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Abgtract

A smooth system in a category of locally-convex

spaces K is given by £f: Q> Q, g: I > Q, h: 0+ Y,
with £ the infinitesimal generator of a differen-
tiable semigroup. Using the theory of categories
relative to the category of locally-convex spaces,
& general theory of behavicr, realization, and
duality for smooth systems in K is given, for
certain chosen categories K. '

1. Introduction ,

This article is an extended abatract without
proofs. Full details will appear in a forthcoming
report 18].

In recent years there has been a substantial
amount of work directed towards using category
thecry as a tool for describing the basic ideas
in system theory, most of it having been in dis-
crete-time systems. See, for exanple [1], [3],
and [11)., However, the author recently showed

. that categorical technicques are applicable as well

to continuous-time systems [7]. In that report,
only ordinary category theory was used, and con-
sequently sane of the constructions were relatively
cunbersame. In this report, it is shown that by
using relative (to the category of locally-convex
spaces) category theory, the basic results in con-
tinucus-time systems may be cobtained as easily and
elegantly as their discrete-time counterparts.

The classical results in behavicr, realization,
and duality are generalized substantially, while
important questions in the canonical structure of
behavior and in duality of infinite—-dimensional
systems are resclved.

2. Categories Relative to ICS .

Let K be the field of real mumbers R or the field
of camplex numbers C. Denote by ICS the category
whose objects are the locally-convex topological

vector spaces (l.c.s.'s) over K and whose morphisms

are the continuous linear maps. An [CS category

is an ordinary category K subject to the additional
conditions that {(a) Each morphism set K(E,F) has
the structure of a l.c.s. (b) Morphism composition
K(E,F) = K(F,G) = K{E,G)} is bilinear and separately
continucus. (An ICS category is a special case

of the general construction of a category relative
to a closed monoidal categery [2, Ch. 9]. Full
details relating relative category theory to this
approach will appear in [8].)

Let K be any full subcategery of LS. K may be
regarded as an ICS category in a natural way.

For any pair (E,F} of l.c.s.'s, let LS(E,F) dencte
the space of all continuous linear maps E — F with
the topology of pointwise convergence. It is
easy to verify the conditions {a) and (b) above
for this structure, which will always be assumed
for subcategories of LGS used in this article.

The opposite category P of K is also an Ics
category in a natural way. Namely, since as sets
K(E,7) = EPr,B), the l.c.s. structure of KP(F,E)
is just that of K(E,F).

let K and | be ICS categories, and let P: K > L
be a functor. P is an LE§ functor if each mor—
phism function PEF: K{E,F} - L(P(E),P(F)) is a

continuous linear map. P is an LS equivalence
if each Pow is an isamorphism of l.c.s.'s.

A natural transformation of LCS functors is an
ICS patural transformation without additional re—
quirements. Let K be a one-object LCS category
and let L be any LCS category. The ICS functor
category [K,L] has as objects all [C§ functors
kK = L and natural transformations as morphisms.
For P,Q: K - L LCS functors, the ICS structure on

[k, 1) {P,Q) is that induced as a subspace of

Ls(P (1),0(1)), where 1 is the unique object of K.

3. Differentiable Semigroups and Systems
In the discrete~time case of linear systems, a




system dynamics in a category K is a pair (Q,f),
where Q is a K object and £ « K(Q,Q) [1]. A
morpnism of dynamics is called a dynamorphism.

K ¢ K{Q,R} is a dynamorphism (Q,f) —+ (R,g) if the
diagram

R —————R

commtes. This definition of morphism makes
system dynamics in K into a category Dyn(K}. A
decomposable system in K is a 6-tuple M = (Q,£,1,
q,¥,h} with (Q,f) a system dynamics {Q is called

the state-space and f the state-transition map),

T is a K object (the input space)., g ¢ K(I,Q)
{the input map), ¥ is a K object (the output
space), and h ¢ K(Q,Y) (the cutput map). When
is a category of vector spaces and linear maps,
the system is thought of as described by

q(t+l)
y(t)

f(git)) + glift))
hig{t)).

I

In continuous time, the one-step transition is
replaced by an infinitesimal transition. That is,

the above eguations now become

G- e gty
y(t) = hig®) ®

To insure that the equations (*)Vare meaningful,
This
requires that the dynamics (Q,f) be of a special
nature, namely that £ be the infinitesimal gener-

the differential equation must be solvable.

ator of a differentiable semigroup.

let E be a 1l.¢.s8., let §+ be the nonnegative reals,
and let L(E) denote the space of continuous endo-

moxphismg of E.
(d.s._g.) on E ig a map T: R - L{E} such that
(@) T(0) = 1, (b} T(stt} = T(s)oT(t) for all

A (weak) differentiable semigroup

s,t ¢ §+' {c} lim T(t)%e_ exists for all e ¢ E.
)
Define g,: E = E by g () = lim TXE€ 1 4q
T T =0 t
easy to see that an € L{B). g is called the

infinitesimal generator of T.

Let E‘.l (1__3*,E) denote the space of all continuously-

differentiable functions from _3_+ into E {12]. A

linear differential equation on E is an equation

~of the form

Du(t) = A{u(t)) ,

where A ¢ L(E) and D is the differentiation oper-
ator. let e ¢ E. A solution to this equation

with initial condition e is an f¢ c‘?:l (5+,E) with

£(0) = e, DE{t) = A(f{t}) for each t « §+. d.s.g.'s
are important for the following reason.

THEOREM 3.1 Iet Elke a l.c.s., and let T be a
(a) Dult} = gT(u(t)) has t = T(t)e
as its unique solution for initial condition u{(0)

d.s.9g. on E.

=e. (b Gy uniquely determines T.

The above theorem says that the systam (*) is
meaningful provided that £ is the infinitesimal
generator of sane d.s.g. on Q. This motivates the
following definition. The full subcategory of
Dyn{k) whose objects are the pairs {(Q,f) with £
the infinitesimal generator of a d.s.g. on Q is
called the category of smooth dynamics in K and

is dencted 5-Dyn{K). A smooth decomposable system
in ¥ is a decanposable system M = (Q,£,I,4,Y,h) in
K such that (Q,f) is a smooth dynamics in K. In
general, not all dynamics are smooth, so not every

decanposable system in K has meaning as a continuous-
time system. From now on, the word system shall
mean smooth decomposable system, unless stated
otherwise.

Some important examples of smcoth dynamics are
now given.

EXAMPIE 3.2 let E be any l.c.s., and let &s(5+,E)
be the space of all infinitely-differentiable

—+ E with the topology of pointwise
Iet D denote the
Then

functions R,
convergence of all derivatives.
differentiation operator on this space.

'(&S(§+,E) D) is a smooth dynamics,

EXAMPI..E 3.3 E(&_,E) is the same space as above,
but with the topology of compact convergence of
all derivatives. ((“3(5+,E) ,D) is also a smocth
dynamics.

EXAMPLE 3.4 &' (R,) is the strong dual [12] of




S(§+) = E;(I=i+,§) . It consists of all distributions
on R, with compact support. Iet D be the genhera-
lized differentiation operator on this space.
Then (&' (§+) D) is a smooth dynamics,

EXAMPLE 3.5 Let A(R,) denote the subspace of
8'(E={+) consisting of those distributions with
finite support. They consist of finite linear
cambinations of the Dirac impulses t‘.;t att =0
and their derivatives. The operator D on &' (§+)
clearly maps A(R,) into itself. (AR D) is a
gmooth dynamics.

EXAMPLE 3.6 Iet E be a i.c.s. Let A(I={+)®SE
denote the tensor product of A(=R+{-) and E with the
strongest locally~convex topology making the
canonical map p: MR:;.) xE - A(5+) ®FE separately con-
timuous. A(g*_) ®E may be identified with the space
of all E-valued distributions with finite support.
(A(l;{_l_)esE,D@lE) is a smooth dynamics.

The key to the whole approach here is that given
a subcategory K of ICS, the category S-Dyn{K) is
isomorphic as an LCS categery to an LCS functor
category. (S-Dyn{K) is regarded as an [LS cate—
gory by endowing its morphiem classes with the LCS
structure inherited from K.)

Regard A(5+} as a one-cbiect LCS category. The
morphisms of A(R,) are just its elements, Morphism
composition is convolution, and (SO is the identity.
The following is the key theorem of this paper.

THECREM 3.7 Let K be a subcaltegory of LCS. The

" ICS category S-Dyn(K) is cancnically isomorphic

to the ICS functor category [A(§+) ,K1. The identi-
fication is given by i: (Q,f} — T#, where T# (Dpat)
= fPeT{t) with T the unigue d.s.g. determined by

f. Note that £ = i(DrSO) .

This approach bears some similarity to the ap-
proach of Bainbridge [3] to ordinary automata. He
let the free monoid X* of a set X be a one-object
‘category, and described dynamics of machines in

K by [X*, K] (ordinary functor category?).

4, Canonical Behavior of Systems
Given a system M = (Q,f,%,q,Y,h) in a subcategory
K of LGS, the behavior of M is its input-output

specification. Construction of a behavior requires
the construction of natural spaces of input and
output signals over time. Unlike the discrete-
time case, where these spaces have only one natural
structure and have been known for many years, the
nature of the inputs and outputs over time in the
continuous-time case is not so obvious, and many
different structures have been used. In this
section, it is demonstrated that relative to the
concept of d.s.g, there are natural inputs and
outputs over time. This construction necessarily
yields canonical-reachability and cbservability
maps for M.

The field K may be regarded as a one-cbject LCS
category whose morphism set is the elements of K.
Morphism camposition is maltiplication; 1 e K is
the identity. With this observation, note that
K may be naturally identified with the LCS
functor category [E,K]. The unique inclusion

functor v: K —» A(§+) k - k- 50 induces an LCS functor

veKi: (AR),K] - [E,K] Tw Tov. [v,K] is just
the forgetful ICS funclor which takes a dynamics
(Q,f) to its underlying space Q. Given a K =
[X.K] objéct I; an LCS-left Kan extension of v
along I is an ICS functor Lan(v,I) « [a(R,) K],
together with a natural transformation n: I >

[v,KILan(v,I), such that for any other T ¢ [A (Izl+) K1,

g: I - [v,K]T, there is a unique §: Lan(v,I) - T
such that

I s [v,K]Lan{v,I)

X l [v,K1g

kY
[v,K}T

cammuetes [5). Dually, given a K object ¥, an
LCS-right Kan extension of v along Y is an [CS
functor Ran{v,¥) -» [A(__R_I_) (K1, together with an
LCS-natural tremsformation ¢: [v,K|Ran{v,¥) » ¥
such that for any other T ¢ [A(§+) .kl and h:
[v,KIT - ¥, there is a unique h: T - Ran{v,Y) such
that




[v,KlT

v, kK1h h

[V,K]Ran(v,Y)—-E;. b4
camutes [5]. K is called behavicral if Lan(v,I)
and Ran{v,Y¥) exist for all pairs of K cbjects
{1,Y).

Given a system M = (Q,£,I,9,¥Y,h) in the behavioral
category K, it is convenient to rewrite it as
19w,k 50 By, Using this notation, the
behavior BM of M is defined to be Lan(v,I} q {Q,f)

a Ran(v,¥). g = [v,Klg is called the reachability
map of ¥ and h = [v,Klh is called the chservability
map of M.

EXAMPLE 4.1 Tet K = IS, and let M = (Q,f,I,q,Y,h)
be a system in K. Lan(v,I} = {A(I={+) sasI,Del) (see

Example 3.6). n: I - A(§+) @sI is given by 1 5081.

The reachability map g: AR, e I —»Q is given by
Dpsteoi > pr(t)g(i) , where T is the d.s.g. deter-
mined by £. That is, regard the input DPat@i as
an impluse input at time -t differentiated p
times and of weight i. The response due to this
input at time 0, is just f5T(t)g(i). That is, it
is the response at -t, which is £F g(i}, decayed
The

response due to a finite linear conbination of

for t time units via the natural response T.

inputs is found by superposition.

Ran{v,¥) = (&s(§+,Y),D) {see Example 3.2) e:
&, (R,,¥) » Y is just evaluation at 0, i.e. €(¢) =
$(0). The observability map h takes a state ¢ to

its natural response t+— T(t)q.

EXAMPIE 4.2 Let K = WS, the category of all
weakly-topologized l.c.s.'s, This category is
also behavioral, as guaranteed by the following
theorem.

THEOREM 4.3 Let (Q,f) be a smooth system dynamics. -

Then (Qs'f) is also a smooth system dynamics, where
QS is ¢ with its weak topology.

Thus, WS is shown to be behavioral by merely con-
verting all topologies to weak topologies in
Example 4.1. Note that &S(§+,Y) must already be
carrying its weak topology when Y is.

Jmage~factorization system {IFS)

REMARK: TIn the entire construction above, A(I=1+)
mzy be replaced by &'(R). This cuts down the
nurber of d.s.g.'s under consideration, singe
dynamics now will correspond to &' (5_‘_) modules
whose actions are separately continucus. The
inputs become richer as &' (§+) ®SI, while the
outputs stay the same, with only a retopologiza-
tion. This provides some connection with the
&' (g_,_) -module approach of other authors [4],
[9], ana [1C].

appear in [8].

A more complete comparison will

5. Canonical Realization of Systems

In the classical case of finite-dimensicnal linear
systems, a system M = (Q,f,I,9,¥,h) is reachable
if every state can be achieved by the application
of same input, i.e., if its reachability map g is
surjective. Dually, M is observable if any two
states can be distinguished by observing the out-
put, i.e., if its cbservability map h is injec-
tive. The generalization of these concepts Lo
systems in a category rests upcn the concept of

[21.

Not suxr-

prisingly, this concept generalizes to the con-

cept of image—factorization system relative to
ICS.

Let K be an ICS category. An LGS image—factoriza-
tion system (LIFS) for K is a pair {E,M) where E

and M are classes of K morphisms such that
{a) E and M are closed under camposition;
(b} e ¢« E # e ls an epimorphism;

meM=nm is a monamorphisng
{¢) i is an iscmorphism =1 € E n M;
{(d) For every e ¢ E and m ¢« M, the diagram

Kle,1)

K(l;m)J' lK(l,m)

TTXE D T

is a pullback in Q_ (K{e,1) is composition
with e on the right, i.e., £+ foe; K{1,m is con
position with m on the left, i.e., £ mof.}

These conditions differ form the usual requirements
of an IFS in K only in condition (d). The IFS




condition is:

(d') Every K morphism f has a unicue factorization
mee with e ¢ | and m ¢ M which is unique up to
isomorphism in the sense that if m'ee' is another
such factorization, then there is a unique iso-
morphism i such that

N
N

commutes.

THEOREM 5.1 Condition (d) = Condition {d') always.
If K is a subcategory of ICE and E ¢ surjections
or M '« embeddings, then (d') = ().

Now assume that K is behavioral, that M = (Q,£f,I,
g,¥,h} is a system in K, and that (E,M) is a LIFS
for K. M is E-reachable if its reachability map
g ¢ E, and M-cbservable if its cbservability map
h ¢ M. Mis (EM-canonical if it is both E-
reachable and M-chservable.

let K and (E,M) be as shove. A behavior in K is a
dynamics of the form B: Lan{v,I) - Ran{v,¥) for
some pair of K objects (I,Y). A realization of B
is a system M = (Q,f,I,g,Y,h} such that B = BM

The realization problem is to find an (E,M)-canon-

ical realization for each behavior.

Pinding cancnical realizations requires doing fac-
torizations in [A (§+) (K]. That is, B needs to be

factored as Lan(v,I) $ (0,£) 3 Ran(v,I), where
@ (resp. m) is a "lifting" of a K morphism e « E
(resp. m € M) to S-Dyn{K). Formally, {E,M) lifts
to 5-Dyn(K) if (E,M is an LIFS for K, where E
(resp. M} is the class of all dynamorphisms in
S-Dyn(K} whose underlying K morphism is in B
(resp. M).

IBMA 5.2 For any subcategory K of ICS and LIFS .
(E,M for kK, (EM) lifts to S-Dyn(K).
Note that (E,M) lifts to Dyn(K) by virture of the
dynamorphic-image lemma [1, 4.4]. However, extra
work is required to show that the lifting is in

- duality functor is the following. '

" and each continuous linear map f: E > F to its

" possible to defipe naturally the dual of a system

S-Dyn(K).r As a consequence of Lemma 5.2, the fol-
lowing is obtained.

THEOREM 5.3 For any behavioral subcategory K of
1C5 and LIFS (E,M) for K, each behavior in K has
an (E,M)-canonical realization.

EXAMPLE 5.4 ILet K = LCS. Each of the pairs
(quotient maps, injections), (surjections, embed-
dings}), (dense maps, closed embeddings) is an IFS
for K [7]. Hence, in view of Theorem 3.1, they are
also LIFS's, and so 1ift to S-Dyn(K) by virtue of
Theorem 5.2, This says that for infinite-dimen-
sional systems, there are several distinct concepts
of canonical realization.

EXAMPLE 5.5 Let K = W8. Since quotients and sub-
spaces of weakly-topologized l.c.s's are also
weakly-topologized, it follows that all three of

the above are also LIFS's for WS, and so lift to

S-Dyn(Wg) .
6. Duality

A classical result in finite-dimensional linear
system theory is that a system M is reachable if
and only if its dual is observable.
tion, this result is generalized.
parallels earlier work on discrete-time systens
[6].

In this sec—
The approach

Let K ke an ICS category. Its opposite category
K-O P may clearly be regarded as an ICS category,
using the structure inherited from K. An 1Cs-
equivalence ': KP - K is called an Leg duality
functor for K.

The most important exanmple of

EXAMPLE 6.1 Let K = M5, The functor ': @sF —
WS which sends each l.c.s. E to its weak duaml ES

transpose £': F!'3 - Eé is an ICS duality functor
for Ws. :

Using the concept of LCS duality functor, it is

with respect to this functor. More precisely, if
K is a subcategory of 1CS, ' KOP—H(anQ
duality functor for K, and M = (Q,£,I,q,¥,h) a
system in K, the dual of M (with respect to '} is




the 6-tuple M' = (Q',£',Y',q',I',h').

THEOREM 6.2 Let K be a behavioral [LS category,

"+ KP > K an LS duality functor for K. (a) If
M is a systam in £, so toco is M'. (b} (M")' = M,
up to isomorphism. {c) If g (resp. Iy is the
reachability (resp. chservability) map for M, then
g" (resp. h'} is the cbservability {(resp., reach=-
abilify) map for M', up to isomorphism.

Thus, the reachability map and cbservability map
are dual concepts in this framework. This paves
the way for expressing the duality of the concepts
of reachability and observability. BAll that remains
to be done is to characterize the duality of - image-
factorization systems,

Given any class C of K morphisme, let € denote
the smallest class of K morphisms which contains
C and which is clesed under composition and con-
tains all isomorphisms. Given an ECS duaii-ty

functor ': KOp—> K, let ' = {c'[c € CJ.

LEMMA 6.3 Let K be an ICS category, (E,M) an LIFS
for K, and ': P~ K an [CS duality. Then (M',E')
is an IFS for K also, and ((M4')',(E")") = (E,M.

Carbining Theoren 6.2 and Lemma 6.3 gives:

THEOREM 6.4 Under the conditicns of the above
theorem, and assuming that K is behavioral, a
system M in K is E-reachable (resp. M-observable,
resp. (E,M)-canonical) if and only if M' is E'~
cbservable (resp. M'-reachable, resp. M, E")-
cancnical.

EXAMPLE 6.5 Under the duality functor ' of Ws,

the transformations of the LIFS's of Example 5.5
under ' are as follows:

{{injections) ', {quotient maps)') = (dense maps,
closed embeddings) . ' '

{ (closed embeddings)’, (dense maps) '} = (quotient
maps, injections). ‘

( (embeddings) ', (surjections)') = (surjections,
enbeddings) .

The important point to notice here is that vhen
-going. from a system to its dual, the concepts of
reachability, cbservability, and canonicity may
change if M is infinite dimensional. Hence, when

discussing duality, one concept of canonical
realization will not suffice in general,
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