will also create.

To start, copy the contents of your doscalls.inc file to a new file named
doscalls.asm, and then modify the new file as follows. Since this new file will be
a separately assemblable entity, it will need some header material. Here is what it
should look like.

;; Documentation for the package -- IMPORTANT
.MODEL small,farstack
INCLUDE doscalls.dec
.CODE

<Definitions of the procedures (from the old file)>
end

Notice that the file ends with an end declaration. Every .asm file must end with
an end declaration. If it is forgotten, a fatal error message will be generated.

Rather than enter the EXTERNDEF statements manually, it is most convenient to
place all of them, for a given module, into an INCLUDEable file. Let use adopt the
convention that, for a file of the form name.asm, the associated INCLUDEable file is
named name.dec. Thus, the file doscalls.dec will include the EXTERNDEF declarations
which are necessary for the use of this package. Here is the contents of such a file for
this application.

EXTERNDEF display_string:near
EXTERNDEF get_string:near
EXTERNDEF get_char_necho:near
EXTERNDEF display_char:near
EXTERNDEF exit_to_dos:near

Now, repeat this process for the existing file compbufs.inc, creating new files
compbufs.asm and compbufs.dec.

The main program must also be modified to reflect these changes. Copy the program
file soft5a.asm to a new file soft5b.asm. Then edit soft5b.asm as follows.

1. Delete the lines

INCLUDE doscalls.inc
INCLUDE compbufs.inc

since these files will not be used.

2. Insert the lines

INCLUDE doscalls.dec
INCLUDE compbufs.dec

Multiple Source Files and the Make Facility 35

at the beginning of the program, right after the .STACK directive. These lines
communicate the critical linking information.

The programs are now ready to go. However, to assemble and link them, we must
communicate to PWB that all of these procedures are involved. One way (which is
not recommended), is to do this manually, as described in Section 4.2 of the text by
Irvine [Irv93]. The preferred approach is to use the make utility of PWB. This utility
allows you to define a project, and to maintain information about which files are used
in which project. Here is how to proceed.

1. From the Project menu, choose New Project.

2. At the prompt, enter the file name T:\soft5.mak as the name of the make file.
(Here T:\ is the directory in which you are placing your work for this course.)

3. When the next window appears, leave the Runtime Support choice to be None,
but select DOS EXE for the Project Template by highlighting that option, and
then select <OK>. When the next window appears, select <OK> again.

4. When the Edit Project window pops up, you need to select the files which
comprise the project. You can do this either by double clicking on their names, or
else by typing in the names. You need to select soft5b.asm, doscalls.asm, and
compbufs.asm. If you inadvertently include the wrong file, use the Add/Delete

option to the right of the box to remove it. (Select only the .asm files; do not
select the .dec files. The latter files are included by the INCLUDE directives in
the program modules, and are not separately assembled.)

5. Once you have selected the correct files, click on Save List, and you will be
returned to the top level of PWB.

6. If you need to change anything, use the Edit Project item from the Project

menu.

Now everything is set up to use the project. You can just select Build: soft5.exe

from the Project menu, and the whole ensemble should be assembled and linked. It
should run, and behave, exactly as did the program of Software Assignment 4.

Once you have things working, open the file doscalls.asm and save it, just to tell
the system that it has been changed. Now select Build:soft5.exe again, and look at
the results screen. Notice that only doscalls.asm has been re-assembled. The make
utility keeps track of the last update time of all files, and only re-assembles those which
are out-of-date. If you wish to force the re-assembly of all files for the project, use the
Rebuild All item from the Project menu.

Object files, rather than assembled files, may also be included in the project descrip-
tion. Select Edit Project from the Project menu, and then delete doscalls.asm and

36 Software Assignment 5

compbufs.asm from the list of files, replacing them with doscalls.obj and
compbufs.obj, respectively. Run Rebuild All and note that things still work.

There is one further point of which you should be aware. Whenever PWB is exited,
all projects are closed. When you re-enter PWB, you need to re-open the project. This
can be a bit confusing. Suppose, for example, that you were working on this assignment,
and exited with soft5b.asm as the active edit window. When you restart, PWB and go
to the Project menu, you will be invited to compile, build, etc., the file soft5b.asm.
This is not what you want!! Resist the urge!! Instead, select Open Project from the
Project menu, and give T:\soft5.mak as the project name. Once you have multiple
source files, you must work with projects. Of course, if you do inadvertently try to
rebuild soft5b.asm, you will be greeted with a host of messages indicating unresolved
references. This causes no harm; just open the project and rebuild it.

Part III

Selected Software Projects

37

Software Assignment 6

Number Representation and
Integer Arithmetic

6.1 Purpose

The purpose of this laboratory exercise is twofold. The first is to gain insight into the
techniques necessary to translate integer numbers between internal format and display
format. The second is to gain additional insight into the development of programs
containing separately assembled procedures.

6.2 Procedure

When using a high-level language, one often takes for granted the process of reading in
or printing out a number. However, there is a significant amount of processing which
takes place during this process. These routines are not a part of assembly, language;
they must be supplied by the programmer, or else taken from a software library.

Chapter 8 of the textbook by Irvine [Irv93] includes a development of such routines.
However, there are substantial differences, both in method and in generality, between
the programs of Irvine and those required for this assignment. Thus, while it will be
helpful to refer to the programs developed by Irvine, they are not solutions to this
exercise.

6.2.1 Representation of Number in Various Bases

In this exercise, software will be developed which has the capability of displaying
numbers in any base between 2 and 36 inclusive. Using the representation of numbers
in hexadecimal as an example, it is a straightforward generalization to use the entire
alphabet for numbers between 10 and 35 inclusive. That is, A represents 10, B represents

39

40 Software Assignment 6

11, . . ., F represents 15, G represents 16, H represents 17, . . ., Y represents 34, and Z

represents 35. Of course, only those letters which are necessary for a given base are
used. Thus, for a number in base 25, the digits 0 through 9, and the letters A through
O are used, while for number is base 8, only the digits 0 through 7 are used. Here are
a few examples, to crystallize the concept.

(i) The string 1574 represents, in base 8, the number 1×83+5×82+7×8+4 = 892.

(ii) The string 1JM3 represents, in base 25, the number 1 × 253 + 19× 252 + 22×
25 + 3 = 28053.

Clearly, the principle of this idea may be extended beyond 36, but this value has
been chosen as a convenient upper limit on the size of the base because there are
exactly 36 digits and upper case letters. In all of the software for this assignment,
lower-case letters and upper-case letters will represent the same value. Thus, both P

and p represent 25.

6.2.2 The Primary Package to Be Developed

The primary goal of this assignment is to write two procedures, one which reads a
number typed on the keyboard and translates it into internal representation, and one
which takes an internal number and displays it on the monitor. Here are more detailed
descriptions of their behavior.

display number This procedure operates as follows. There are two input quantities.
The first is a sixteen-bit quantity, passed in the register ax, and interpreted as
a signed integer. (Thus, the value of the number is between −32768 and 32767
inclusive.) This is the number whose value is to be displayed. The second input
value is an eight-bit quantity, passed in the register bl. This value is interpreted as
the base of the number to be displayed, and must be between the values 2 and 36,
inclusive. The output goes to the display; the representation of the number in ax, in
the base given in bl, is written to the display. Shown below are some examples of the
behavior of this procedure. (All register values are shown in internal hexadecimal
format.)

Inputs Outputs
Register ax Register bl Display

00F3 10 F3

00F3 0A 243

00F3 14 C3

00F3 02 11110011

FF0C 0A -243

0044 24 1W

Number Representation and Integer Arithmetic 41

If the number is positive or zero, no sign is written. However, if the number is
negative, the string written begins with a minus sign. Leading zeros should not be
displayed; however the number zero should be displayed as a single 0. The output
of this procedure will not contain carriage returns, line feeds, or any other padding.
Only the number will be written to the display. This procedure corresponds to
Irvine’s WRITEINT [Irv93, Sec. 8.2], but differs in many details, not the least of which
is the ability to display numbers in any of thirty-five bases.

If the value passed in register bl is not between 2 and 36, inclusive, then the value of
the number displayed is not specified. However, the program must display something;
it must not crash or lock up or display a screenful of garbage, even if the value of
the base is not within range.

get number This procedure reads a number from the keyboard. Other than the string
which is typed on the keyboard, there is one input quantity; the base in which the
input number will be presented is given in the register bl. This base, represented
in internal format (as an unsigned number), is assumed to be between 2 and 36,
inclusive. The procedure reads a string from the keyboard, interprets it as a signed
number in the base given in bl, and places the signed internal representation in the
register ax. Shown below are some examples of the behavior of this procedure. (All
register values are shown in internal hexadecimal format.)

Inputs Outputs
Display Register bl Register ax
1234 0A 04D2

-1234 0A FB2E

+1234 0A 04D2

1234 08 029C

1234 19 423A

-000 24 0000

000 24 0000

The input string may begin with an optional sign (’+’ or ’-’), and must consist
entirely of legal “digits” for the input base thereafter. It must allow the user to edit
the input string by using backspacing. The string is only accepted and processed
once a return is typed. This procedure corresponds to Irvine’s READINT [Irv93, Sec.
8.3], but differs in many details, including that it must handle any base between 2
and 26 inclusive.

If the value passed in register bl is not between 2 and 36, inclusive, then the value
of the number placed in register ax is not specified. However, the program must
display something; it must not crash or lock up, even if the value of the base is not
within range.

42 Software Assignment 6

These procedures are to be packaged in in a module named numio.asm. The proce-
dures are declared in EXTERNDEF statements, so that they are available to other proce-
dures. They are to be the only procedures defined in numio.asm which are available to
other programs. Of course, numio.asm may use procedures from other packages which
you have written; indeed, you will find it convenient to use the package doscalls.asm

which you developed in an earlier assignment.

6.2.3 The Demonstration Program

To demonstrate the behavior of the numio.asm package, you are to write a demonstra-
tion program which prompts for an input base, a number in that input base, and an
output base, and translates the number from the input base to the output base. Figure
6.1 below provides a sample of a session with this program.

Welcome to the base translation program.
Type a ^C to exit the program at any time.

Base of input number, 2 <= base <= 36: 10
Input number, -32768 <= n <= 32767: 100
Desired base of result: 16
The number in base 16 is: 64

Base of input number, 2 <= base <= 36: 8
Input number, -32768 <= n <= 32767: -100
Desired base of result: 2
The number in base 2 is: -1000000

Base of input number, 2 <= base <= 36: 30
Input number, -32768 <= n <= 32767: pq
Desired base of result: 10
The number in base 10 is: 776

Base of input number, 2 <= base <= 36: 16
Input number, -32768 <= n <= 32767: +400
Desired base of result: 36
The number in base 36 is: SG

Figure 6.1: An example run of the program.

Once the main routines get number and display number have been developed, it
is a simple matter to write this demonstration program, which is largely a formatted
interface to the routines of the numio.asm package . Note that the bases of the input
and output numbers are entered as decimal values.

Number Representation and Integer Arithmetic 43

6.2.4 Support Programs and Development Hints

The complexity of this program is substantially greater than that of the previous
software exercises for this course. Thus, it is highly inadvisable just to jump in and
start coding. Rather, it is strongly recommended that you plan the program, by first
describing how it will operate in a high-level pseudo-language. It is also extremely
helpful to break down the design of the procedures get number and display number

into further, internal procedures. Particularly, for this assignment, it is required that
the package numio.asm contain two additional procedures, named char to base and
base to char. These two procedures are not to be external. Rather, they are to be
internal to the package, and used solely as support routines for the external procedures.
Here is further description of their behavior.

char to base This support routine converts a single character code to an internal
format number. The input character is contained in the register dl, and the output
number is also returned in the register dl. Figure 6.2 provides a high-level description
of how this procedure behaves.

if ord(’0’) <= ord(input_char) <= ord(’9’)
then output_number := ord(input_char) - ord(’0’);

else if ord(’A’) <= ord(input_char) <= ord(’Z’)
then output_number := ord(input_char) - ord(’A’) + 10;

else if ord(’a’) <= ord(input_char) <= ord(’z’)
then output_number := ord(input_char) - ord(’a’) + 10;

else error_in_input;
end if;

Figure 6.2: High-level description of character-to-base translation.

The notation ord(-) is taken from Pascal, and denotes the equivalent numerical
value of the character code of the argument. (In assembly language, this is what you
get automatically. You do not need to write a function named ord.) This procedure
takes advantage of the fortunate fact that the digits between 0 and 9, the upper-
case letters between A and Z, and the lower-case letters between a and z, are each
represented contiguously in the ASCII character set.

Irvine [Irv93, Sec. 8.1] uses the xlat instruction, together with a translation table,
as an aid in realizing this procedure. You must not use xlat. Rather, you should
implement the translation algorithm directly, as outlined in the pseudocode of Figure
6.2. You will lose points if you use xlat.

base to char This procedure is the inverse of char to base. It converts a number
between 0 and 35 inclusive to the equivalent character code, using upper-case letters
for values between 10 and 35, inclusive. The input value is contained in the register

44 Software Assignment 6

dl, and the output character is also placed in register dl. Figure 6.3 gives a high-level
description of how this procedure behaves.

if 0 <= input_number <= 9
then output_character := chr(input_number + ord(’0’));

else if 10 <= input_number <= 35
then output_character := chr(input_number - 10 + ord(’A’));

else error_in_input;
end if;

Figure 6.3: High-level description of base-to-character translation.

The Pascal notation chr(-) is used to denote the character code corresponding to a
given character. Again, in assembly language this translation is implicit, and need
not be explicitly coded.

As with char_to_base, Irvine uses the xlat instruction, together with a transla-
tion table, as an aid in realizing this procedure. Again, you must not use xlat.
Rather, you should implement the translation algorithm directly, as outlined in the
pseudocode of Figure 6.3. You will lose points if you use xlat.

When writing larger programs, it is essential to test small routines, one-by-one. An
easy way to do this is to write a test routine, and then to let the debugger help you see
how it is working. Figure 6.4 provides an example of a test routine for char to base.

The two INCLUDE statements are the standard ones for the libraries being developed.
The EXTERNDEF statement is temporary, and provides a way for the test program to
interface to the routine to be tested. An identical statement is temporarily included
in the file numio.asm.

A key feature of this simple program is that it is indeed simple. It took only
minutes to write. It does not do any output. Rather, to observe the behavior of the
procedure, one uses CodeView and examines the register display as the program is
stepped. To test the program on another input, it is not necessary to re-edit and re-
assemble. Rather, this can be done right in CodeView. Just step the program until the
line mov dl,’c’ is highlighted. Then, switch to the command window and type an a,
followed by a return. This is the command to begin assembly. Type mov dl,’D’, and
then type two returns. (After the first return, you may type additional instructions to
be assembled. The second return tells CodeView that you are done with the assembly
specification.) Now, when you step through the program, the instruction executed
will be mov dl,’D’, and not mov dl,’c’. This only applies for the current stepping
session. Once you restart the program, it reverts to the original assembled code. In this
way, you can try several different input parameters without the need to exit CodeView

Number Representation and Integer Arithmetic 45

;; CS101 Software Assignment 6.
;; Test stub.
;; Author: Stephen J. Hegner.

.MODEL small, farstack

.STACK 1000h
INCLUDE doscalls.dec
INCLUDE numio.dec
EXTERNDEF char_to_base:near

.DATA

.CODE
main proc

mov ax,@data
mov ds,ax
mov dl,’c’
call char_to_base
call exit_to_dos

main endp
end main

Figure 6.4: A test routine for char to base.

and re-assemble. It is strongly suggested that you employ this technique for testing all
of your routines.

Once you have written and tested the routines char to base and base to char,
it is time to work on the main routines, get number and display number. Here are
the key points of difference, compared to similar routines found in the text of Irvine
[Irv93], which you should bear in mind.

(i) In get number, you should not read and process the characters on the fly. To
do so deprives the user of the ability to do simple editing of the input. Rather,
your procedure should start by invoking the procedure get string, which you
have already written for the package doscalls.asm. The buffer which you use
to store the input string should be local to the numio.asm module. That is, it
should be declared in that module, and should be internal to it. There is no
reason for users of get number to have access to this buffer. It is an internal
data structure, local to the procedure.

(ii) In get number, you must allow for the possibility that the user will type a +

or a - at the beginning of the number. This is completely straightforward to
handle.

(iii) In Irvine’s READINT [Irv93, Sec. 8.3], character-to-number translation is per-
formed right in the procedure. In your routine get number, you will invoke the

46 Software Assignment 6

utility char to base which you have already written. Similarly, your routine
display number will invoke the routine base to char.

(iv) In developing display number, use the stack to reverse the order of the com-
puted digits. The natural algorithm for producing the character-by-character
equivalent of a binary number will produce the digits from right-to-left (i.e.,
least-significant first). However, you must print them left-to-right (i.e., most-
significant first). To accomplish this, push the digits onto the stack as you
compute them, and pop them off as you print them. If you use the buffering
technique of Irvine instead, you will lose some credit. You must use the stack
here.

(v) It is required that you use a make file to manage your project. This technique
was introduced in Software Assignment 5.

Software Assignment 7

A UNIX-Style Directory Listing
Program: Part 1

7.1 Purpose

This assignment has multiple purposes.

(1) To gain some practice in the use of elementary assembler macros.

(2) To gain some experience in the use of bit-wise operations to extract data from
packed representations.

(3) To gain further practice with DOS calls, particularly ones that extract informa-
tion about the environment in which the program runs.

7.2 Procedure

7.2.1 The Overall Programming Project

The final result of this software assignment, together with Software Assignment 8,
will be an assembly-language program which produces a formatted file listing, in the
general spirit of the UNIX ls -l command, although it is not as full featured. Figure
7.1 is an example of the actual operation of this program, in response to the command
ls101 d:\testdir*.* on a particular system. The first column of entries in Figure
7.1 for each file gives the values for each of five attributes. Their meanings are given
in Figure 7.2.

With the exception of the directory bit, there is nothing particularly sacred about
these status bits. For a given file, their values may be changed by using the DOS
attrib command. Of course, the settings of some of these bits determine the access
rights on the file. Consult DOS documentation for more details.

47

48 Software Assignment 7

w..d. 0 10/23/95 00:28:58 - .
w..d. 0 10/23/95 00:28:58 - ..
r...m 56081 01/26/94 07:00:00 - COMMAND.COM
w...m 318 09/27/95 01:06:24 - AUTOEXEC.BAT
rhs.. 27880 10/23/95 00:32:24 - IBMBIO.COM
w..d. 0 10/23/95 00:33:08 - FOODIR

Figure 7.1: Sample output the program of Software Assignments 7 and 8.

r/w The r/w attribute tells whether or not the file is writable. If a w is shown, it is
writable. If an r is shown, it is read-only.

h The h attribute tells whether or not the file is hidden. If a h is shown, it is
hidden. If a dot is shown, it is not hidden.

s The s attribute tells whether or not the file is a system file. If an s is shown, it
is a system file. If a dot is shown, it is not a system file.

d The d attribute tells whether or not the file is a directory. If a d is shown, it is
a directory. If a dot is shown, it is an ordinary file.

m The m attribute (called the archive attribute), tells whether or not the file has
the modification bit set. If an m is shown, then the file has the modification bit
set. If a dot is shown, this bit is not set.

Figure 7.2: Meaning of the file attribute bits.

The second column of entries in Figure 7.1 gives the size of the file, in bytes. A
directory always has 0 in this column, regardless of how much space it actually uses.

The third and fourth columns give the date and time of the last modification of the
file, respectively, in mm/dd/yy hh:mm:ss format. Finally, after a purely cosmetic “-”,
the name of the file is given.

Development of this project is divided into two stages, which together comprise
Software Assignments 7 and 8, respectively. In Software Assignment 7, you will develop
a program which generates one line of such a listing of files, while taking the argument
from a string declared inside the program. In Software Assignment 8, you will extend
this program, by enabling it to list all of the files satisfying a certain constraint, and by
enabling it to take the constraint specification as an argument on the command line.

Section 11.1 of the textbook by Irvine [Irv93] gives an overview of the DOS file
system. Although this handout is reasonably self-contained, you should also read

A UNIX-Style Directory Listing Program: Part 1 49

Section 11.1 of the textbook in order to obtain an overview from an alternative point of
view. Also, Section 11.8 of the textbook by Irvine contains a program which displays
file names and dates. Although this program has quite a bit in common with the
programs of these assignments, it is sufficiently different that you will be far better
off if you write your own program, rather than trying to adapt the program of Irvine.
Nonetheless, you should study Figure 11.9 of the textbook to see how he accomplishes
similar tasks.

7.2.2 Using Find First Matching File to Retrieve File Param-
eters

For each file, the DOS operating system maintains, in an internal format, all of the
information necessary to build a line of the program described above. To access this
information for a specific file, the command to use is function 4Eh of int 21h. That
is, put the value 4Eh into register ah, and perform an int 21h instruction. This
function goes by the name Find First Matching File.1 Here is a description of how
arguments are passed to it.

4Eh-(a) The register pair ds:dx contains the address at which an ASCIIZ file descriptor
may be found. This is the string which identifies the file whose attributes are
to be returned.

4Eh-(b) The information about any matched file is returned to a buffer beginning at the
so-called disk-transfer address (DTA). This address must be set by a separate
instruction.

4Eh-(c) The register cx contains the file attribute mask. This mask tells which kinds
of files are to allowed to be matched.

4Eh-(d) The carry flag is set if the find fails, and is cleared if the find succeeds.

4Eh-(e) Of course, the ah register must contain the function code, 4Eh, when the int

21h call occurs.

There are several new concepts in this description, which will now be elaborated.

First of all, passing an address to a function via the ds:dx register pair is familiar.
Usually, the ds register identifies the current data segment, so all that need be done
is to put the offset in register dx. This mode of argument transfer has been used in
several previous assignments. Assuming that ds already identifies the current data
segment, either of the commands shown below will set the beginning address of the
ASCIIZ file descriptor to the byte at offset fspec.

1The textbook by Irvine [Irv93, p. 361] contains a summary of how this call works.

50 Software Assignment 7

mov dx, OFFSET fspec

lea dx, fspec
The name of the file must be passed as an ASCIIZ string. An ASCIIZ string is a

string which is terminated by a zero byte — that is, a byte whose value is 0. (This is
not to be confused with a byte containing the character code for zero, which is 30h.)
So, if the file name to be submitted as argument is c:\programs*.lst, then the string
would be declared in MASM as follows:

fspec db ’c:\programs*.lst’,0

The zero byte, which is also known as an ASCII null character, is used to identify
the end of the string. The DOS operating system maintains an area known as the disk
transfer address (or DTA) for each program. This is the area which is used by certain
programs (such as Find First Matching File) as the location to return strings of
result data. When a program is started, the DTA is set to offset 80h of the so-called
program segment prefix (PSP). We will say more about the PSP later. For now, it
suffices to say that what we want to do is to reset the DTA to a more amenable
location. This is accomplished via the DOS function call 1Ah, which is known as Set

Disk Transfer Address.2 To invoke this function, which is an int 21h call, we put
the new DTA in the ds:dx pair, and do the int 21h call. Thus, assuming that ds has
already been set to point to the current data segment, the following simple code will
do the trick.

mov ah,1Ah
lea dx, dta_buffer
int 21h

Here, dta buffer is the offset of the new DTA. For this software assignment, you
are to write a macro called set disk transfer address which sets the DTA using the
above code. Invoke this macro to set the DTA for your use of the other DOS calls.

Associated with each file is its attribute vector. This is a one-byte vector, with the
bits having the following significance. The bit numbering is left-to-right.

Bit Significance

7 reserved by DOS
6 reserved by DOS
5 archive bit
4 directory bit
3 volume label bit
2 system file bit
1 hidden file bit
0 read-only file bit

2This function is summarized on page 362 of the book by Irvine.

A UNIX-Style Directory Listing Program: Part 1 51

The values of bits 7, 6, and 3 need not concern us here. The other five bits contain
information about the file which is represented in the first field (column) of the desired
format of a directory listing, as illustrated at the beginning of this document. For
example, if the attribute byte has value 23h = 00100011, this means that the file has
the archive bit set, it is not a directory, it is not a system file, it is a hidden file, and it
is read-only. So, the first column of the listing program should be displayed as rh..m

for such a file.
A mask of this format is used as an argument of the Find First Matching File

function 4Eh. This argument is passed to the function in the cx register. (Apparently,
the contents of ch is relevant, and only register cl is used, but all manuals explicitly
identify cx as the appropriate register.) The mask works for the following attributes:
hidden (bit 1), system (bit 2), and directory (bit 4); bits 0 and 5 are ignored. For
example, if bit 1 is set to zero, only a non-hidden file is retrieved, while if bit 1 is set to
1, both hidden and non-hidden files are retrieved. On the other hand, both modified
and non-modified files are returned, regardless of the value of bit bit 5. In any case, for
this assignment, a mask of all ones (OFFFFh) in register cx will suffice, since we want
to retrieve information on any file which matches the file descriptor.

The file whose description is returned is the first file which matches the ASCIIZ file
descriptor. Here first means the first file which DOS finds in its internal representation;
this may have nothing to do with alphabetic order or any other obvious file attribute.
Thus, if the file descriptor is c:\programs*.lst, then if there is some file in the
directory c:\programs with the extension .lst, and the file meets the mask test
described in the previous paragraph, a call to Find First Matching File will find
such a file. If there is no such file, then the carry flag will be set, and the function fails. If
there is more than one such file, information on one of them will be returned. Of course,
if there can be only one match (such as with the descriptor c:\programs\soft7.lst),
then either information on that file will be returned (if the file exists), or else the call
will fail and set the carry flag. In case a call succeeds, the carry flag is reset. The jc

instruction may be used to execute a conditional jump, based upon the value of the
carry flag.

Let us now take a closer look at the format of the result which will be placed at the
DTA by a call to Find First Matching File. The information is packed into fields
of a 43-byte record-like structure, with layout as follows.

Offset File Information

00h-14h Reserved by DOS for its use
15h Attribute bit-vector
16h-17h Time stamp
18h-19h Date stamp
1Ah-1Dh File size (double word format)
1Eh-2Ah File name in ASCIIZ format

52 Software Assignment 7

The first thing that must be done is to declare a buffer to receive this data. Using
the above description, the layout is as shown in Figure 7.3.

dta equ $
dta_dos db 15h dup (?)
dta_attr db ?
dta_time dw ?
dta_date dw ?
dta_size_l dw ?
dta_size_h dw ?
dta_fname db 0Dh dup (?)

Figure 7.3: Declaration of the receiving buffer for file parameters.

In your program, for this assignment, you must do this with a macro. That is,
you must write a macro, call it make dta buffer, which creates such a buffer when
invoked. The macro must take exactly one argument, which is the name of the buffer
prefix. Thus, the directive make_dta_buffer dta will create exactly the buffer of
Figure 7.3, while the directive make_dta_buffer foo will create the following buffer.

foo equ $
foo_dos db 15h dup (?)
foo_attr db ?
foo_time dw ?
foo_date dw ?
foo_size_l dw ?
foo_size_h dw ?
foo_fname db 0Dh dup (?)

Now let us take a closer look at the format of the data which is returned by function
4Eh to such a buffer. As the name suggests, the first 21 bytes (recall that 15h is 21
in decimal) are used by DOS. For the problem at hand, you need not be concerned
with the values placed in these bytes. The next byte contains the attribute vector. The
meaning of each bit has already been described.

The time of last update of the file is contained in bytes 16h-17h, at the location
identified by dta time. The format is as follows, with bits numbered from left to right.

Bit Information Stored
15-11 hours
10-5 minutes
4-0 seconds (in multiples of two)

So, suppose that the two-byte value representing the time is 0111101100110110 in
binary. Then, the hours field is 01111, which is 15 (or 3pm in US format), the minutes

A UNIX-Style Directory Listing Program: Part 1 53

field is 011001, which is 25, and the seconds field is 10110, which is 22, representing 44
seconds. The time is thus 15:25:44, or 3:25:44pm in US format. (Note: In your listing
program, all times should be displayed in 24-hour format; e.g., 15:25:44.)

The date of last update of the file is contained in bytes 18h-19h, at the location
identified by dta date. The format is as follows, with bits numbered from left to right.

Bit Information Stored
15-9 year, offset from 1980
8-5 month
4-0 day

So, suppose that the two-byte value representing the date is 0111101100110110 in
binary. Then, the year field is 0111101, which is 61, representing the year 1980+61 =
2041; the month field is 1001, which is 9, representing September; and the day field
is 10110, which is 22. The date is thus September 22, 2041. (Note: In your listing
program, all dates should be displayed in mm/dd/yy format; e.g., 09/22/41. Each
field is two digits long, with leading zeroes displayed.)

The file size is represented in double-word format, so that files whose sizes range
from 0 to 231 − 1 bytes may be represented. However, for this program, it will suffice
to show only the file size modulo 216. In other words, we will use only the two least-
significant bytes. Remembering that the 80x86 architecture is little-endian, the least-
significant word is the first one, at dta size l.

The name of the file which is retrieved is stored in the final twelve bytes, in
ASCIIZ format. Note that only the name, and not the entire path, is returned. Thus,
if the argument given to the function is c:\program*.lst, and the file found is
c:\program\soft7.lst, then the string SOFT.LST will be found in locations 1Eh-26h
offset from the DTA, and the byte at location 27h offset from the DTA will contain a
00h. The remaining four bytes have indeterminate values. (The string returned will
always use upper-case letters for letters in the file name.)3

7.2.3 Formatting the Retrieved Data for Display

To display the retrieved data, first of all, an output buffer needs to be built. It takes
the form shown in Figure 7.4 on the following page.

Notice that the hardwired punctuation symbols which separate the fields are de-
clared as part of the buffer. These never change, so we put them in when the buffer
is declared. Also, six bytes have been allocated for the representation of the file size,
since 216 − 1 = 65535 is the limit.

3In DOS, the character “$” is legal in filenames. If you use int 21h call 09h (string output), a $
in a file name will be interpreted as the end of the string to be printed. In your program, you need
not deal with this case; however, you may enhance your program to print filenames with $’s in them
for extra credit. See Section 2.4 for more information.

54 Software Assignment 7

ls_buf equ $
ls_w db ?
ls_h db ?
ls_s db ?
ls_d db ?
ls_m db ?

db ’ ’
ls_size db 6 dup (?)

db ’ ’
ls_mo db 2 dup (?)

db ’/’
ls_day db 2 dup (?)

db ’/’
ls_yr db 2 dup (?)

db ’ ’
ls_hh db 2 dup (?)

db ’:’
ls_mm db 2 dup (?)

db ’:’
ls_ss db 2 dup (?)

db ’ - ’
ls_fn db 12 dup (?)

db CR, LF, ENDTEXT

Figure 7.4: Declaration for the one-line output buffer.

The high-level algorithmic description which you should follow takes the form shown
in Figure 7.5 on page 55.

For this software assignment, each one of the decoding steps must be realized as a
separate (near) procedure, and the collection of these procedures must be housed in a
library file which is separate from that of the main program. Name these procedures
as follows:

get_file_attr
get_file_time
get_file_date
get_file_size
get_file_name

You must adopt a workable parameter-passing mechanism for these procedures.
Since they are defined in a file separate from the main program, they cannot depend
upon global names. Rather, parameters must be passed to them by the mechanisms
which have been studied, such as passing values or addresses in registers. It is not
allowable to pass parameters by using global naming of data objects via EXTERNDEF or
similar declarations.

A UNIX-Style Directory Listing Program: Part 1 55

Set DTA to the fspec address;
Find the first matching file;
If carry flag is set
then
output nothing;

else
decode and format for output file attributes

(fill in the ls_w, ls_h, ls_s, ls_d, and ls_m fields);
decode and format for output file size

(fill in the ls_size field);
decode and format for output file date

(fill in the ls_mo, ls_day, and ls_yr fields);
decode and format for output file time

(fill in the ls_hh, ls_mm, and ls_ss fields);
decode and format for output file name

(fill in the ls_fn field);
display the formatted file-description string;

end if;

Figure 7.5: High-level description of the overall process.

Let us take a look at how to design one of these; namely, get file time. A section
of the code is shown in Figure 7.6 on page 56.

Notice how the translation takes place. First, the entire time word is logically
anded with a mask which preserves only the bits in the hours field. Then, the register
is shifted so that these bits are right justified. Finally, the number is translated into
internal format.

The procedure buffer number is a support function which is used by several of the
get procedures. A header description is shown in Figure 7.7 on page 57.

This procedure is similar to the display number procedure developed for Software
Assignment 6. However, it writes to a buffer, rather than to the display. In fact, it
is simpler, because it prints all leading zeroes, and since it writes to a buffer, it need
not reverse the order of the digits. Furthermore, it deals with unsigned numbers, since
that is what we need. You may use the code of your display number procedure as a
starting point if you wish. In particular, you may find that the auxiliary procedure
base to char is a useful support routine. For this reason, it is required that you
include this procedure in the same library file as your other numerical input/output
routines. Do not forget to include an appropriate EXTERNDEF in the associated include
file. (Note: The procedure only need translate into base 10, although if you adapt your
display number, you may find it easiest to retain the ability to choose the base.)

This procedure will be used to display the numbers in the date and time fields,
as well as the size field. For the size field, it is necessary to suppress leading zeroes.

56 Software Assignment 7

;; **
get_file_time PROC
;; Unpack the last-update time of a file, putting it into ASCII format.
;; Inputs: dx = pointer to beginning of eight-byte buffer area.
;; ax = attribute word in packed format.
;; Outputs: buffer filled with appropriate values.
;; pkbuf is a local word-sized buffer, declared in the data area.
hours_mask equ 1111100000000000b
minutes_mask equ 0000011111100000b
seconds_mask equ 0000000000011111b
hours_shift equ 11
minutes_shift equ 5
push ax
push bx
push cx
push dx
mov pkbuf,ax ;; save the packed word for future use.
;; <process hours field>
;; Process minutes field:
and ax,minutes_mask ;; mask out the other fields.
mov cl,minutes_shift ;; shift length must be in cl.
shr ax,cl ;; right justify.
mov bl,10 ;; base 10 conversion parameter.
mov cl,2 ;; two digits of output parameter.
call buffer_number
;; <process seconds field>
pop dx
pop cx
pop bx
pop ax
ret
get_file_time ENDP
;; **

Figure 7.6: Part of the code for the procedure get file time.

This is best done by using buffer number as is, and replacing the zeroes by spaces
afterwards.

Here is a summary of the files and procedures which you are to turn in for Software
Assignment 7.

(a) The main program, which will print out a one-line summary of the attributes
of a file, as described above.

(b) A collection of macros, which include at least the following.

(i) A macro make dta buffer, of one argument, to create a data buffer for the
DTA. The argument is the name of the buffer prefix.

A UNIX-Style Directory Listing Program: Part 1 57

;; ***
buffer_number proc
;; Buffer a display-format number in a given base format.
;; Inputs: number in ax (unsigned).
;; base in bl, 2 <= b <= 36.
;; cl = size of buffer in bytes.
;; dx = offset address of first byte of buffer.
;; Outputs: ASCII representation of number into buffer.
;; No error checking.
;; Leading zeroes are displayed.
;; <code goes here.>
buffer_number endp
;;**

Figure 7.7: Part of the code for the procedure buffer number.

(ii) A macro find first matching file of no arguments which invokes DOS
function 4Eh when it is called.

(iii) A macro set disk transfer address of one argument which sets the DTA
to the address identified by its argument, by using DOS call 1Ah.

These macros must be in a separate file, communicated to the main program
via an include directive.

(c) A collection of procedures, in a separate file, which handle the unpacking and
formatting of the file attributes. These procedures must include at least the
following near procedures, which have already been described.

(i) get file attr

(ii) get file time

(iii) get file date

(iv) get file size

(v) get file name

Associated with this package must be a declaration file which contains the
include directives necessary to link this file to the main program.

(d) An augmented version of a collection of procedures for numerical I/O. The new
procedure is to be named buffer number, and has been described above. The
associated declaration file must also be augmented.

Software Assignment 8

A UNIX-Style Directory Listing
Program: Part 2

8.1 Purpose

This assignment extends Software Assignment 7, and has two principal purposes.

(1) To show how to retrieve information on all of the files satisfying a given descrip-
tor.

(2) To learn how to configure an assembly-language program to obtain an argument
from the command line.

8.2 Procedure

The software developed for Software Assignment 7 has at least two drawbacks. First
of all, it only returns information on one file, regardless of how many files match the
descriptor. Second, the argument must be hardwired into the program, and to change
the argument, the program source file must be edited and re-assembled and linked. In
Software Assignment 8, the program will be extended to overcome these shortcomings.

8.2.1 Finding all Matches to a File Descriptor

Extending the program to display the information on all matching files, rather than
just on the first one found, is extremely easy, thanks to a DOS function named Find

Next Matching File. It is invoked by placing 4Fh in the ah register and executing an
int 21h instruction.1 It may only be invoked after the function Find First Matching

File has. Each time that it is called, it finds a new file matching the descriptor for

1Page 362 of the text by Irvine [Irv93] contains a summary of the use of this function.

59

60 Software Assignment 8

the last call to Find First Matching File. It places the information about the file
which is found in a buffer beginning at the DTA, just as Find First Matching File

does. Note: A new descriptor is not passed to Find Next Matching File. Rather,
the system remembers the descriptor used in the last call to Find First Matching

File, and it uses that. When Find Next Matching File cannot find any more new
files, it signals failure by setting the carry flag. Thus, the high-level algorithm for this
part is as shown in Figure 8.1 below.

Set DTA to the fspec address;
Find the first matching file;
If carry flag is set
then
output nothing;

else
repeat
decode and format for output file attributes

(fill in the ls_w, ls_h, ls_s, ls_d, and ls_m fields);
decode and format for output file size

(fill in the ls_size field);
decode and format for output file date

(fill in the ls_mo, ls_day, and ls_yr fields);
decode and format for output file time

(fill in the ls_hh, ls_mm, and ls_ss fields);
decode and format for output file name

(fill in the ls_fn field);
display the formatted file-description string;
find the next matching file;

until carry flag is set;
end if;

Figure 8.1: The high-level algorithm for finding all matches.

Note that this is a simple extension of the description on the bottom of page 8. It
should take only a few minutes to implement this improvement. Make sure that you
define a macro called find next matching file to implement the 1Ah call.

8.2.2 Obtaining Program Arguments from the Command Line

Extending the program to take its argument from the command line, while not quite as
trivial as the above extension, is not difficult, and it goes without saying that knowing
how to do this is an extremely useful tool to have in one’s bag of tricks for assembly-
language programming in the DOS environment.

In the final executable module for a program, DOS attaches a 256 byte segment

A UNIX-Style Directory Listing Program: Part 2 61

called the Program Segment Prefix, or PSP for short.2 The PSP is mostly of historical
interest, but it still does serve one very useful purpose. Namely, starting at address
80h of the PSP, the tail of the command line is stored. The command tail is that which
is left after the command name is stripped away. Thus, if we have a program called
foo, and we invoke it with argument arg1, arg2, and arg3 with the command

foo arg1 arg2 arg3

then the command tail is arg1 arg2 arg3. Actually, a little more information is
stored. In the byte at location 80h of the PSP is stored the number of characters in
the command tail. Furthermore, the command tail is terminated by a carriage-return
character, which is not part of this count. Thus, for the above example, assuming
that the user types a return immediately after arg3, the character count would be
15 (the space before each argument is counted), and the sequence of byte values, in
hexadecimal, starting at location 80h in the PSP would be

0Fh 20h 61h 72h 67h 31h 20h 61h 72h 67h 32h 20h 61h 72h 67h 33h 0Dh

15 SP a r g 1 SP a r g 2 SP a r g 3 CR

Just below the hexadecimal byte values are shown the character equivalents. Here SP

denotes the space character, and CR denotes the carriage-return character.
We still have not said how one finds the PSP. When a program is started both the

data segment register ds and the extra segment register es point to the PSP. While
it is common custom to change the ds register to point to the current data segment
when a program is started, the es register is not touched in our programs. To access
the PSP, we use es. For example, the following code will put the character count for
the program tail into the register al.

mov si,80h
mov al,es:[si]

In other words, just use es: as a prefix whenever you wish to access a memory
location in the PSP.

To realize this final part of the assignment, first declare the fspec buffer to be large
enough to accept any argument. A command line cannot be longer than 80h characters
in DOS, so this should do it. (Remember that we will now get fspec from the tail of
the command, rather than by hard wiring it into the program.)

fspec db 82h dup (?)

2Section 11.5 of the text by Irvine [Irv93] contains information on the PSP.

62 Software Assignment 8

You will need to write one more procedure, get psp filespec. This procedure will
take the first argument from the tail of the command line and place it in the buffer
pointed to by the ds:dx pair. In writing get psp filespec, keep in mind the following
points.

(a) The filespec will be the first argument on the command line, as long as there is
at least one argument. Any arguments beyond the first are discarded.

(b) If the command tail is empty (no arguments), then the resulting value of fspec
should be set to *.*. (This is done so that a command without arguments will
list the files in the current directory.)

(c) If it is nonempty, the command tail will begin with at least one space, and may
contain more (if typed in by the user), before the actual arguments appear.
Make sure that these lead spaces are stripped away, and not included in fspec.

(d) The command tail may consist entirely of spaces. In this case, your program
should produce *.* as the value of fspec, just as in the case in which the tail
is empty.

(e) The command tail ends with a carriage return. This byte must not be included
in the value of fspec.

(f) The contents of fspec must be terminated by a byte with value 00h.

To move the command tail to another buffer, the most direct approach is to use
the two indexing registers, si and di. Initialize si to the starting point of the source
buffer, and di to the starting point of the target buffer, and repeatedly move and
increment. Here is rough code of the body of a basic copy loop.

loop:
mov al,es:[si]
mov [di],al
inc si
inc di
cmp si,source_limit
jle loop

In testing your program, note that both PWB and CodeView give you the op-
portunity to enter command-line arguments for a program, and run it with those
arguments directly in the development environment. From the Run menu in PWB,
use the Program Arguments... option. From the Run menu of CodeView, use the
Set Runtime Arguments option. However, it is certainly a good idea to test your fi-
nal program by running it directly on the DOS command line, with a variety of test
arguments. This is what your laboratory instructor will do during the demonstration
evaluation.

Here is a summary of the files and procedures which you are to turn in for Software
Assignment 8.

A UNIX-Style Directory Listing Program: Part 2 63

(a) The main program, which will print out a multi-line summary of the attributes
of a set of file, as described above.

(b) A collection of macros, which include at least the following, in addition to the
macros for Software Assignment 7.

(i) A macro find next matching file of no arguments which invokes DOS
function 4Fh when it is called.

These macros must be in a separate file, communicated to the main program
via an include directive.

(c) A collection of procedures, in a separate file. These procedures must include at
least the following near procedure, in addition to those constructed for Software
Assignment 7.

(i) get psp filespec

Associated with this package must be a declaration file which contains the
include directives necessary to link this file to the main program.

(d) An augmented version of a collection of procedures for numerical I/O. The new
procedure is to be named buffer number, and has been described above. The
associated declaration file must also be augmented. This is the same collection
as for Software Assignment 7.

Note: If you finish both Software Assignment 7 and Software Assignment 8 before
the due date, then the logical thing to do is to submit just one package, since Software
Assignment 8 essentially subsumes Software Assignment 7. If you do this, make sure
that you mark your submission clearly that it is a combination of both assignments,
and attach both cover sheets. However, if you do not finish Software Assignment 8 on
time, but you do finish Software Assignment 7, then it is to your advantage to submit
the latter separately.

8.2.3 Extra Credit

If you are ambitious and want to gain extra credit, here are a few improvements that
you can make. The first two apply to Software Assignment 7 as well as to this software
assignment. All extra credit options are listed here because you should finish both
assignments before tackling any extra credit extensions.

(a) As noted previously, if int 21h call 09h is used to print each line, file names
which contain the character $ will not be displayed properly. Rather, the line will
end abruptly at that point, since $ is interpreted as the end of string character
by that DOS call. You may obtain extra credit by writing your own output

64 Software Assignment 8

routine, which must display the character $ properly. The way to do this is to
use int 21h call 02h, which displays one character at a time. You have already
done something similar in Software Assignments 2 and 3.

(b) The program does not behave exactly as one would want when the path identifies
a directory. For example, if foodir is a directory, the call soft8 foodir will
produce a one-line listing giving information on foodir as a file, rather than
providing a listing of all files in foodir. Provide a modified program which tests
to see whether the argument contains wild-card characters (* or ?), and if it
does not, and the single file returned is a directory, then the listing will be of
the files in the directory.

(c) Sometimes it is useful to override the modification identified in (a) above and
produce a listing about a directory. Modify the program of (a) above so that if
-d occurs as the first argument on the command line, then if the next argument
is a directory, a single-line listing about that directory as a file will be produced.
In other words, the call soft8 -d foodir will produce the same result as the
original (no extra credit) version of soft8.

If you decide to do the extra credit, make sure that you also submit the non-extra-
credit versions, and that you clearly label each.

Software Assignment 9

Simple File Encryption: Part 1

9.1 Purpose

This assignment has multiple purposes.

(1) To gain some practice in performing random file input and output in assembly
language.

(2) To gain some experience in passing parameters to procedures via the stack.

(3) To work with a simple technique of file encryption.

9.2 Procedure

9.2.1 The Overall Programming Project

The final result of this Software Assignment will be an assembly-language program
which encrypts a file. To encrypt the file, a secret encryption key is provided. After the
file is processed with the encryption key, its contents are encoded and cannot be read
or executed without first being decrypted. Decryption requires the same encryption
key.

This assignment uses a particularly simple type of encryption known as XOR-
encoding. While it is not likely to deter the NSA, it will prevent the casual snoop
from reading your files. Here is how it works. Suppose that we have a text file which
contains the following ASCII sequence.

Contents of a file.

This contents of this file is 19 bytes long. In XOR encoding, we start with a 16-
bit (word-length) key. We XOR each pair of bytes with the key. An example will

65

66 Software Assignment 9

clarify this. Suppose that we use the key 12345, which as an unsigned 16-bit number
is 3039h. The first two bytes of the file are the character codes for C and for a, which
has the combined value 436Fh. When 436Fh is XORed with the key 3039h, we get
7A5Fh (Assume that the key is stored in a register, and the words to be encrypted
are stored in memory. Remember that the 8086 is a little-endian architecture, so the
key is effectively byte-swapped!) The byte pair (7Ah,5Fh) then replaces the byte pair
(43h,6Fh) = (C,o) in the file. We then proceed to the next byte pair, (n,t), which has
the representation (6Eh,74h). Upon XORing this with 3039h, we get (57h,44h). This
process is repeated for each pair of bytes in the file. The final result is depicted below.

C o n t e n t s o f a f i l e .
43 6F 6E 74 65 6E 74 73 20 6F 66 20 61 20 66 69 6C 65 2E
7A 5F 57 44 5C 5E 4D 43 19 5F 5F 10 58 10 5F 59 55 55 17

The first line shows the initial sequence of characters, while the second line shows
the equivalent ASCII character code. The third line shows the result after using XOR
encoding with 3039h.1

If we replace the original contents of the file by the byte sequence shown in the
third line in the above display, the contents of the file has been encrypted without
losing any information. Interestingly, to recover the original contents, we just repeat
the process. By XORing each byte pair with the key 3039h once again, the original
contents is recovered. Indeed, XORing any quantity with the same value twice yields
the original value. XORing once flips the bits in the positions in which the key has a
1, and doing this again, with the same key, yields the original value back. Thus, the
encryption program will be, at the same time, a decryption program.

Note that it is important to pick a “good” key. For example, any key which is less
than 256 (100h) will leave every other byte in the file unchanged, since the XOR of
00h with any byte leaves that byte unchanged. Similarly, a key which is a multiple of
256 will leave every other byte unchanged.

In this software assignment, you will write a program which accomplishes this form
of encryption. The program will prompt for required values. An example session is
shown in Figure 9.1.

The messages generated by the system are shown in typewriter font, while the user
response is shown in italics. The first two prompts are self-explanatory; note that the
encryption key is entered in decimal. The third line, requesting a buffer size, stipulates
the number of bytes which will be read and then rewritten in one i/o operation. This
value affects the performance, but not the correctness, of the program.

1 Notice that the file contains an odd number of characters — 19. For the last byte pair, we
just append some arbitrary byte, since its value is not used. The last encoding is thus the XOR of
(2Eh,??h) and (30h,39h), which is (17h,??h), the ?? denoting a don’t-care value, which is not written
to the encrypted file.

Simple File Encryption: Part 1 67

Welcome to the encryption program.

File to be encrypted: z:\temp.foo
Key, 0 <= k <= 65535: 12345
Buffering size, 2 <= b <= 1024 (default 512): 128
Encryption completed.

Figure 9.1: Example session of the encryption program.

When this program is run, it will encrypt the file with the given key. It will
overwrite the file with an encrypted version, rather than create a separate encrypted
file. Running the program on the same file again, with the same key, restores it to its
initial contents.

Software Assignment 10 will add several bells and whistles to the basic program,
including the ability to take arguments from the command line.

Before you move on to developing these programs, make sure that you understand
how XOR encoding works.

9.2.2 File Input and Output in DOS

The programs of these assignments require that files be read and written. In this
section, the appropriate DOS calls will be summarized. These functions are described
in some detail in Section 12.1 of the text by Irvine [Irv93].

In DOS, a file must be opened before it can be read or written. It may be opened
for input only, for output only, or for both input and output simultaneously. When
work with a file is completed, it should be closed. Whenever a file is opened, it is
assigned a unique handle by the operating system. Once opened, all further directives
to the operating system regarding the file (e.g., read, write, position, close) are given
using the handle, and not the file name, as the identifier of the file. Here is a summary
of the DOS calls which are needed for this assignment. All are int 21h calls, and
the function code (which is passed in register ah) is shown next to the name of the
function. All have the common characteristic that success or failure of the operation
is indicated by the value of the carry flag. If the operation is successful, the carry flag
is cleared, and if it is unsuccessful, the carry flag is set.

Open File (3Dh) This function opens an existing file. It may be opened in one of
three modes: input-only, output-only, or input-output. The mode is determined
by the value in register al passed to the function, as shown in the table below.

68 Software Assignment 9

al Mode

0 input-only
1 output-only
2 input-output

The only other input parameter to this function is the name of the file. The
register pair ds:dx must point to an ASCIIZ string which contains the path of the
file to be opened.

If the command is successful, the handle for the file is placed in register ax by
the function. If the open is not successful, an error code is placed in in al. The
possible error codes are given in the table below.

Error code Meaning

1 cannot share file
2 file not found
3 path not found
4 too many open files
5 access denied

Error 1 means that some other program (such as an editor) is already using the
file. Error 2 means that there is no file of the name specified, but that the path
of a drive and directories leading to the file name is valid. Error 3 means that
either the drive letter or directory path which was specified in the ASCIIZ string
is invalid. Error 4 means that the system cannot open any more files. To remedy
this, increase the value on the right-hand side of the FILES= statement in your
config.sys file. Error 5 usually means that the file is read-only, or that it is a
directory.

Close File Handle (3Eh) To invoke this function, just place the file handle in reg-
ister bx, place 3eh in register ah, and do an int 21h call. The only possible error
(which results in error code 6 being placed in register al) is that the handle is
invalid.

All files should be closed when processing on them is done. Closing a file flushes
all system buffers associated with the file, and the effect of a write on file contents
is not guaranteed to take place until the close is effected. Also, the close com-
mand releases the file buffers for other files to use. The maximum number of files
which may be open at any one time is specified by the FILES= command in the
config.sys file.

Read From File or Device (3Fh) This function requires the following input pa-
rameters.

Simple File Encryption: Part 1 69

Register Contents

bx file handle
cx number of bytes to read

ds:dx pointer to beginning of input buffer

Note that a file name or path to read from cannot be specified. The handle of a
file which has been opened must be specified.

The carry flag is set if an error occurs. The error codes (passed in register al)
include 5 (access denied) and 6 (invalid handle). If no error occurs, then register
ax will contain, after the read, the number of bytes actually read. This is a
convenient way to determine whether or not the end of the file has been reached.
If the number of bytes read is less than the value passed in register cx, then the
last read must have hit the end of the file.

Write to File or Device (40h) The input parameters to this function are similar
to those for the read function:

Register Contents

bx file handle
cx number of bytes to write

ds:dx pointer to beginning of output buffer

The carry flag is set if an error occurs. The error codes (passed in register al)
include 5 (access denied) and 6 (invalid handle). If the carry flag is not set, then
register ax will contain the number of bytes actually written. The only way that
this value can be less than the requested number (in register cx) is if some sort of
i/o error occurred, such as a full disk.

Move File Pointer (42h) This function is central to random access of files, since
it permits us to position the file pointer (which determines where the file will be
read and/or written) at an arbitrary position within the file. The next read and/or
write to a file begins with the byte pointed to by the file pointer. The inputs to
this function are as follows.

Register Contents

al method code
bx file handle
cx high word of 32-bit offset
dx low word of 32-bit offset

The offset (not to be confused with the offset of a segment:offset pair) is the
distance that the file pointer should be moved from some known location. Because

70 Software Assignment 9

files may be large, this offset is represented as a 32-bit quantity, in the register
pair cx:dx. Register cx contains the sixteen most significant bits, while register
dx contains the sixteen least significant bits. The number may be interpreted
either as an unsigned quantity, or as a signed (32-bit two’s-complement) quantity.
The method code determines this interpretation, and also how the file position is
encoded. There are three possibilities, as shown below.

Register al Interpretation of register cx:dx

0 absolute offset from beginning of file
1 signed offset from current file position
2 signed offset from end of file

In this assignment, we will only use method code 0. When using this code, the file
pointer is positioned n bytes from the beginning of the file, with n the value of the
cx:dx pair, when interpreted as an unsigned 32-bit quantity. Thus, to position the
file pointer at byte 100000 in the file, the value 1 is placed in register cx, and the
value 34464 is placed in register dx, since 100000 = 65536 + 34464 = 216 + 34464.

There are other useful file functions, such as Create File (function 3Ch). However,
since we will not use these functions in this assignment, they will not be described
further.

At this point, you should write simple procedures for all of the file i/o calls identified
above, and place these functions in your doscalls.asm file (or whatever you have named
it) with all of your other basic int 21h calls. Remember to put the appropriate
externdef statements in the associated doscalls.dec file. Figure 9.2 provides an
example for the move file pointer function.

9.2.3 Developing Software Assignment 9

In this assignment, you will be expected to integrate the program-development skills
which you have acquired in this course. Therefore, this handout will provide less of the
step-by-step instructions than earlier ones did. You will be expected to do more of the
design on your own. In so doing, keep in mind the following principles.

1. Begin by planning the overall project and by developing high-level pseudo-code
for the overall program.

2. Develop and test individual modules in a bottom-up fashion. Test each module
before going on to the next. Do not try to get the whole thing running in one
fell swoop. There is simply too much attention to detail necessary in assembly-
language programming. If you do not break the task into small subtasks, each
developed and tested individually, you will be overwhelmed.

Simple File Encryption: Part 1 71

;; ***
move_file_pointer proc
;; Move the file pointer for random i/o.
;; input: method code in al: 0 = absolute.
;; 1 = signed offset from current.
;; 2 = signed offset from end.
;; bx = file handle.
;; cx = offset, high.
;; dx = offset, low.

mov ah,42h
int 21h
ret

move_file_pointer endp
;; ***

Figure 9.2: Procedure for DOS function 42h.

3. Try to re-use or to adapt modules and procedures which were developed in
earlier assignments, whenever possible.

First of all, Section 6.2 of the textbook by Irvine [Irv93] contains an extremely
simple XOR file-encryption program. However, the program which you are to write for
this assignment has many more features. Therefore, while it is a good idea to study
the program on page 153 of the text by Irvine, you should develop your own program.
The program of Irvine lacks many of the features which the program of this assignment
requires.

Let us begin by writing a high-level specification for the program. Such a specifi-
cation is shown in Figure 9.3.

begin
1. Issue the welcome line to the display.
2. Prompt for name of file to be encrypted.
3. Prompt for the encryption key.
4. Prompt for the buffer size.
5. Convert the file name to an ASCIIZ string.
6. Encrypt the file.
7. Issue the success line to the display.

end

Figure 9.3: High-level description of the overall process.

72 Software Assignment 9

Now, the first thing to notice is that parts of this program are very similar to those
of previous programs. In particular, in Software Assignment 6 you developed assembly
code which prompted for values and which converted numbers from external to internal
format. So, you should be able to write the routines corresponding to lines 1, 2, 3, 4,
and 7 in no time at all. In line 3, when obtaining the encryption key, you will need to
translate an unsigned number from display to internal format. In Software Assignment
6, you wrote a procedure get number which translated a signed number from display to
internal format. Add a new function get number unsigned to your numio.asm library
which performs the same translation on unsigned numbers. You will probably find that
you can realize this function with an almost trivial modification to get number.

In developing the code for line 4, get buffer size, you need to make sure that you
substitute the default value 512 if no value is given, or if the value 0 is given. This
should be very easy, since your get number unsigned function, which may be used for
this part as well, will probably return 0 as the equivalent of the number represented
by the empty string. In any case, you can easily modify it to make it behave in this
fashion.

The code for line 6, which converts the file name to an ASCIIZ string, is very simple.
You should write a separate procedure named make asciiZ to accomplish this task.
The address of the buffer which contains the file specification string should be passed
to the procedure in registers ds:dx. Remember that the DOS call which reads a string
(0Ah) writes to a buffer which includes the number of bytes read in the second byte
of the header. So, let make asciiZ take advantage of this information. All that this
function has to do is to tack a zero byte onto the string, just after the last character.
The position at which this zero byte is placed is easily computed from the header
information.

Before proceeding on, make sure that your program can do all of these “supplemen-
tary” tasks. Write a partial program, including all parts except for line 6, and make
sure that they all work. Test them by going into CodeView and making sure that the
correct values are placed in the appropriate buffers. Resist the temptation to work on
the “main” part of the program until you have this support shell working perfectly.

Once the support shell is working, it is time to tackle the main procedure of line
6, which encrypts the file. This task is also best approached by first developing a
high-level plan, and then building and testing the components in a bottom-up fashion.
First of all, it is required for this assignment that this encryption routine
be developed as a separately assembled procedure named encrypt file, and
thus stored in a separate file. Let us identify the parameters which this procedure
must receive.

1. The address of the buffer containing the specification (path) of the file to be
encrypted. This buffer will have been prepared by the procedure make asciiZ.

2. The encryption key.

Simple File Encryption: Part 1 73

3. The address of the i/o buffer which is to be used. The calling program must
supply a buffer which this routine uses for input from and output to the file.
This buffer is the “work area” for the encryption.

4. The size, in bytes, of the i/o buffer. This value will be determined from user
input (the buffering size field). Note that you must reserve space for the largest
admissible buffer, which is 1024 bytes. However, the user may specify a smaller
buffer. The extra space is simply not used.

It is required that this procedure receive its parameters via the stack,
and not via registers. The passing convention is to push the parameters onto the
stack in the order specified above. Thus, immediately after a call to the procedure
encrypt file, the top part of the stack will appear as follows.

fspec offset
key

I/O buffer offset
I/O buffer size
return address ← sp

Now, in addition to the parameters, there are surely to be registers which are saved
during the execution of the procedure. For example, the procedure might begin with
the code

push dx
push ax
push bp
push bx

so that the stack would actually appear as follows after these pushes.

fspec offset
key

I/O buffer offset
I/O buffer size
return address

dx
ax
bp
bx ← sp

74 Software Assignment 9

;;***
encrypt_file proc
;; encrypt a file with simple word-level XOR encoding.
;; inputs: pushed onto stack:
;; offset of address of fspec buffer.
;; key
;; offset of address of i/o buffer.
;; size of i/o buffer.
ef_pushsize equ 10 ;; 4 registers + return address pushed

;; after arguments on the stack.
ef_fspec equ ef_pushsize+6
ef_key equ ef_pushsize+4
ef_buffer equ ef_pushsize+2
ef_iosize equ ef_pushsize

push dx
push ax
push bp
push bx

.

.
pop bx
pop bp
pop ax
pop dx
ret 8

encrypt_file endp
;;***

Figure 9.4: Managing stack values in encrypt file.

With so much information on the stack, it becomes difficult to avoid clerical errors.
Here is a technique which helps quite a bit. Look at the code of Figure 9.4.

Notice what has been done here. The value ef pushsize records the total number of
bytes on the stack which have been pushed after the parameters. This number includes
the return address offset. Since four registers have been pushed, the total number of
bytes used is ten. The parameters may then be accessed relative to ef pushsize.
Thus, the key is four bytes offset from the beginning of the parameter list, and so
ef pushsize + 4 = 10 + 4 = 14 bytes from the top of the stack. If we consistently use
descriptive addresses, such as [bp+ef key], rather than absolute computations such as
[bp+14], then is the code not only much more readable, but changes are easily made as
well. For example, if we discover that we need to save another register on the stack (say
si), then rather than having to go through the entire code and change all references
such as [bp+14] to [bp+16] (which is highly prone to error and misinterpretation), all
that we need to is to change the value of ef pushsize to 12. Everything else stays as
it is.

Simple File Encryption: Part 1 75

Now, let us return to the issue of designing the actual high-level algorithm. Figure
9.5 below is a high-level description of what the procedure encrypt file must do.

begin
Open the file for i/o;
Repeat

Read a block from the file into the buffer;
Encrypt the block in the buffer;
Write the block back to the file;
Move file pointer ahead one block;

until no more blocks;
Close the file;

end

Figure 9.5: High-level description of encrypt file.

Now let us take a closer look at some of the details of this procedure. In building it,
it is strongly suggested that you first develop everything but the block encryption step.
In other words, first develop the part which opens the file, reads in a block, writes it
back out, reads in the next block, writes it out, and so forth. Make sure that you have
this part working perfectly before you dive into the encryption step. Otherwise, it is
all too easy to get lost in a sea of details.

Opening the file for i/o uses as simple call to the DOS function 3Dh. Upon doing
this, save the file handle in a local variable. Closing the file is similarly trivial.

Reading a block into the buffer is also quite easy. The size of the block is specified
by the user via the last prompted value during the initialization dialog. Make sure
that this value is at least two (obviously!), and no larger than 1024. (Reserve a 1024-
byte buffer for this operation.) Make sure that the size of the block actually read (as
reported in register ax by DOS call 3Fh) is recorded. This information must be passed
along both to the encryption process, and to the process which writes the buffer back
to the file. Remember that this number may be smaller than the buffer size when the
last block (at the end of the file) is read.

Both the read operation and the write operation will advance the buffer pointer.
When doing both input and output, it is easiest to specify the position to read and to
write as an absolute offset to the file. So, maintain the 32-bit offset in a pair of words.
Every time that a read-write pair is performed, increment the value represented by
this pair by the size of the previous read/write pair. Since many files have size larger
than 64K bytes, this offset must be represented as a 32-bit quantity. Start out with
both the high offset and the low offset set to zero. Each time through the loop, add
the previous read/write size to the low offset to get the new address. If there is a carry

76 Software Assignment 9

then add one to the high offset as well.2 If the file size is smaller than 64K, then the
high offset will stay at zero. However, test your program on larger files, because your
laboratory instructor surely will!

The step which encrypts a block of text is best realized as a separate procedure.
You just step through the array of bytes in the buffer, one word at a time, and XOR
that word with the key. With the experience that you gained in previous assignments,
you should be able to accomplish this without difficulty. You will probably want to use
base indexing, with register bx representing the base address of the array, and register
si or di representing the offset from the base.

9.2.4 Test conditions for Software Assignment 9

A working version of Software Assignment 9 should satisfy the following conditions.

1. It should not lock up or crash the machine, even on bad input, although it need
not work correctly in such a case. However, it should not irreversibly corrupt
a file. For example, if the user specifies a buffer size larger than 1024 bytes, it
should round down to 1024 rather than write over memory areas which are not
part of the buffer.

2. It must work for files which are larger than 64K bytes.

3. It must default to the 512 byte buffer size in the case that the user types 0 or
1 or just return at the prompt for that value.

4. It must not tack “garbage” onto the end of the file, or lop off the last few bytes.
Make sure that the size of the encrypted file is exactly the same as the size of
the original file, and that running the file through the encryption program twice
yields exactly the same result. (Make a copy of the file before testing, and then
use the DOS command fcomp to test for differences.)

5. It must work for any sixteen-bit key, and for any buffer size between 2 and 1024
bytes inclusive.

Needless to say, you should not test your program on your only copy of a valuable
file. Always test on a throwaway copy, in a test directory where nothing else of value
can be clobbered.

2 Since we are working with unsigned numbers, check for a carry and not an overflow when deciding
whether to increment the high offset. A carry signifies that an addition of unsigned numbers would
not fit in the word, and that a bit must be carried to the next place, which is the low-order bit in
the high word of the offset. An overflow signifies that signed arithmetic needs to extend to an extra
place, which is not what is wanted here.

Software Assignment 10

Simple File Encryption: Part 2

10.1 Purpose

This assignment has the following principal purposes.

(1) To gain proficiency in working with simultaneously open (for I/O) files.

(2) To gain further experience in obtaining arguments from the command line.

10.2 Procedure

The core of this assignment is to add some bells and whistles to the previous program.
Here are the features to add.

1. Enable the program to take its arguments from the command line, rather than
from an interactive dialog. The command-line call should use the standard “/”
option designator of DOS. Here is an example invocation, corresponding to the
interactive example given earlier in this document.

encrypt z:\temp.foo /k12345 /b128

The executable has been named encrypt. The first argument on the command
line is the file to be encrypted. The /k argument gives the key, and the /b

argument gives the buffer size. These arguments should be able to be given in
any order. The /k argument is mandatory, while the /b argument is optional.

2. Enable the program to write the encryption to a different file. Use the syntax
illustrated in the following example.

77

78 Software Assignment 10

encrypt z:\temp.foo /oz:\temp.enc /k12345 /b128

Here the /o option specifies the output file. The original file (z:\temp.foo in
this case) remains unchanged. Arguments should be able to be given in any
order.

In this final assignment, you are left to use the skills learned in this course to realize
these features. No further hints or information is provided.

Appendices

79

Appendix A

Notes on the Use of the Software
and the System

A.1 The Components

MASM MASM is an acronym for the Microsoft Macro ASseMbler. This is the basic
program which translates assembly language into executable machine language
programs. The current version is 6.11.

CodeView CodeView (CV) is the debugger which is used to monitor the execution of
programs closely. With CodeView, one can watch a program execute step-by-
step, monitoring memory locations and register values along the way. One can
also set breakpoints and the like. The current version is 4.

Programmer’s Workbench The Programmer’s Workbench (PWB) is a development
environment. It contains an editor, as well as means to invoke the assembler
and the debugger. It also contains a fairly sophisticated make facility, which
allows one to rebuild an entire set of interacting programs. While one can de-
velop assembly language programs without using the Programmer’s Workbench,
by invoking the assembler, editor, debugger, and other utilities, PWB renders
management of software development much simpler.

Actually, the Programmer’s Workbench is not just for assembly language; it
may also be used with Microsoft C/C++. However, we shall not use it in this
way in the course.

Utilities There are a number of utilities which come with the MASM package. The
most important for our purposes are the linker, named LINK, and the make
utility, named NMAKE. The purpose of the linker is to combine assembled
programs into one executable module. The purpose of the make utility is to
ease the management of building large programs which contain many modules.

81

82 Appendix A

Both of these utilities may be invoked effortlessly from PWB, although they
may be invoked separately from the command line as well.

Another utility which you may find useful is the help utility. Again, it may be
invoked effortlessly from PWB.

A.2 Documentation

The MASM/PWB software package comes with four manuals, containing a total of
approximately 1600 pages. It is useful to have a general idea of which topics are
covered by each manual. Here is a short synopsis for each manual, in order of thickest
to thinnest.

Environment and Tools [MAS93] This manual contains information on the Pro-
grammer’s Workbench and it supporting utilities, including the debugger and
the make utility. It does not contain information on the assembler or assembly
language itself.

Programmer’s Guide [MAS92b] This manual contains detailed information on the
assembler (MASM) itself, including the use of macros and separately assembled
modules,

Reference [MAS92c] This manual contains detailed information on the instruction
set of the 8086 family of processors, and how those instructions are invoked
within MASM.

Getting Started [MAS92a] This manual contains information on installing and con-
figuring the MASM/PWB software.

In addition to these manuals, there is extensive on-line documentation which may
be invoked directly from PWB and CodeView. For some information (such as editor
key bindings), the on-line documentation is far more extensive than the printed.

A.3 The MASM/PWB Environment Variables

Before you use MASM/PWB (Macro ASseMbler / Programmer’s WorkBench) for the
first time, you must set certain MS-DOS environment variables. These variables tell
MASM/PWB where certain crucial files may be found and/or stored. If you have
installed MASM on your own personal computer, then the installation procedure will
place commands defining these variables in your autoexec.bat file. However, if you
are running MASM/PWB on a laboratory machine at the university, the values of
these variables may be set somewhat differently. While they should be set properly, it
is a good idea to have a basic understanding of them, so that if problems arise, they
can be tracked down quickly.

Notes on the Use of the Software and the System 83

A.3.1 Overview

The files which are associated with MASM and the Programmer’s Workbench may be
divided into eight categories.

Libraries: There are several libraries associated with MASM and the PWB develop-
ment system. In addition, you may develop some of your own libraries. The
MS-DOS environment variable LIB indicates where these libraries may be found.
The value of this variable may be a sequence of paths, separated by semicolons.
(It follows the same format as the familiar PATH environment variable of MS-
DOS.) This allows you to access the system-wide libraries, and to access your
own as well.

Include files: Include files are analogous to “.h” files for the programming language
C. The MS-DOS environment variable INCLUDE indicates where these files may
be found. The value of this variable may be a sequence of paths, separated
by semicolons. (It follows the same format as the familiar PATH environment
variable of MS-DOS.)

System binaries: The binaries are the executable files which are run in connection
with the use of the MASM/PWB system. There is not a special environment
variable for these files; rather, the path to them should be included in the PATH

environment variable. When there is a call to a program of a given name, DOS
searches the directories in the PATH environment variable, in order, until it finds
a program with the correct name. It is therefore critical that you configure the
PATH variable so that it finds the correct program.

Initialization files: The initialization files contain the information which customizes
your particular sessions of MASM/PWB. It contains information on where the
files are that you have recently worked on, as well as customization information
for your development environment. These files reflect things that you do as an
individual user, so on a shared system such as the EMBA-CF, it is critical that
each user have a private copy of these files. We will say more on how this is
done later.

The location of the initialization files which are used by a particular session of
MASM/PWB is given by the value of the MS-DOS environment variable INIT

when PWB is started.

User files: User files are the programs that you will write. There is no special MS-DOS
environment variable to identify where they are stored. Rather, you will specify
this information when you save the file with the PWB editor.

Scratch files: MASM/PWB must generate a number of “scratch” files as it goes along.
These are files which are only needed temporarily, and which may be discarded

84 Appendix A

once a particular development session is terminated. The MS-DOS environment
variable TMP indicates to the system where these files may be stored.

Help files: MASM/PWB has an extensive on-line help system. The location of the files
supporting this help system is identified by the MS-DOS environment variable
HELPFILES.

A.3.2 Environment Variables on a Personal System

If you install MASM on you personal computer, the setup program will install state-
ments in your autoexec.bat file which define their values properly. These statements
are then executed automatically whenever you boot your computer. If you use the
default installation directory which the installation program suggests, the values will
be the following:

SET LIB=C:\MASM611\LIB
SET INCLUDE=C:\MASM611\INCLUDE
SET INIT=C:\MASM611\INIT
SET HELPFILES=C:\MASM611\HELP*.HLP
SET ASMEX=C:\MASM611\SAMPLES

(The ASMEX environment variable defines the location of example programs; we have
not mentioned this above.) In addition, the installation program will add
C:\MASM611\BIN to your PATH variable.

A.3.3 Environment Variables on an EMBA-CF Microcom-
puter

MASM is installed a bit differently on the EMBA-CF systems. When an EMBA-CF
machine boots up, it defines these environment variables as follows.

SET LIB=C:\MASM611\LIB
SET INCLUDE=C:\MASM611\INCLUDE
SET INIT=M:\MASM611\INIT
SET HELPFILES=C:\MASM611\HELP*.HLP
SET ASMEX=C:\MASM611\SAMPLES

In addition, C:\MASM611\BIN is included in the PATH variable. Notice that there is
one difference from the personal system installation — namely, the INIT directory re-
sides on the M: drive. On the EMBA-CF system, the M: drive is the file space associated
with your account; it is not shared with other users. Thus, for MASM/PWB to work
properly on this system, it is necessary for you to create the directory M:\MASM611\INIT

and to install initialization files there. We will say more about this below.

Notes on the Use of the Software and the System 85

The M: drive, rather than the C: drive, is used to store the initialization files so
that these files are customizable for a given user. MASM/PWB has a large number
of user-settable options, and your choice of settings may be different than those of
other users. In addition, the initialization files contain information on the names and
locations of files which have been recently edited and built, and this information is
clearly local to a given user. The above modification thus keeps the settings which you
choose in MASM/PWB from being altered by other users. Each time that you start
MASM/PWB on an EMBA-CF system, the settings will be exactly as you left them.

A.4 Running MASM/PWB on an EMBA-CF Mi-

crocomputer

A.4.1 One-Time Initialization

Before running MASM/PWB on an EMBA-CF microcomputer for the first time, it is
necessary to install the initialization files. Here are the steps that you should follow.

1. If you are in windows, start an MS-DOS shell by double clicking on the MS-DOS
Prompt icon in the main group.

2. Type the command Q:\cs101\bin\reinit.bat. This program will do the fol-
lowing:

(i) It will create the directory m:\masm611\init if it does not already exist.

(ii) It will copy the system files (contained in the directory Q:\masm611\init)
named tools.ini and current.sts to the directory m:\masm611\init.
To provide some protection, if files named tools.ini and/or
current.sts already exist in the directory m:\masm611\init, they will
be moved to files in that directory named tools.sav and current.sav,
respectively. However, any previous .sav files will be overwritten.

This step should be performed only once, before you use MASM/PWB for the first
time. These initialization files will contain information about your work as you proceed
through the semester, and reinstalling them will result in this information being lost.
(Such a loss is annoying, but not catastrophic. Actual programs are not lost, just
information on where they reside, and associated command options.)

For your home system, default initialization files will be installed. However, you
may wish to copy the files contained in Q:\masm611\init to a floppy disk and install
these on your home system, as they already have options set which will be of use to
you. Of course, you may also set the appropriate options yourself.

86 Appendix A

A.4.2 Certifying the Installation on an EMBA-CF Microcom-
puter

Important Note: As this document goes to press, the EMBA-CF is in the process of
upgrading one of its laboratories to machines which run the operating system
Windows NT. While the operating systems MS-DOS and Windows 95 sup-
port only the File Allocation Table file system (FAT, for short), Windows NT
supports both the FAT file system and the newer and more sophisticated New
Technology File System, or NTFS for short. Unlike the FAT file system, NTFS
supports user-specific file protection which enables the EMBA-CF to install files
on the local drive of the microcomputer in such a way that ordinary users may
read and execute them, but not modify them. If NTFS is used as the princi-
pal file system for these new microcomputers, then the material in A.4.2 which
follows will probably not be applicable to those machines. Ask your laboratory
instructor for up-to-date information.

As mentioned previously, all of the files associated with MASM/PWB on an EMBA-
CF microcomputer reside on the local C: drive. If you are using a system running
Windows NT with NTFS (the advanced file system of Windows NT), then these files
should be protected against modification by users. Unfortunately, the FAT file system
(which may be used with Windows NT, and which is the only file system available for
Windows 95 and for MS-DOS) does not support multilevel protection. As a conse-
quence, any user may modify any system files on such file systems. While well-behaved
users should not modify these files, there is no guarantee that they have not. Therefore,
unless you are using a Windows NT system with NTFS, it is a good idea to reinstall
MASM/PWB each time that you log in.1 It takes only a minute. To reinstall the
software, proceed as follows.

1. If you are not already in an MS-DOS shell, select and double-click on the MS-
DOS prompt from the Programs listing of the Start button menu.

2. At the command prompt, type the command Q:\cs101\bin\pwbinstf. This
will reinstall all of the MASM/PWB files to the C: drive, and will set the
associated environment variables correctly.

At this point, you have two options.

a. You can exit the MS-DOS shell by typing exit, which will kill the shell and
return you to Windows. You can then select MASM6.1 from the Programs entry
of the Start button menu.

1This procedure will not work with Windows NT and NTFS; an error message will appear if it is
attempted. However, with that system, the files are protected, and so the procedure is not necessary.

Notes on the Use of the Software and the System 87

There is only one shortcoming to this approach. It is possible, but highly un-
likely, that someone has modified the system initialization file which sets the
MS-DOS environment variables. The definitions made by the pwbinst program
are lost when the MS-DOS shell in which they were made is exited. If someone
has modified the system initialization file, this may cause a problem. (One way
to make sure that this has not happened is to start up an MS-DOS shell by dou-
ble clicking on the MS-DOS prompt icon, and then to type the set command,
which will display the paths.)

b. A safer approach is as follows. After you have run the pwbinst program, do
not exit the MS-DOS shell. Rather, type the command pwb at the command
prompt.2 This will start up Programmer’s Workbench, just as clicking on the
menu item does, but since you have not exited the shell, the environment variable
settings made by the pwbinit program will remain in force. You may still
return to the Windows environment, to run an additional program, by typing
Ctrl+Esc.

A.4.3 Further Security Issues

As we have noted several times, files on the C: drive of and EMBA-CF microcomputer
running Windows 95, or running Windows NT with the FAT file system, are unpro-
tected. Therefore, any user can change and/or delete them. It is highly unlikely that
a non-malicious modification of the C: drive by another user will cause anything but
a failed program. However, it is wise not to discount the possibility that someone will
attempt a malicious action. We suggest the following steps to minimize the possibility
of loss of work under these circumstances.

1. After each working session on an EMBA-CF, save all source files on a floppy disk.
Never depend upon files on your M: drive remaining unchanged from session to
session.

2. When using and EMBA-CF microcomputer for CS101, use only your CS101 ac-
count. Do not use a personal account with many other valuable files. If you want
to access a personal account, it is strongly suggested that you use UNIX and one
of the X-stations in rooms 227 or 229 of Votey building. Security when working
from these X-stations is far better than the security from a microcomputer.

2If this does not work, try typing the full path C:\masm611\bin\pwb.

88 Appendix A

A.4.4 Proper Etiquette When Using an EMBA-CF Micro-
computer

1. Needless to say, you should never do anything malicious which will steal another
user’s password, or damage that user’s account. If you do so and are caught,
you will be in very serious trouble, and may very well be dismissed from the
university.

2. If you do something inadvertently which destroys or changes common files on the
C: drive of a microcomputer, please notify the course instructor or an assistant,
or someone working for the EMBA-CF. The integrity of a local drive can easily
be restored. You will not be disciplined for an honest mistake. Indeed, you will
be thanked for pointing it out rather than forcing us to discover it the hard way.

3. Do not leave files which you have created in inappropriate places, such as the
root directory. For temporary files, use the directory pointed to by the TMP

environment variable.

4. Do not leave copies of the source files for your CS101 software assignments on
the C: drive, where others can access them. Do not make it easy for another
student to steal your work.

A.4.5 Logical Drives on an EMBA-CF Microcomputer

We have made several references to drive names on the EMBA-CF microcomputers.
Here is a summary of these drives, and the directories which are particularly relevant
to CS101.

A: The A: drive is the 3.5 inch floppy disk drive. This is standard for just about
every MS-DOS system, whether running on a home system or an EMBA-CF
one.

B: The B: drive, if it exists, is the 5.25 inch floppy disk drive. These drives exist
on some of the older 80486 systems in room 206 Votey, but not on any of the
newer Micron Pentium systems in room 210/246 Votey.

C: The C: drive is the local hard disk on the machine. Except for systems using
NTFS, there is absolutely no protection of any files on this drive, and anyone
may modify things there. As we have already emphasized, be very careful
when trusting the integrity of files that you find there, and never leave
copies of your work there for others to steal.

Q:, R:, S: The Q:, R:, and S: drives are system drives. The actual computer on which
these drives reside is a network server. It is not in the physical computer box
that you are using. Generally, you may read files on these drives and execute

Notes on the Use of the Software and the System 89

programs on them but you may not add, modify or delete files there. Partic-
ularly important directories on these drives include Q:\cs101, which contains
files specific to CS101, and Q:\masm611, which contains a copy of the complete
installation files for MASM/PWB (which are downloaded to the C: drive with
the pwbinst command and to the M: drive with the reinit command.)

M: The M: drive is your private drive. The actual computer on which this drive
resides is a network server. It is not in the physical computer box that you
are using. You can be reasonably assured that other users will not have access
to the files on this drive, unless you do something to give them such access.
(Unfortunately, a malicious program on the C: drive can lead to such access.) It
is the same personal file space that you may access by using the UNIX operating
system. Always save your work, and keep personal customization files, on this
drive.

A.5 Other Issues Relevant to MASM/PWB

A.5.1 Option Settings in PWB

The material in this section applies both to installations on your personal computer and
to installations on an EMBA-CF computer. All of the options listed below originate
from the options menu item of PWB. These should be pre-set properly when using
the initialization files which are installed on the EMBA-CF system, but may not be
set properly on your home system if you use the installation defaults.

1. From the Build Options subitem, select Use Debug Options. This tells the
system always to build your software so that the CodeView debugger can analyze
it.

2. From the Language Options subitem, and MASM Options selection, the follow-
ing settings are important.

(i) On the main menu, make sure that Warnings Treated as Errors is
selected. For Warn Level, select Level 2 or Level 3.

(ii) Click on Set Debug Options. Make sure that the Debug Information

item has CodeView selected. Otherwise, critical information necessary
for the full use of CodeView will not be generated by the assembler and
linker. Also, make sure that Generate Listing File is selected, and
that the suboptions List Generated Instructions, Generate Symbol

Table,
Include All Source Lines, and Include Instruction Timings are
selected. It is best that the other suboptions of Generate Listing File

not be selected.

90 Appendix A

3. From the Link Options menu item, choose the following.

(i) Make sure that the Debug Options item is tagged. Also, make sure that
the CodeView item is tagged.

(ii) Click on the Additional Debug Options item. From the table which
appears, make sure that the item Pack Executable File is not selected.
(If this item is selected, the system may generate object files which will
cause protection faults. If you get protected mode errors when you try
to run a program which you have built, check the setting of this option.)

(iii) While remaining in the Debug Options menu, select the Full option for
the Map File option. Select OK to exit this submenu.

4. Click on NMAKE Options. It is best if the Halt on any Errors option is se-
lected.

5. Click on CodeView Options. You will find it most convenient to use CodeView
if you select the 50-line mode for Screen Size.

6. Click on Customize Project Template. Put the cursor within the rectangle
which appears in the middle of the new window (beneath the text Build Rule

List. Scroll down to the entry which begins with macro "AFLAGS_D...", and
click on it. Now, move the cursor to the one-line rectangle labelled Build Rule.
The text of the macro "AFLAGS_D..." appears in this window. Move the cursor
to the end of this line, which should read /Fl. Replace /Fl with Fl$*.lst. Now,
click on Set Build Rule near the bottom of the box. Do not click on OK first,
or this change will be lost.

The purpose of this change is to tell PWB to put the listing file in the same direc-
tory as the source file. By default, it will put that file in the directory in which
PWB is invoked, which will be your windows directory (often c:\windows),
which is probably not what you want. One problem that may occur with this
new configuration is that the command line for assembly may be too long. If so,
you will get an error message when you attempt to compile. This is a “feature”
of MS-DOS, and cannot be fixed. To address this problem, you must work with
shorter paths. Here is a useful trick. If you are using your home system, put the
line lastdrive=z in your config.sys file. If you are using an EMBA-CF sys-
tem, you don’t need to do this (nor can you). Now, enter an MS-DOS shell and
issue the command such as subst T: M:\masm611\programs. Here T: is the
name of a new logical drive. Use any letter which does not show up when you run
the windows file manager utility. The M:\masm611\programs is the directory
in which you have your program files. Use whatever path is appropriate. Now,
you may use the name T: as an abbreviation for this longer path. When you
start up PWB, instead of opening the file M:\masm611\programs\soft1.asm,

Notes on the Use of the Software and the System 91

say, open T:\soft1.asm. It is the same file, but the path name is shorter in this
alias. Note that to use this trick, you must start PWB in a shell in which you
have run the subst command. On an EMBA-CF system, you cannot do it any
other way. On you home system, you could put the subst command in your
autoexec.bat file, and reboot. Then, Windows will know about this path, and
so you can just click on the PWB icon.

A.5.2 General Notes

The following hint applies whenever you run MASM/PWB on any system.

1. When you are finished using PWB, always quit PWB and exit back to Windows
or MS-DOS before you log off of your computer. If you do not, some important
information will not be saved in your initialization files, and when you start up
MASM/PWB the next time, you will have to redo certain things.

A.5.3 Running MASM/PWB on a Home System

There are a few issues which you should be aware of.

1. Despite what the installation manual says, MASM/PWB will not run with only
4 megabytes of main memory. It does run with 8 megabytes. We do not know
if it runs with intermediate values, such as 6 megabytes; such configurations
are uncommon. Bottom line: You need 8 megs of main memory to run this
software.

2. Some of the utilities, including the linker and nmake, seem to be very fussy
about memory management, and will complain and crash when run under MS-
DOS with certain DPMI (DOS Protected Mode Interface) managers. If you
have any problems, we strongly suggest that you run PWB from Windows.
MASM/PWB works flawlessly with the Microsoft Windows DPMI (which is
installed automatically when running windows).

A.5.4 Fifty-Line Mode in PWB

To be able to see more at one time, you may wish to set PWB to 50-line mode. To do
so, proceed as follows.

1. From the Options menu, select Editor Settings.

2. In the upper right corner of the window, set Switch Type to Numeric.

3. Put the cursor in the Switch List box in the middle of the window, and move
the cursor to highlight the Height entry, which will probably read Height:25.
You may need to scroll the Switch List to get to this entry.

92 Appendix A

4. The text Height:25 should appear in the Switch window at the very top of the
Editor Settings window. Type over the 25, replacing it with a 50.

5. Click on the Set Switch box at the bottom of the window.

6. Click on Save, and then on OK in the new window.

7. Click on OK to exit the Editor Settings window.

All windows in the main PWB screen should now appear in 50-line mode.

Appendix B

Submission Rules and Evaluation
Criteria

B.1 Content of a Submission of a Software Assign-

ment

The completion of a given software assignment includes two components, a written
submission, and a real-time demonstration of the behavior of the program. A submis-
sion is not complete until both components have been completed, and to avoid late
penalties, both must be completed before the due date of the assignment.

B.1.1 The Written Submission

Cover sheet For each software assignment, a cover sheet will be distributed. This
sheet will describe the conditions which must be followed in preparing the as-
signment. For a grade to be recorded for a given assignment, the associated
cover sheet must be included in the submission.

Documented source code Every submission must contain a printout of all source
code. This means all assembly sources (.asm files), as well as any include files
(.inc and .dec files). All source code must be adequately documented, includ-
ing in particular what each procedure and macro does, and how parameters are
passed to and from it. Further issues surrounding proper documentation will be
discussed in the laboratory meetings.

Assembler listing files Every submission must include an assembler listing file (.lst
file) for each .asm file. Since listing files are wider than 80 columns, normal
portrait-style printing utilities will not provide a complete printout. To remedy
this, use the special utility q:\cs101\bin\smallprt. It uses a smaller font,
which permits the entire file to be displayed without truncation. Alternately,

93

94 Appendix B

if you need a bigger typeface, you may use q:\cs101\bin\landsprt, which
will print in landscape mode on the page. These utilities are available on the
EMBA-CF systems. If you use your home system and printer, you will need to
use some other appropriate utilities.

Map file listing For each program, submit a printout of the map file (extension .map)
which is generated by the loader.

Additional items Some programming assignments may stipulate that specific output
or other items be submitted as well.

B.1.2 The Demonstration

Each program must be demonstrated to the laboratory instructor. During this demon-
stration, the program will be tested using a test suite of inputs designed to determine
whether it handles all cases properly, and will make note of any problems encountered.
Generally speaking, the best time to demonstrate programs is during the laboratory
sessions. However, demonstrations may also be arranged at other times, such as during
the laboratory instructors office hours. Except by explicit prior agreement, a diskette
containing the program may not be submitted in lieu of an in-person demonstration.

B.2 Restrictions

Any restrictions which pertain to a specific assignment will be distributed separately.
The following restriction applies to all assignments.

No External Libraries Unless stipulated explicitly to the contrary, you may not
use external libraries of procedures or macros to support your programs. This
includes in particular the libraries which are distributed on the diskette which
comes with the course textbook.

B.3 When and Where to Submit Software Assign-

ments

Information on when and where software assignments may be submitted, as well as
penalties for lateness, will be provided separately.

Bibliography

[Irv93] Irvine, K. R., Assembly Language for the IBM-PC, Prentice-Hall, second
edition, 1993.

[MAS93] Environment and Tools: Microsoft MASM Assembly Language Development
System Version 6.1, Microsoft Corporation, 1993.

[MAS92a] Getting Started: Microsoft MASM Assembly Language Development System
Version 6.1, Microsoft Corporation, 1992.

[MAS92b] Programmer’s Guide: Microsoft MASM Assembly Language Development
System Version 6.1, Microsoft Corporation, 1992.

[MAS92c] Reference: Microsoft MASM Assembly Language Development System Ver-
sion 6.1, Microsoft Corporation, 1992.

95

	Preface
	Philosophy of this Manual
	Content Overview
	Acknowledgments
	Trademarks

	I Introductory Software Exercises
	Becoming Acquainted with MASM and PWB
	Purpose
	Procedure

	Basic Input and Output: Part 1
	Purpose
	Procedure
	The First Program
	The Second Program

	Basic Input and Output: Part 2
	Purpose
	Procedure
	The Third Program
	The Fourth Program

	II Program Organization and Development Techniques
	Procedures in Assembly Language
	Purpose
	Procedure
	Background --- The Form of Procedures
	Program --- Part 1
	Program --- Part 2

	Multiple Source Files and the Make Facility
	Purpose
	Procedure
	Using Simple INCLUDE Directives
	Separate Assembly and the Make Utility

	III Selected Software Projects
	Number Representation and Integer Arithmetic
	Purpose
	Procedure
	Representation of Number in Various Bases
	The Primary Package to Be Developed
	The Demonstration Program
	Support Programs and Development Hints

	A UNIX-Style Directory Listing Program: Part 1
	Purpose
	Procedure
	The Overall Programming Project
	Using Find First Matching File to Retrieve File Parameters
	Formatting the Retrieved Data for Display

	A UNIX-Style Directory Listing Program: Part 2
	Purpose
	Procedure
	Finding all Matches to a File Descriptor
	Obtaining Program Arguments from the Command Line
	Extra Credit

	Simple File Encryption: Part 1
	Purpose
	Procedure
	The Overall Programming Project
	File Input and Output in DOS
	Developing Software Assignment 9
	Test conditions for Software Assignment 9

	Simple File Encryption: Part 2
	Purpose
	Procedure

	 Appendices
	Notes on the Use of the Software and the System
	The Components
	Documentation
	The MASM/PWB Environment Variables
	Overview
	Environment Variables on a Personal System
	Environment Variables on an EMBA-CF Microcomputer

	Running MASM/PWB on an EMBA-CF Microcomputer
	One-Time Initialization
	Certifying the Installation on an EMBA-CF Microcomputer
	Further Security Issues
	Proper Etiquette When Using an EMBA-CF Microcomputer
	Logical Drives on an EMBA-CF Microcomputer

	Other Issues Relevant to MASM/PWB
	Option Settings in PWB
	General Notes
	Running MASM/PWB on a Home System
	Fifty-Line Mode in PWB

	Submission Rules and Evaluation Criteria
	Content of a Submission of a Software Assignment
	The Written Submission
	The Demonstration

	Restrictions
	When and Where to Submit Software Assignments

	Bibliography

