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Abstract

The ciass of continucus-time linear
systems whose dynamlics are described by
(CO} semigroups do not admit a definition
of natural behavior in terms of universal
constructicns., - To capture the concept of
behavior for these systems, they are em-
bedded in a larger class of systems, called
#-systems., The basic categorical aspects
of behavior and canonical realization is
presented for Y-systems.

1. Introduction

This article 1s an extended summary
without proofs. Full details of all re-
sults presented herein will appear in [9]

A problem which has- long been studied
in system theory is that of realization,
which provides a local (or internal) de-
scription ©f a system, given its behavior
over time. For many classes of systems,
the definition of behavior is simple and
intuitive, so the process of recovering a
behavior from an internal description does
not seem particularly interestihg. None-
theless, it i1s known that the usual defini-
tion of behavior for many classes of sys-
tems arises naturally from universal con-
structions [1,2]. In the theory of contin-
uous-time linear systems, the defirition
0f behavior 1s not so obviocusg, and so a
variety of definitions have appeared in the
literature. While universal céonstructions
have been used to define the behavior of
more general classes ¢f continuous-time
linear systems [ 7,8], none are entirely
within the framework of Banach spaces.
Since the bulk of research in infinite-
dimensional continuous—time linear systems
is done within the domain of Banach spaces,
it seems natural to attempt to define the
behaviors of such systems using universal
constructions, An investigatlon of such
definitions 1s pursued 1n the first part
of this paper. '

Of ‘coursea, the actual process of real-
ization must alsoc be a part of any theory,
and a realization theory for the systems
developed in this report is also presented.
Space limitations do not permit the presen-
tation of a duality thecry, which must be
postponed to the full report [9]

In this summary, the use of category
theory has keen kept to only that abso-
lutely necessary to present the concepts.
For definitions not presented here, the
reader is referred to [3].

The Behavior Problem for Smooth Linear
Systems

Throughout this paper, R, (resp. R}
denotes the nonnegative (resp. nonpositive])
reals, K is fixed to be either the field
R of real numbers or the field € of complex
numbers. BAN denotes the category whose
objects are the Banach spaces over K, and
whose morphisms are the linear maps which
de not increase the norm. {C.) semigroups
‘are defined in the sense of contraction
semigroups 'of class () in-the sense of
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Yosida [137]: i.e., if T is a (c,) semigroup,
then HT(tM £ 1 for all teR denotes
the infinitesimal generator of 1% since

the infinitesimal generator uniquely deter-
mines the semigroup, the notations (E,T)
and (E,4z) will be used interchangeably to
denote the semigroup T. (C_)-DYN denotes
the category whose objects adre the
semigroups; a merphism k: (B, T)—*(F §) is
a BAN morphism Kk: E-F such that k«T(t) =
3(t)ek for all t&R This ig eguivalent
to requilring that koa 8Sek whenever
both sides are define

Smooth linear systems are those which
have (C_) semigroups for their dynamics.
More spécifically, a smooth linear system
ig a 6~tuple M= (Q,f,I,g,Y,h}, where Q,I,"
and Y are Banach spaces (the state space,
input space, and output space, respectively),
geBAN(T,3) (the input map), heBAN(Q,Y)
(the output map), and £ (the state~transi-
tlon map) is -‘the infinitesimal generator of

(c,) semigroup on Q. The .dynamics of M
are ghought of as governed by the eguations

9elt) - f(a(e) = glite))

y{t) =

hig{t)}.

Given a Banach space I, d free (CO}
dynamics over I is a {C ) semigroup
(1*,4%) and an ye BAN(I91") such that for
any (C ) Semigroup (Q,f) and ge=BAN(T,Q},
there 15 a uanue P& BAN(T *,Q) such that
the following diagram commutes.
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Dually, given a Banach space Y, a cofree
(C_) dynamics over ¥ is a (C_) semigroup
O(Y¢,d¢) and an £s BAN(Y,,?) such that
for any (C.} semigroup (Q,f) and hse
BAN(Q,Y) Yhere is a unique T e BAN(Q,Ya)
such that the following diagram commutes.

I

O
]
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Now given a smooth linear system M =
(Q,£,I,9,Y,h), if both of the above con-

. Structions exist, the behavior of M is de-
fined to be ¢op, with P the reachability
map and ¢ the observability map. This ap-
proach, when applied in the discrete-time
case (replacirg f with a map representing
one-step transition) (see [17]), yields the
k[ z]-module approach of Kaiman [10]. 1t
has also besn applied to certain classes
of continuous-time linear svstems with suc-
cess [7,8]. However, it fails within the
current framework, :

THEOREM For T#0 (the trivial Banach space),

free (C.) dynamics over I do not exist.

. Thus, ancther definition for behavior
of smooth linear systems must be found.

The approach taken here is similar to that
of Bensoussan and Kamen [4] in that the
class  of smooth linear systems is embedded
intc a larger class of systems, and behav-
iors and realizations are considered for
this larger class, However, the approach
taken heré uses universal constructions, so
that the definition of behavior is based

upon the definition of internal description.

3. ¥-Systens

Let
wous functlons i1 B K
and .which vanish at infinity.
ach space with the norm
Let M=4_", the strong (Banach) dual of G
The folfowing characterization of M may he
found in [5].

denote the set of all contin-
which are bounded
is a Ban-

THEOREM M| is precisely the set of all
bounded measures on R with support con-
tained in R, Under convolution *, Mis a
commutative Banach algebra with unit SO,
the Dirac measure at 0,

An M-Banach medule is a pair (E,b),
where E 1s a Banach space and bi MxE—~E
~is a bilinear map such that E is a module
over M with lb(u,e)l £ julle  for all yem, .
ee€ E. M-MOD denotes the category whose ob-
jects are the M-Banach modules and whose
merphisms are module homomorphisms
k: {(E,b)~>(F,c) such that kg BAN(E,F).

The class of )-Banach modules will be
used as the dynamics for a class of linear'
systems which includes the smocoth linear
systems. Therefore, it is necessary to
show that each smooth linear system has a
natural representation as an JBanach mod- -
vle, Let §e?] denote the Dirac measure
at teR, . Fet ‘s denote the subspace of %]
spanned by these Dirac measures. Given a
.(COJ semigroup (E,T)}, define T AxE-=>E
by (5. ,e)»T(t)e, extended by linearity.
Defineé as such, 1t i= easy to see that
is bilinear, and that the Following is alsc
true, . -

frsup {%(x) I erR_A .

| THEQREM Tet (E,T) be a (C_) semigroup. Then

T has an extension TiMxE>E which turns

E into an M-Banach module.

Unfortunately, A is not dense in M for
“the norm topology, so there are in general
‘many such extensions. However, there is
fone extension which sesems most natural in
the sense that it is also separately contin—
uous for a weaker but nonetheless natural
topology on 7. Let B denote the Banach
Space of all bounded uniformly continuous
functions R =X with the sup norm. It is
‘not difficult to verify 'that there are nat-
ural isometric embeddings. G B
Hence there is a natural sepirating dual
pairing ¢m®>. Let % dencte the locally
convex topology on W Whose neighborhood
base at 0 is given by polars of compact
subsets of @,

(a}.A is dense in Tifor the topol-

"THEOREM
ogy Jo+.. (B) If (E,T) is a (C_) semicroup,

the natural map T: axE-*E is separately
continuous for the topology & on B, and so
extends to a unique T35 MxE-» which is
also anM-Banach module action (for the
norm topology on M).

T will always dencte this particular
extension. (E,T) ls called the M-Banach
module associated with (E,T),

AnM-system is a B-tuple M = (Q,f,I,q,
Y,h), where Q, I, and ¥ are Banach spaces
(the state space, input space, and output
space, respectively), geBAN(I,Q) (the in-
put map), h &BAN(Q,Y) {the output map), ang
b: MxQ=>qQ ig an ¥-Banach module action (the
state-transition map). To each smooth 1lin-
ear system "M = (Q,f,1,¢,Y,h) is naturally .
assoclated an f-system, namely M = (0,7,T,
g,Y,h), where T is the semigroup generated
by £. The asscciation Mw¥® is injective,
so M-systems are indeed generalizations of
smooth linear systems., M-systems arising

-in this fashion from smocth linear systems
will be termed smoocth.

‘4. Behavior of W-Svstems

The universal construction scheme of
defining behavior (outlined in section 2)
which failed for smooth linear systems will
now be shown to work for M-systems, thus '
allowing smoocth linear systems to be embed-
ded into & behavioral framework. The con-
structions for free and cofree W-Banach mod-
ules are similar to the classical cases
over ordinary rings [6], but are repeated
for clarity.

Given a Banach space I, a free M-Ban-
‘ach module over I is an ‘FrBanach module
(1',s") and an € BAN(T, 1Y) such that for
‘any f-Banach module {Q,b) and g € BAN(T,Q),
Lthere is a unique W-Banach module morphism
p: (11,s¢)—a(Q,b} such the following dia-
gram commutes.




I 1t (1t,sM)
N“ \l?

Q (GsDb)

(1%,s%) exists for any Banach space I. Let
E and F be Banach spaces. E@ F denotes the
. tensor product of E and F, with lxyi = ’
infiZlei-be )l | x =Ze,® £, | for XERDE.

. This ‘¢léarl¥ turns EqéF ififo a normed lin-
ear space; lts completion is thus a Banach

space which is denoted E@F.

THEOREM Given a Banach space I, (mer,s")
is a free W-Banach module over I, with gt

defined by s'{(u, (ve@i)) = (u*)R1, ex-
tended by ¥ linearity and completion. :
7-»77  is the canonical injection ik@igﬁao
Given an W-Banach module (Q,b) and g€
BAN(I,Q) . ;:: MEI=0 is Gefined by plu®i)
= b(ﬂ,g(i) , extended by K linearity and
completion.

civen a Banach space Y, a gofree ¥~
Banach module over Y is an M-Banach medule
(¥y,84) and an £ & BAN(Y, ,¥) such that for
- any P-Banach medule (0,h) and heBAN(R,Y),
there is a unigue M-Banach module morphism
a: (Q,b)=>(Y; ,54) such that the following
diagram commutes.

(Q,D0) Q
oA
(Y}[ :ST) YT—-—»—L-'—Q‘Y

(Yﬁ,s¢) exists for any Banach space Y.

I.et E and F be Banach spaces, and let
L(E,F) denote the space of all continuous
linear maps from E to F with norm k] =
sup {lk(e)il {fel ¢ 1. Tt is well-known that
L(E,F) is a Banach space. Note that L{E,F)
2 BAN(E,F), but rather BAN{E,F) is the
closad unit ball of L{E,F).

THEOREM Civen a Banach space Y, (LAY s8¢ )
is a cofree M-Banach module over ¥, with
sy (pok) = k(=ep). 21 ¥ —»Y is the canoni-
cal evaluatien £ £(8 3 given an M-Ban-
ach module (Q,b) and £BAN{Q,Y), O
Q-Lm,Y) is defined by g (we n{b(oa))) .

Now the behavioral properties of
M-systems may be rigorousl defined.
M= (Q,b,I,9,¥,h) be an fi-system. M
.gives rise to unique morphisms P and a de-
fined by the diagram below.

Let

: I__ﬂ..-‘::-’h’(.él L (m&l;sf }

| \i? K
e,
LY —S—=y  (L{Y),5, )

P.is the reachability mapy T the observa-
bility map, and Tef the bghavior of M.

Tnputs over time to an 7-system with
input space I are I-valugd measures. Inter-
preting an element of M@T as an input, the’
time scale R, is reversed to R_ under the
matural association t#-t. Thus, the Dir-

= 1
_uous R-#$E}. it is easy to see that Q

i _ach space, and that T, maps Qb into ltself.
‘Tet S,_: R, ~»BAN(Q, .0 be the restriction
6 L'"b
of Tb to B :

semigroups of’M?Banach modules ars nexXt

ac measure sE at £3» 0 is interpreted as 0C- | i
cTrring 2t EFime -t, while an element u'e
(R )& T ig interpretad as a function u:
R_r?f. { L."{R.), the space of absolutely
Lebesgue integrable functions on R, is a
closed subspace of W.) The reachability
map fP: MBT->0 is given the usual inter-
pretation [1,10]; it maps an input over
J- 0] to the resulting state at time C.
The response at time t>0 to an input ue i
m&T is found by translating u t units to !
the left to get u*at, and then applying P. . . :
The notationzs T~ ard MO I will be used
when it is necessary to consider the time
scate to be |-¢40] on thess spaces.

 Outputs over time of an M-system are
continuots linear functions M>»Y. This is
a very rich space which camnot be completely,
characterized here, but it includes at least
all Lebesgue measurable functicons on R
with values in Y. As is the usual conven-
#ion with such algebraic representations,
o{g) denotes the response to the zero lnput
with initial state g at time C.

M-systems are a larger class than
smooth linear systems, and so do not have
in general the smoothness properties re-

guired for differential esquaticn descrip-
“Lions.

However, each M-system does have a é
wgmooth" part which behaves very nicely, as, -
is now illustrated.

The

Let (Q,b) be an W}Banach module.
is

translation semigroup T, E+J»BAN(Q,Q)
Gefined by tw(ge»b(s ,g)). 1In general,
T is not continuous {(Unless (Q,b} is asso-
Pated with a () semigroup in the sensa
of section 3); 18vwever, there is a (C_)

‘semigroup which can be extracted from it.

Define Q qeQ | trrb(3.,9) is centin-
isg
a closgd linear subspace of Q. hence a Ban-,

THEOREM Let (Q,b) be anM-Banach module.
Then (Qb,Sb) i a (CO) semligroug.

(0 ’Sb) is called the (CD) semlgroup
af (Q,b?; Pia infinitesimal génerator is
denoted by %b’ rather than by the more cum-
bersome %S M Note that in a sense (Qb,Sb)

is the largest (Co) semigroup contained in
(Q,b).

Several important examples of (c.h
presented,

(a) Let (M5 *) denote the M-Banach
module M itself, with time reversed to rep-
r?sent the inputs over time. Then MW, =

L {R_), the space of absolutely {Lebesgue)
integrable functions on R_. Translation

is in the sense of measures and not of

THEOREM

functions. Thus S*(t)(f) = g, where
g(x) = L[(x+t) for Xxe-t, and g{x) = 0 for
%s-tL. The domain of g, is the subspace of

MR consisting of those differentiable
functions which vanish at 0 {more precise-
ly, those equivalence classes of functions -




which contain such a representative). I,
is just differentiation.
(?) Given a BTnach space I, (W &I)_ =
(RIBI =L {(R_,I), the space of 811
absolutely integrable functions with
"values in I, ‘The (C_ ) semigroup structurg’
is the natural extenSion of that of {a).

"THEOREM Given a Banach space Y, LUW{Y)S'='

®(R,;Y), the Banach space of all uniformly |
con%inuous bounded functions R, -~ Y, normed
by frasup [RE(EN | teiR;}. Translation is
"in the sense of functions, with uSS'(t)(f)

+.,
= g, where g(x) = f{t+x}. The domain of
%S is the set of all such functions which

are differentiable.

The (C_) semigroup part of an M-Banach
module is pFeserved under morphic image.
Thisgives all M-systems a degree of smooth-
ness, which 1s detailed below.

THEOREM .Let k: {(Q,b}-»(R,c) be an P~Ban-
ach module morphism. Then k(Q. )% (R );
i.e.;, k is also a morphism of tﬁe undgrly—
ing semigroups. :

Given Banach spaces I and Y, define an
M-system behavior to be any 7-Banach module
morphism B: (MBI,s%)=>(L(M,Y),s, ). By
. abuse of notation, the underlving BAN mor—

- phism B: %?éI—%L(%ZY) will also be termed
~a behavior.

COROLLARY Given an %-system behavior

B: MRI->L(Y), B(L (R_,T)) SB®R_,Y); .
i.e., the natural response {(after tTe input
has ceased) of any Fl-system to an L™ input
‘i uniformly continuous.

This suggests that the dynamics of
‘Tsystems may be described by differential
and/or integral eguations under suitable
conditions., Results along these lines are
recorded below.

- THEOREM Let M = (Q,b,I,g,Y,h)'be arn
quystem. :
a) For any, input i1ia3%9I, the state q(t)
at time t 20 satisfies
alt) = T (L)p(i).
(b)For any input ie.Ll(R_,I), the system

state g(t) at any time t for which i1(t)e
Domain(%b) satisfies

29 L (qu) + gli(e)).
(e) For any input iE.Ll(R_,I) and V& .
R , let L L7 (R ,I) be defined by io(x) =

i{x) for X ¢ v, IO(X) = 0 for x »v. “Then
the system state g(t) at time +20 is
given by )

a(t) = T (e=v)p(i ) '+ ‘\g T, (t-s)g{i(s))ds
i(t)eoQ

provided that for tewv.

b

Of course, whenever the state g(t) is
well-defined, the output is h{gq(f)).

Even if the differential egquation rep-

resentation does not hold, it is still the
case that a reasonably hicé input will pro-
duce a smooth output, even while the input
is being applied. This is summarized in
the following.

THEOREM Tet M = (g,b,I,g,¥,h) be an
-systen, et us R—~I be any gunction
such that u’is R>I defin%d by u(x) =
u(x+t) ,for x20 and u (x) = 0 *for x>0
is in L~ (R .I)lfor cach t <R, Then the
functi?n R=>L"(R_,I) : twu"~ is continuous
when L™ (R_,1) carries the topology inherited

A

from M®I..

Now regarding Oﬁp(ut) as the output at
time t of the system M in response to input
u, the above theorem yields the following.

COROLLARY The resEonse over time of an M-~
system due to an I~ input is continuous,

~even while the input is being applied.

5. Cancnical Realization of 7/-Svstenms

Let E:'WréI—ﬁLGﬂ,Y} be a behavior.
A realirzation of B is an system whose be-
havior is B. 1In classical finite-dimension-
2l linear system theory, a system M is

‘termed reachable if its reachability map P

is surjective, and observable if its observ-
ability map ¢ is injective; M is termed
canonical if 1t is both reachable and ob-
servable. The fundamental realization the-
orem for such systems then states that canon-

~ioal reaiizations exist and are unique up to

isomorphism. For many classes of infinite

‘dimensional,systems, the result in this ex-
act form is np longer valid, and various

alternatives have ‘been considered to over-
come this problem. Early definitions [4,11]
reguired an {open surjection, injection)
type factorization of the behavier te guar-
antee unique caronical realizations, while

‘more recently Yamamcto | 127 introduced the

concept of topological obserwvability, which
raquires a (dense maps, closed surjections)y

Ltype of factorlization of the behavior for

uriique cancnical realizations. The cate~
gorical approach advanced here does not
prefer any one of these definitions over
the other, but rather bases the definition
of tanonical realization upon the cateqor-
ical concept of image-factorization system,
of which both of the above cases are exam-
ples (in appropriate categories). This ap-
proach was flrst advanced for discrete-time
systems by Arbib and Manes [1,2], and later

‘extended to certain classes of continucus-

time systems by the author [[7,8]. Essen-
tially, an’'image-factorization system re-
gulres that each morphism have a factori-
zation which is unique up to iscmorphism.
For completeness, the complete definition
is repeated below.

An image-factorization for a category
Kis a pair {E,M), where £ and M are clas-
ses of K morphisms such that:

(i) both E and M are closed under
compositkions .

(ii) ee E = e is an epimorphism;

{iii) meM=pm is a monomorphism,




(iv) 1 is an isomorphism = ie E NM;

(v} each K morphism k has a factorization
mee with e<¢E and meM which is unique
up to isomorphism in the sense that 1f
m'ee' is another such factorization, there'
is an isomorphism i such that the following
diagram commutes.

N
N

) In the category of vector spaces over
#, (surjections, injections) is the only
image-factorization system, so that factor—
ization is in the usual sense. However, .
in categories of topologized vector spaces
such as BAN or the category of locally
convex spaces, this is no longer the case,
and there are a variety of image-factoriza-
ticn systems. Two of the most ugeful for
-BAN are given bslow.

THEQREM (iscmetric surjections, injections)

and. (dense maps, isometric embeddings) are
image-factorization systems for. BAN,

) Factorization of behaviors must take
place in ¥-MOD, and not in BAN; therefore,
the above image-factorization systems must
be extended to W-MOD. Formally, an image-
factorization system (E,M) for BAN lifts
to MFMOD if for each J-MOD morphism

k: (P,a)—>(R,c) with ki P—Su 0—TanR
an (E, M) factorization of ke BAN(P,R),
there is a uniqueyf-Banach module structurel
b on Q such that e: (P,a)—=(Q,b) and

m: (Q,b)(R,c) -are W-Banach module mor-
phisms. '

THECREM Both (isometric surjections, in-
Jections) and (dense maps, isometric embed-
dings). 1ift to mLMOD.

A formal definition of canonical real
ization may now be made, Let T and Y be
Banach spaces, B: (WM@L;sh)—=(L,Y),s,)

a behavior, and (E,M) an image-factorigza-’
tion system for BAN, The (E,M)-ganonical
realization of B 1s given as Mg =

(Q!b!IJ ol Y, £}, where

(18 I, )t (0,B) = (L{M,¥) ,50 ) is a
lifted (E,M) factorization of B; the defi-
nitions of the cther maps are revealed by
the following commutative diagram.

1—de> (MET,54)
< mPI wi(’ )
P N

i (Q.b)
L e
LAMY) £ Y (LMY),sy)

The above discussion shows that the fol-
lowing realization theorem is valid.

THEOREM {E,M} canonical reallizations of
behaviors exist and are unigue up to iso-
morphism, for (E,M) = (iscmetric surjec-

“tions, injections) and {(denseg maps, iso-

metric. embeddings).

A behavior B: MBI +»L(W,Y) isg termed

‘smooth if B(mréz)c=e(R+ Y}, i.e., if the

natural response to each 1nput is unlformly
continuous.

THEOREM Given Banach spaces I and Y, and a
behavior B: MBI-»L(M,Y), the following
are equivalent.

. {a) B is smooth.

(v) B(s,@1)e B(R ,¥}) for all ielI.

(e¢) B admits a smooth realization (i.e., B

is the behavicr of a smooth linear system).
(d) The (dense maps, isometric embeddings) .
realization of B is smooth.

6, Conclusions

A behavior and realization theory for
a class of systems called M-systems has
been presented., Smooth continucus-time
linear systems defined over Banach spaces
are a special case of Tf-systems, so a real-
ization theory for smocth systems has also
been obtained. Furthermor%,?ﬂ—systems
have smooth responses to L~ functions, and
each M-system has a part which is smooth
enough to admit a differential eguation
model. A realization theory for W-systems,
together with criteria for a behavior to :
have a smooth realization, have been devel-
oped. also. :
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