
Constraint-Preserving Snapshot Isolation

Stephen J. Hegner
Ume̊a University

Department of Computing Science
SE-901 87 Ume̊a, Sweden

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Corrected 15 July 2017

Abstract

A method for detecting potential violations of integrity constraints of concurrent trans-
actions running under snapshot isolation (SI) is presented. Although SI provides a high
level of isolation, it does not, by itself, ensure that all integrity constraints are satisfied. In
particular, while current implementations of SI enforce all internal integrity constraints,
in particular key constraints, they fail to enforce constraints implemented via triggers.
One remedy is to turn to serializable SI (SSI), in which full serializability is guaranteed.
However, SSI comes at the price of either a substantial number of false positives, or else a
high cost of constructing the full direct serialization graph. In this work, a compromise ap-
proach, called constraint-preserving snapshot isolation (CPSI), is developed, which while
not guaranteeing full serializability, does guarantee that all constraints, including those
enforced via triggers, are satisfied. In contrast to full SSI, CPSI requires testing concur-
rent transactions for conflict only pairwise, and thus involves substantially less overhead
while providing a foundation for resolving conflicts via negotiation rather than via abort
and restart. As is the case with SSI, CPSI can result in false positives. To address this,
a hybrid approach is also developed which combines CPSI with a special version of SSI
called CSSI, resulting in substantially fewer false positives than would occur using either
approach alone.

1 Introduction

A hallmark feature of any modern database-management system (DMBS) is support for concur-
rent transactions. The guiding principle, embodied as isolation in the classical ACID (atomic-
ity, correctness, isolation, durability) properties for transactions [10], mandates that concurrent
transactions not interfere with one another. The gold standard for such isolation is view serial-
izability [18, Sec. 2.4], in which the result of executing a set of transactions concurrently must
be the same as executing them in some serial order, one after the other.1

1 In practice, a stronger form, known as conflict serializability [18, Sec. 4.3], is often used. Although it
excludes some schedules which are in fact view serializable, they are typically anomalous in form and arise

The classical, single-version, lock-based implementation of view serializability is via two-
phase locking, or 2PL for short. The ideas were first presented in the seminal paper [8], and
given a firm theoretical foundation in [21].2 In order to avoid undesirable and unmanageable
interaction, in particular nonrecoverable schedules in which the result of a committed transac-
tion must be reversed, a stronger version of 2PL, known as rigorous two-phase locking (rigorous
2PL) [4], or more commonly nowadays strong strict two-phase locking (SS2PL), is generally re-
garded as an essential extension in implementation. 2PL and SS2PL typically receive thorough
coverage in modern textbooks on DBMSs, and the student is often left with the impression
that they are widely used in practice. It may therefore come as something of a surprise to learn
that they do not enjoy widespread use in real systems. Indeed, some of the most widely used
systems do not even implement 2PL, and even the few which do typically provide something
much weaker as the default isolation level. The drawback to SS2PL is that all exclusive (write)
locks must be held until the end of the transaction, and so a writer of a data object will block
all readers of that data object until it finishes (commits). So, while it guarantees both view se-
rializability and recoverable schedules, SS2PL does so at a price of greatly limited concurrency.
In most cases, the consequent performance hit is too great, and so weaker levels of isolation,
which admit higher levels of concurrency, are the choice.

Of course, the goal is to achieve both a strong level of isolation and a high level of con-
currency. Progress towards this goal has been made possible by advances in memory size and
processor speed, which has in turn led to the the emergence, over the past few decades, of
DBMSs employing multiversion concurrency control (MVCC), in which several version of a
data object may coexist. This notion, which has its roots in early work on optimistic concur-
rency control [16], has in turn opened the door to newer models of isolation, of which snapshot
isolation (SI) has become one of the most prevalent. In SI, each transaction operates on its
own private copy of the database (its snapshot). Upon completion (commit), the results of
the updates which a transaction has made on its snapshot must be integrated into the stable
(permanent) database. If there is a write conflict; that is, if several concurrent transactions
write the same data object, only one transaction is allowed to commit and have its updates
become part of the stable database. The others must abort if they are not naturally terminated
in some other way.

In contrast to the situation surrounding SS2PL, readers are not blocked by writers in SI.3

It is only conflicts between concurrent writers which limit concurrency. Furthermore SI avoids
many of the update anomalies associated with policies such as read uncommitted (RU) and read
(latest) committed (RC), including in particular dirty and nonrepeatable reads, respectively [6,
p. 61]. Nevertheless, it does permit certain types of undesirable behavior which do not occur
under view serialization, such as write skew [2, A5B] [9, Ex. 2.2], as well as a certain type of
read-only anomaly [9, Ex. 2.3].4

rarely in practice. Conflict serializability is particularly attractive in situations in which schedules are to be
tested for serializability, since it admits a test of low deterministic polynomial order (detecting cycles in a graph),
while deciding view serializability is NP-complete. It is conflict serializability which is used as the formalization
throughout this paper.

2 Schedulers which employ 2PL actually guarantee schedules which are conflict serializable.
3Although it is largely true that readers are not blocked by writers under SI, it is not completely true, due

to the way internal integrity constraints are enforced in real systems. See Summary 2.4 for a more complete
discussion.

4The SERIALIZABLE level of isolation, as defined in the SQL standard, does not ensure view serializability, or

2

Because true view serializability [18, Sec. 2.4] is the gold standard for isolation of transac-
tions, there has been substantial recent interest in augmenting SI to achieve such true serializ-
ability, the idea being to achieve the desirable properties of true serializability while exploiting
the efficiency of SI. In particular, a strategy known as serializable SI (SSI), has been devel-
oped [9], [5]. In stark contrast to SS2PL, SSI is an optimistic approach. Rather than forcing
transactions to wait until a needed resource is available, it relies much more on allowing them
to proceed, and then resolving concurrency conflicts by requiring one or more transactions to
terminate without committing.

Unfortunately, any algorithm which is capable of deciding whether or not a set of con-
current transactions running under SI exhibits view-serializable isolation must, in the worst
case, examine all transactions. It is instructive to show how this worst case arises. Let
n0 ≥ 2 be a natural number and let E0 be a database schema which includes n0 integer-
valued data objects d0, d1, . . ., dn0−1. Let τ0i be the transaction which replaces the value
of di with the current value of d(i+1)mod n0 ; i.e., which executes di ← d(i+1)mod n0 . Run-
ning the set T0 = {τ0i | 0 ≤ i < n0} of transactions concurrently under snapshot isola-
tion results in a permutation of the values of the di’s, with the new value of di being the
old value of d(i+1)mod n0 , since each transaction sees the old values of the di’s in its snap-
shot. However, no serial schedule of T0 can produce this permutation result. Indeed, if
τ0i is run first and commits before any other transaction begins, then the old value of di
will be overwritten before τ0((i+1)mod n0) is able to read it. Thus, T0 is not view serializable.
Formally, there is a read-write dependency [9, Def. 2.2] (or antidependency [1, 4.4.2]) from
τ0(imod n0) to τ0((i+1)mod n0) for data object d(i+1)mod n0 , meaning that τ0(imod n0) reads d(i+1)mod n0

and τ0((i+1)mod n0) is the first transaction to write d(i+1)mod n0 after the start of τ0(imod n0).
These dependencies are represented using the multiversion direct serialization graph (DSG)

τ00

τ01 τ02

τ0i

τ0(i+1)τ0(n0−1)

rw〈d1〉

rw〈d2〉

rw〈di+1〉rw〈d0〉
· · ·

· · ·

Figure 1.1: An SI rw-conflict cycle
of length n0

or multiversion conflict graph [1], as illustrated in Fig. 1.1.
As argued above, (and in general since this graph contains
a cycle [1, Sec. 5.3]), no view serialization is possible. How-
ever, if any transaction is removed from T0, the remaining
set is serializable. Indeed, if τ0i is removed, then execution
in the serial order τ0(i+1)τ0(i+2) . . . τ0(n0−1)τ00τ01 . . . τ0(i−1) is
equivalent to concurrent execution under SI. Thus, for any
natural number n, there is a set T of n concurrent trans-
actions whose execution under SI is not equivalent to any
serial schedule, but execution of any proper subset of T
under SI is equivalent to a serial execution. In other words,
to determine whether a set of n transactions run under SI
is view serializable, a test involving all n transactions must
be performed.

To address this complexity issue, conditions which identify necessary but not sufficient
conditions have been developed. More specifically, a dangerous structure is a sequence of two
consecutive read-write edges between concurrent transactions which occurs in a cycle of the
DSG. For example, in the graph of Fig. 1.1, any two consecutive edges form a dangerous

any other reasonable notion of serializability. In particular, SI qualifies as a serializable level of isolation under
that standard, and is offered as the implementation of SERIALIZABLE by some systems. See [2] for a further
discussion.

3

structure. It has been shown that such a dangerous structure must be present, in a cycle
of the DSG, for nonserializable behavior to occur [5]. However, while identifying dangerous
structures requires examining at most three transactions at a time, to determine whether a
dangerous structure lies within a cycle requires examining all transactions in the worst case,
since the entire DSG must be constructed. As a compromise, any sequence of two consecutive
read-write edges between concurrent transactions may raise a red flag which requires one or
more transactions to abort, without a check of whether they lie within a cycle. Indeed, this
is exactly the approach which is taken in SSI [5]. This will result in false positives, although
benchmarks reported in [5] are impressive. Recently, PostgreSQL, as of version 9.1, became the
first widely used DBMS to put SSI into practice, employing a variant for the implementation
of its serializable isolation level [19].

It should be noted that in Precisely SSI (PSSI) [20], the entire DSG is constructed, thus
avoiding virtually all false positives. Although a prototype has been implemented, this strategy
has not yet been tested on a large scale, at least to the knowledge of this author. It thus remains
open how well it would perform for transaction mixes involving long cycles.

Despite the impressive performance statistics in the benchmark results, and the recent use
in a widely used DBMS, it must be acknowledged that SSI and PSSI are not appropriate for all
application domains. In particular, in any setting which involves long-running and interactive
transactions, a policy for enforcing isolation which depends upon aborts and/or waits, as do
SSI and PSSI, is highly undesirable. Interactive business processes are one such domain, and
it is in particular the context of cooperative transactions within that setting [14, 12] which
motivated the work of this paper. In such settings, there are two complementary goals. The
first is to minimize the number of false positives, and the second is to identify ways to perform
more amicable solutions to conflicts which cannot be avoided. The focus of this paper is to
provide a framework which addresses both goals. On the one hand, it provides a method for
guaranteeing acceptable behavior while avoiding many of the false positives which occur with
SSI. On the other hand, when conflicts are indicated, it provides information which greatly
facilitates the identification of which transactions need to negotiate and cooperate in order to
resolve the problem.

To this end, it is important to begin by noting that nonserializable behavior for transactions
has been, and will continue to be, an acceptable compromise in many circumstances. Indeed,
for reasons of efficiency, lower levels of isolation, such as RU and RC, are routinely used in
real-world transaction mixes. On the other hand, results which violate integrity constraints,
even those expressed via triggers or within application programs, are almost never acceptable.
Separating the two, and providing checks for full serializability only when necessary, provides
an avenue for much more efficient support for long-running and interactive transactions.

The central topic of this paper is an augmentation of SI, named constraint-preserving SI
(CPSI), which ensures that all integrity constraints will be satisfied. The isolation level which
it enforces is strictly weaker than that guaranteed by SSI, in that nonserializable behavior
which does not result in constraint violation is not ruled out. To understand the scope of
this approach, it is important to recognize that integrity constraints may be partitioned into
two groups. First, there are the internal constraints, which are declared using the DDL (data
definition language) of the DBMS itself, such as key constraints; these are always enforced
internally by the system. Second, there are the extended constraints, which fall outside of the
DDL and are expressed typically via update triggers or directly within the application code of

4

the transactions. While the theory of CPSI is applicable to both classes of constraints, current
relational DBMSs already enforce constraints which lie in the first group completely in a very
efficient manner, so that no constraint violation can occur under SI. For a further discussion,
see Summary 2.4. Consequently, the techniques of this paper are addressed primarily towards
the second group, which are particularly common in interactive business processes, but which
may fail to be enforced completely under SI unless additional measures are taken.

An example will help illustrate the idea. Let m1 and n1 each be positive integers with m1 ≥ 1
and n1 ≥ 2, and let E1 be the database schema with two m1× n1 arrays of integer-valued data
objects {dij | (0 ≤ i ≤ m1−1)∧(0 ≤ j ≤ n1−1)} and {eij | (0 ≤ i ≤ m1−1)∧(0 ≤ j ≤ n1−1)}.
For each i with 0 ≤ i ≤ m1 − 1, let ϕd1i be the constraint defined by

∑n1−1
j=0 dij ≥ 1000, let ϕe1i

be the constraint defined by
∑n1−1

j=0 eij ≥ 1000, and assume that E1 is constrained by the set

{ϕd1i | 0 ≤ i ≤ m1}∪{ϕe1i | 0 ≤ i ≤ m1}. In concrete terms, think of each dij and each eij as the
balance in a bank account, with each row identifying a set of related accounts. The constraints
ϕd1i and ϕe1i mandate that that the total balance in each row of related accounts be at least
1000. Now, for 0 ≤ i ≤ m1 − 1, 0 ≤ j ≤ n1 − 1, let τ d1ij be the transaction which executes
the assignment dij ← dij − eij if dij + di(j+1)mod n1 − eij ≥ 1000 holds, and the assignment
will not result in a constraint violation. If either of these conditions fails, the transaction
executes the identity update. Thus, the assignment, which may be thought of as a withdrawal
of the value of eij from account dij, is executed iff both dij + di(j+1)mod n1 − eij ≥ 1000 and∑n1−1

k=0 dik > 1000 + eij hold before the update is executed. (Both conditions are necessary; the
first does not imply the second since the balances may be negative.) Similarly, let τ e1ij be the
transaction which executes the assignment eij←eij−dij if eij +ei(j+1)mod n1−dij ≥ 1000 holds,
and the assignment will not result in a constraint violation. Otherwise, the transaction executes
the identity update. These transactions form the basis for a generalization of the write-skew
example of [2].

Each transaction performs two distinct flavors of read. Consider τ d1ij. First, it must read
both di(j+1)mod n1 and eij (as well as the initial-snapshot value of dij) in order to determine
which ground update to perform. A ground update is a specific change on a specific (set
of) data objects. For example, if the current database state has dij = di(j+1)mod n1 = 1000
and eij = 600, then the ground update for τ d1ij (to be performed if there are no constraint

violations) is 1000
dij
 400, indicating that the value of dij is to be changed from 1000 to 400.

Since this ground update decreases the value of dij, the transaction must read every element
in hd1ij = {dik | 0 ≤ k ≤ m1} \ {dij} in order to determine whether the constraint will remain
satisfied after the update. (The values of the dij may be negative, so even if dij + di(j+1)mod n1

is a large positive sum, there is no way to guarantee that ϕd1i will hold without reading all
values involved in the sum, except for dij, which will be modified.) The set {di(j+1)mod n1 , eij} is
called the grounding context of τ d1ij while hd1ij is called its integrity context, for the given ground
update. An analogous construction applies to each τ eij. For technical reasons, the data objects
which are potentially written are never included in these contexts.

This distinction makes it possible to classify read-write dependencies in the DSG, and retain
only those which can lead to a constraint violation. For example, since the transaction τ d1ij must
always read eij and τ e1ij must always read dij, for any state from which both transactions will
perform a write, they form a loop in the DSG when run concurrently, as illustrated in Fig. 1.2.
While

5

τd1ij τe1ij

rw〈dij〉

rw〈eij〉

Figure 1.2: An SI
rw-conflict cycle of
length 2 which can-
not result in a con-
straint violation

such a loop can (and in this instance does) signal a loss of serializabil-
ity, it cannot, by itself, signal a possible constraint violation. Only
cycles in the DSG which involve reads of the integrity context can re-
sult in constraint violations. A guard function for a transaction assigns
to each state of the database a set of data objects, called the guard
object, which are sufficient to read in order to determine whether the
ground update associated with that state (as the initial snapshot of
the transaction) will result in a constraint violation. For example, in
the context of τij, any ground update which reduces the value of dij
has hd1ij as its unique minimal guard object, while any ground update
which increases the value of dij or leaves it unchanged has the empty set as unique minimal
guard object (since an increase in the value of dij can never result in a constraint violation).

τd1ij τd1ik
gw〈dij〉

gw〈dik〉

Figure 1.3: An SI
gw-conflict cycle of
length 2

The central result of this paper is that if a schedule of transactions running
under SI is not constraint preserving, then there is some pair of concurrent
transactions for which each writes the guard object of the other. Thus,
the only case for which an update of the transaction τij can cause a
constraint violation is if there is a concurrent transaction of the form τik
with j 6= k and loop of the form shown in Fig. 1.3. In that figure, the
edge labelled gw〈dij〉 from τ d1ij to τ d1ik indicates both that the data object
dij is in the guard of τ d1ij and that τ d1ik is the first transaction to write dij
after τ d1ij starts. It is thus similar to an rw-edge, save for that the read
of the data object dij is replaced by its presences in the guard of τ d1ij. For the possibility of a
constraint violation to exist, there must be two concurrent transactions, each connected to the
other via gw-edges. Such a cycle defined by two gw-edges is called a gw-conflict.

CPSI uses gw-conflicts as its basis. While a gw-conflict involves only two transactions, as
opposed to three for a dangerous structure of SSI, its major advantages lie elsewhere. First of
all, using gw-conflicts places a bound on which transactions may conflict under SI. For example,
in the context of E1, the only pairs of transactions from the set {τxij | (x ∈ {d, e})∧(0 ≤ i ≤
m0 − 1)∧(0 ≤ j ≤ n0 − 1)} which have any possibility to conflict are of the form {τxij1 , τ

x
ij2
},

with x ∈ {d, e} and j1 6= j2. No similar characterization is possible when full serializability
is required, since there are no underlying constraints on the schema which limit concurrency.
Second, and central to the effective management of long-running and interactive transactions,
a gw-conflict provides specific information which may be used in support of a cooperative mode
between transactions, to allow them to decide whether the conflict can actually result in a
constraint violations for the proposed updates, and to negotiate changes if need be. In that
context, such a strategy is often far preferable to abort and rerun.

If the transactions in a schedule read the entire guard of the ground updates which they
execute, then this test will be free of false positives. However, if there are circumstances
under which a transaction can get away with reading only part of the guard, there may be
gw-loops without the possibility of constraint violation. For such false positives to be possible,
two things must hold. First of all, the integrity constraints must have a certain disjunctive
character. Second, the transactions must be conditional in a way which allows them to verify
integrity by looking at only part of the guard.

The schema E1 does not exhibit the necessary disjunctive character of its constraints, so,
regardless of the update, the entire associated guard object must be read. To illustrate the kind

6

of constraint which is required, consider the schema E′1, which is identical to E1, except that
all data values are now required to be nonnegative. In this context, the potential update of the
transaction τ d1ij always satisfies the integrity constraint. Indeed, if dij+di(j+1)mod n1−eij ≥ 1000
holds before the update dij ← dij − eij, then dij + di(j+1)mod n1 ≥ 1000 will hold afterwards.
Since the values of the other diks must be nonnegative, that is enough to guarantee that ϕd1i
is satisfied. Thus, {di(j+1)mod n1} is a sufficient integrity context for this transaction when run
on E′1. It is the basis for what is called a conditional guard function. A conditional guard
is not sufficient, in general, to determine whether a ground update will result in a constraint
violation, but it is sufficient to make that determination within the specific context that the
ground update is applied.

Detecting constraint violation in E′1 via the presence of a gw-loop need no longer be free
of false positives. To illustrate, fix i with 0 ≤ i ≤ m0 and consider the set T10 = {τ d1ij | 1 ≤
j ≤ n1 − 1}, run in the context of E′1. If any proper subset of T10 is run concurrently,
there will be no constraint violation. On the other hand, if the entire set is run concurrently,
constraint violation is possible. To see this, suppose that the transactions commit in the order
τ di0, τ

d
i1, τ

d
i2, . . . , τ

d
i(n1−1). The entire situation is depicted in Fig. 1.4; note in particular that

there is a gw-dependency between every pair of distinct transactions. Remember that a guard
function needs to be extensive enough to guarantee the correctness of the associated ground
update, regardless of whether or not it is applied conditionally.

τd1i0

τd1i1 τd1i2

τd1ij

τd1i(j+1)
τd1i(m1−1)

rw〈di1〉

gw

gw

gw

gw

rw〈di2〉
gw

gw

gwgw

gw

gwgw

rw〈di(j+1)〉

gw

gw

gw

rw〈di0〉gw

· · ·· · ·· · ·

· · ·· · ·· · ·

Figure 1.4: An SI constraint-conflict cycle of length n0 with a gw-dependency between every
pair of vertices

To see how a constraint violation may arise, let M10 be the database with dij = eij = 1000
for all i, j with 1 ≤ i ≤ m1 − 1 and i ≤ j ≤ n1 − 1. If any proper subset of T10 is run
concurrently on M10, there will be no constraint violation, since at least one of the dijs will
be left at 1000. If all n0 transactions are run concurrently, the resulting state will violate ϕd1i,
since in the resulting database, it will be the case that dij = 0 for all 0 ≤ j ≤ n0 − 1. Thus,
for any positive integer n, it is possible to find a set of n transactions which is not constraint
preserving, while any proper subset is. Hence, CPSI can produce false positives if transactions
do not read the associated full guard objects.

Although CPSI may involve false positives, as illustrated by the example above, that is
not as large a limitation as might first appear. In major database systems, while transactions

7

are responsible for carrying out their assigned tasks correctly, the system itself ensures that
the internal integrity constraints are maintained. A similar design strategy seems appropriate
for extended constraints and CPSI. The most direct way to support extended constraints in a
schema-wide fashion is via triggers. However, triggers check the correctness of ground updates;
they do not, and in general can not, take into account the way in which the proposed update
was obtained. Thus, it is difficult, if not impossible, to implement conditional guards via
triggers. This means that the trigger must read the entire (ordinary) guard and, in that case,
CPSI will not produce false positives, This issue is discussed further in Discussion 6.4, together
with some “tricks” which a trigger can use to limit its reads. Nevertheless, in most practical
implementations, a trigger will read the entire guard associated with the ground update to be
verified for integrity.

Beyond that, it must be remembered that CPSI is designed for mixes of long-running
transactions which may involve human interaction. In that setting, as already noted, CPSI
offers more specific information than does SSI about conflict, information which will be critical
to any process of resolution which involves further examination and negotiation, as opposed
to abort and rerun. Also, the typical case is rarely the worst case. Although Fig. 1.4 may
appear condemning, it is far more likely that only a few of the n0 transactions will ever run
concurrently. In that case, an approach in which sets of conflicting transactions can negotiate
an abort-free solution and proceed with their tasks will likely prove to be feasible. In other
words, false positives are far less damaging if their premises may be examined, and then the
behavior of the transactions altered, than if a false positive always involves discarding the work
of at least one transaction completely.

Finally, CPSI and SSI involve independent tests; there is no reason why both cannot be
used, with a result of fewer false positives than either produces by itself. This observation leads
to the second contribution of this paper, the development of an an enhanced CPSI in which
basic CPSI is combined with a special version of SSI which is fine tuned to the task of detecting
constraint violation only.

It is worth noting that there is another proposed solution to supporting SI with constraint
preservation, namely SI+IC of [17, Sec. 4]. It is similar in isolation level to CPSI in that it
augments SI in order to ensure constraint preservation, without guaranteeing fully serializabil-
ity. However, in contrast to CPSI, it does not distinguish internal constraints from those which
are external; rather, it essentially requires that all constraints be managed internally by the
DBMS. Whenever an update is to be performed by a transaction, it checks which other updates
have already been performed, on local data copies, by concurrent transactions, in order to be
certain that no constraint violation can occur, just as is done by current DBMSs for internal
constraints. (See Summary 2.4 for more information.) This approach offers the obvious ad-
vantage of providing a uniform solution which avoids essentially all false positives. However,
the price is that the underlying DBMS must be modified to support all types of constraints
which are used. In the case of those of constraints of the form ϕd1i on the schema E1, which
are not supported by current relational DBMSs (except via triggers), a major augmentation of
the DBMS would be required. On the other hand, as presented more fully in Discussion 5.25,
extending a current relational DBMS to support CPSI is a much more modest endeavor.

This paper is based upon [13], but has been revised and extended greatly. In terms of the
overall approach, there are three fundamental changes. First of all, the approach of [13] is to
use views of the main schema as database objects, in order to present the results within a very

8

general context. While this allows the use of very general data objects, for example, projections
on relations, it also results in a formulation which is difficult to understand without specialized
knowledge in mathematics and database theory. In this paper, the main results are presented
within a more typical context for transactions, in which a database schema is defined by a set
of mutable objects together with some integrity constraints. Although there is some sacrifice
in terms of generality, the results remain more than general enough to apply to real systems,
while becoming much more understandable.

Secondly, the results of this paper generalize those of [13] in a very significant way. The
work of [13] is based upon a static model of transaction reads and writes; the data items which
are read and written are fixed for all executions of the transaction, regardless of the initial
snapshot. While this approach is suitable for simple examples, it is not a realistic reflection
of the behavior of real transactions, which determine their read and write sets dynamically,
based upon the input (qua initial snapshot). In this paper, a dynamic model is employed for
modelling the reads and writes of all transactions, while retaining all of the results of the earlier
paper.

Lastly, the presentation in [13] does not address the issue of false positives in CPSI. In this
paper, that topic is discussed in some detail, and a new enhanced CPSI which, as noted above,
combines ordinary CPSI with a special version of SSI, is developed.

The organization of the paper is as follows. Sec. 2 provides an informal overview of snapshot
isolation and its implementation, while Sec. 3 provides the basic database and transaction
framework upon which the work is based. In Sec. 4, a formal model of snapshot isolation is
developed, upon which the main theory of the paper is based. In Sec. 5, the main theory of
CPSI is developed, while in Sec. 6, some extensions of CPSI which involve combining it with
SSI, in order to reduce the occurrence of false positives, are presented. Finally, Sec. 7 provides
some conclusions and further directions.

2 An Overview of Snapshot Isolation

The purpose of this section is to provide an informal description of snapshot isolation with a
particular focus upon significant differences between its implementation in actual systems and
the formal model which is used here. It is assumed that the reader has a basic understanding
of transactions, and in particular serializability, as presented in, for example, [23], [3], and
Chapters 14-15 of the textbook [22].

Summary 2.1 (SI and Concurrency of transactions) Before presenting the theory, it is
appropriate to sketch the model of snapshot isolation (hereafter SI) which is used. A transaction
performs read and write operations on data objects. Each transaction has a start time, as well as
an end time at which its writes are committed to the database. Two transactions are concurrent
if the start time of one lies between the start and end times of the other. Concurrency is not
transitive; if T1 is concurrent with T2, and T2 is concurrent with T3, then T1 and T3 need not be
concurrent. Therefore, while it makes sense to speak of a pair of transactions being concurrent,
stating that a larger set of transactions is concurrent requires further clarification.

In SI, the transaction T always operates on a private copy of the database, called the
snapshot, taken at the start time of the transaction. While it is running, it does not see
updates performed by other (necessarily concurrent) transactions, and those other transactions

9

do not see its updates. Thus, with SI, readers are never in conflict with concurrent writers.5

The only kind of conflict which must be resolved is between two (or more) writers of the same
data object. Before a transaction commits, its updates must be written to the stable database.
In general, a transaction is never allowed to overwrite the value of a data object which was
written by another transaction with which it ran concurrently. There are several ways in which
such conflicts may be resolved; the two most important are considered next.

Summary 2.2 (The FCW model of snapshot isolation) With the first-committer wins
(FCW) rule, transactions under SI run, up to their commit point, with no awareness of the
behavior of other, concurrent transactions. The check for conflict is made at commit time.
When a transaction T has finished and its writes must be committed to the stable database, it
is allowed to commit only if no other concurrent transaction T ′ has written a data object which
which T has written. If any other transaction T ′ which is concurrent with T , and which has
already committed has written a data object which T has also written, then T is not allowed
to commit.

FCW is particularly appealing from a theoretical point of view, because it is a perfect match
of the black-box model of a transaction, to be presented in Definition 3.12 below. In that model,
the order and timing of the internal operations are not modelled, and FCW does not require
any knowledge of those internal operations.

Summary 2.3 (The FUW model of snapshot isolation) The rule for conflict resolution
which is commonly used in practice is called first updater wins (FUW). With FUW, if some
other concurrent transaction T ′ writes a data object which T later is to write, then T is blocked
from continuing to operate, even on its private copy, until T ′ commits (in which case T is not
allowed to continue) or T ′ aborts (in which case T is allowed to continue).

FUW offers the advantage (over FCW) that conflicts are detected and addressed earlier in
the execution of a transaction, and so appropriate action may be taken at an earlier point in
time, before a transaction performs a long sequence of operations for which it is already known
(or at least likely) that they cannot be committed. Unfortunately, the black-box model of
transaction is not suitable for modelling SI under FUW, since the timing of internal operations,
which is not retained in the black-box model, is of importance.

Fortunately, for the purposes of this work, while FCW and FUW differ in implementation,
they are identical in the definition of a conflict; namely, that concurrent transactions may not
both write the same data object. They furthermore produce identical results when there is no
write conflict. Thus, for a study of conflict and constraint violation, FCW may be used in lieu
of FUW with no loss of generality. FCW will be used in this paper because it admits a simpler
conceptual model of a transaction which does not involve the order or points in time at which
the transaction performs internal operations on its private copy.

Summary 2.4 (Enforcement of integrity constraints under SI in practice) In most
implementations of SQL under FUW, constraints which may be specified using the DDL (data
definition language), particularly primary-key and uniqueness constraints, are enforced imme-
diately, and unless checking is declared to be deferrable and then deferred, foreign-key
constraints are enforced immediately as well. These checks incorporate even pending updates

5 This is not quite true in practice. See Summary 2.4 for an elaboration.

10

made by other concurrent transactions to their local snapshots. The reason for these immedi-
ate checks is to avoid the need to verify constraints at commit time, possibly against updates
made by other, concurrent transactions. A rather comprehensive formal model of how such
constraints are handled in real systems may be found in [17, Sec. 4].

This internal management of integrity constraints might appear to limit the applicability
of the results of this paper, since such constraint violations will already be detected by the
constraint-maintenance process, and need not be handled separately by the transaction man-
ager. However, this applies only to built-in constraints. In many applications, particularly
business processes, complex constraints are often implemented via triggers and even in appli-
cation programs. Such “implemented” constraints are not covered by this process. In SI, a
trigger will execute immediately upon execution of the update on the local snapshot; updates
made by other concurrent transactions will not be taken into account. On the other hand, the
ideas developed in this paper are applicable to integrity constraints implemented by triggers
and even by application programs.

3 Data Objects, Schemata, Updates, and Transactions

A characterizing feature of the work of this paper, as compared to most other work on isolation
of transactions, is the central rôle which the preservation of integrity constraints plays. For
an effective treatment, this mandates the use of more elaborate and formal models of both
database schemata and of transactions themselves than is necessary in studies of transactions
which do not address integrity constrains explicitly. The purpose of this section is to establish
the necessary formal framework. It is assumed that the reader has basic understanding of
database systems in general, and of the relational model in particular, as presented in standard
textbooks such as [7], [22], and [15]. It is also assumed that the reader has a basic understanding
of database transactions, as presented in those textbooks.

Notation 3.1 (Some mathematical shorthand) Before presenting the notions which are
DBMS specific, it is useful to establish some mathematical notation of a more general nature.

It will often be necessary to assert that a partial function f is defined on an argument x. The
shorthand f(x)↓ will be used in this regard. In order to avoid the need to state independently
that a partial function is defined on an argument, a statement such as f(x)↓∈ Y will be used
to indicate that both f(x) ↓ and f(x) ∈ Y . Similarly, f(x) ↑ denotes that f is undefined on
x. If f1 and f2 are both partial functions, a statement of the form f1(x) = f2(x) means that
either both f1(x)↓ and f2 ↓(x) hold, and these two values are the same, or else both f1(x)↑ and
f2(x)↑ hold.
N denotes the set {0, 1, 2, . . .} of natural numbers, while Z denotes the set of all integers,

positive, negative, and zero.. For i, j ∈ Z, [i, j] denotes the set {i, i + 1, . . . , j} of integers
between i and j inclusive, while [i, -] denotes the set of all integers which are greater than or
equal to i.

Card(X) denotes the cardinality of the set X.
For composition of functions, the convention (f ◦ g)(x) = g(f(x)) is followed. That is, f ◦ g

means apply f first, and then g.

Definition 3.2 (Data objects and unconstrained database schemata) In the study
of concurrent transactions and isolation, database schemata are typically modelled as sets of

11

mutable objects ; that is, objects which have a value which may be altered. These mutable
objects are often called data objects or data items [1], [5], [7, Sec. 21.1.2], [22, Sec. 14.2].
Formally, a simple data object x is characterized by a set States〈x〉, the states of x.

A compound data object is a set x of simple data objects. A database over x is a function
M : x →

⋃
x∈x States〈x〉 with the property that M(x) ∈ States〈x〉 for each x ∈ x. The set of

all databases over x is denoted DB(x).
For technical reasons, it is convenient to allow a compound data object to be the empty

set ∅. In that case DB(∅) is an empty function; that is, a function on domain ∅. There is only
one such function, so the empty database object has just one possible database, which will be
denoted by �DB.

Note that each simple data object x may be regarded as a compound data object {x}.
The term data object, without qualification, will mean either a simple data object (via this
identification) or a complex data object.

An unconstrained database schema D is given by a complex data object DObj〈D〉. A
database of D is a database over DObj〈D〉. The set of all databases of D is denoted DB(D).
Thus, DB(D) is shorthand for DB(DObj〈D〉).
Definition 3.3 (Constrained database schemata) Database schemata are almost always
constrained, in the sense that only certain databases are legal. Typically, whether or not a
database M ∈ DB(D) of the schema D is legal is determined by a set Constr(D) of (integrity)
constraints, with M legal iff M |= ϕ for every ϕ ∈ Constr(D); i.e., iff M is a model of every
member of Constr(D). For the purposes of this work, it does not matter how the constraints
are specified. However, how they are enforced is significant when implementation is considered.
As elaborated in Summary 2.4, some constraints, typically those which are specified via the
data-definition language (DDL), are enforced internally by the DBMS. In the relational setting
with SQL, these include functional and foreign-key dependencies, as well as others which may
be specified via SQL directives such as CHECK [6, Sec. 14.4]. More general constraints, which
are defined using programs known as triggers [22, Sec. 5.3], [7, Sec. 26.1], [15, Chap. 7], are not
enforced internally. This distinction is significant because while constraints which are specified
in the DDL are enforced even under classical snapshot isolation, those specified via triggers or
other means which lie outside of the DDL are not. In considering any implementation, it is
useful to separate these two flavors of constraints in the formalism, since only those constraints
which are not implemented internally require special attention in order to obtain a correct and
satisfactory model of constraint preservation under snapshot isolation.

Formally, a constrained database schema is a triple D = 〈DObj〈D〉, LDB(D),ELDB(D)〉 in
which DObj〈D〉 is a set of data objects, LDB(D) is a subset of DB(DObj〈D〉), called the set
of legal databases of D, and ELDB(D) is a subset of LDB(D), called the set of extended legal
databases, or x-legal databases, of D. The notation DB(D), as shorthand for DB(DObj〈D〉),
will be used for constrained database schemata as well. Thus, ELDB(D) ⊆ LDB(D) ⊆ DB(D).

Although constraints themselves are not part of the formal model, it will nevertheless be
useful to be able to classify them, since they will be used in examples. To this end, an internal
constraint is one which is used to determine which databases are in LDB(D), while an extended
constraint is one which is used to determine which databases are in ELDB(D). Thus, in a
typical setting, the internal constraints are those implemented via the DDL and enforced even
under SI, while the extended constraints are those implemented via triggers, and so not enforced
under unaugmented SI.

12

Unless stated otherwise, all database schemata in this work are assumed to be constrained.
Thus, database schema is a synonym for constrained database schema.

Discussion 3.4 (Granularities in the relational model) Since the relational model is
ubiquitous in database systems, it is instructive to indicate the most common ways in which
data objects may be modelled.

To begin, assume that R is a relational schema with relation names {R1, R2, . . . , Rm}. The
simplest model in terms of data objects uses relation-level granularity. In this model, for each
i ∈ [1,m] there is one simple data object RelObj〈Ri〉 with the set States〈RelObj〈Ri〉〉 consisting
of possible relations for Ri. Integrity constraints are not enforced at the level of the data
objects; in particular, there is no requirement that the elements of States〈RelObj〈Ri〉〉 satisfy
any key constraints.

Although simple and natural, relation-level granularity has a serious shortcoming for trans-
action modelling. In virtually all models of transaction concurrency, overlap of transactions is
measured in terms of mutual data objects for which at least one transaction is a writer. Thus,
if transactions T1 and T2 both write some data object X, or if one writes X and the other reads
X, it may not be possible to allow them to run concurrently under a given level of isolation.
Relation-level granularity is very coarse, in the sense that there are only a few, very large data
objects. From the point of view of increasing potential concurrency, is it advantageous to divide
the database schema into a larger number of smaller data objects, resulting in a finer level of
granularity. In the context of the relational model, there are several choices.

For key-level granularity, it must be assumed that each relation has a (unique by definition)
primary key, which is always the case when a schema is defined using SQL. Then, rather
than having a single simple data object for each relation, there is a simple data object for
each key value of each relation. In effect, the single data object RelObj〈Ri〉 of relation-level
granularity is divided up into distinct data objects, one for each possible value of the primary
key. For simplicity, assume that this key is identified by a single attribute Ki. For an element
a ∈ Dom〈Ki〉; i.e., a value a which lies in the domain of the attribute Ki, define the data object
σKi=a〈Ri〉 as the selection on the instance of Ri of those tuples for which the value on attribute
Ki is a. A bit of care is necessary in defining States〈σKi=a〈Ri〉〉, because this selection may be
empty. In addition to each tuple t over Ri whose value for attribute Ki is a, States〈σKi=a〈Ri〉〉
must also include an additional state None which indicates that Ri does not contain a tuple
with key value a. The set {σKi=a〈Ri〉 | i ∈ [1,m] ∧ a ∈ Dom〈Ki〉} of simple data objects then
recaptures all of R.

With tuple-level granularity, no keys are necessary. In this case, there is a simple data object
for each possible tuple of each relation. More precisely, for each i ∈ [1,M] and each possible
tuple t of Ri, define the data object σt〈Ri〉 via States〈σt〈Ri〉〉 = {true, false}. The state of
σt〈Ri〉 tells whether tuple t is present (true) in relation Ri or not present (false). In general,
this granularity is even finer than key level, but if each relation has a primary key, it offers no
advantage in terms of concurrency.

In some cases, for modelling conflict between transactions, real systems use page-level gran-
ularity, in which each simple data object consists of those tuples which are stored in the same
physical page in the underlying DBMS. This model has obvious implementation advantages,
but is more complex from a user and analysis point of view, since the storage pattern is not
part of the logical relational model, and may in fact change over time. It will not be discussed
further here.

13

The theory presented in this paper is independent of the level of granularity. It only requires
that the database schema be modelled as a set of data objects. Of course, the choice of
granularity for a given modelling instance may well affect the amount of concurrent behavior
which is possible.

Examples 3.5 (An example relational schema and a useful simplification) It is useful
to have a running example which may be used to illustrate the ideas developed in this paper.
The example is first presented in the relational context, and then simplified to one which retains
the essential features for illustrating CPSI while avoiding many of the details which characterize
full transaction modelling within the relational context.

The relational schema, named E2, is depicted in Fig. 3.1. Primary keys are underlined and

Cust ID Name Pmt Acct Sav Acct Dflt Amt
Customer

Acct Number Cust ID Acct Type Balance
Account

For all Customer tuples c: c.Pmt Acct->Balance + c.Sav Acct->Balance ≥ 500

Figure 3.1: The example relational schema E2

foreign keys are shown via arrows, as is the convention in depicting relational schemata. There
are two relations, one for customers and one for accounts. Each customer has an ID, a name,
a payments6 account Pmt Acct, a savings account Sav Acct, and a default transaction amount
Dflt Amt. An account has an identifying account number, an associated customer, a type, and
a balance. For simplicity, no field in either relation may be null. Note that a customer may
have more than two accounts, but it is the designated payments and savings accounts which are
involved in the main extended constraint in this example. This constraint is displayed in the
line under the diagram of Fig. 3.1, using in a notation borrowed from programming languages
such as C . Specifically, the sum of the balances of the payment account and the savings account
of each customer must be at least 500.

Under the current SQL standard, there is no way to express such a constraint within the DDL
(data-definition language); it must be expressed using triggers or within application programs.
In particular, as elaborated in Summary 2.4, while the primary- and foreign-key dependencies
will be enforced by the relational system, constraints which are expressed via triggers, such as
this one must be, are not, even under unaugmented SI. As a concrete example, consider the
transaction τ2p, which withdraws 100 from the payments account of a given customer c, and the
transaction τ2s, which withdraws 100 from the savings account of the same customer. Suppose
that the sum of the balances is initially 600. Then each transaction, run in isolation, is correct,
since the end balance will be 500. However, when the two transactions are run concurrently
under SI, the result after both commit will be a sum of only 400, in violation of the constraint.
This is the classical example of write skew, introduced in [2, Par. A5B].

6 Transactions account is a more descriptive term, but to avoid any possible confusion with database trans-
actions, the term payments has been chosen instead.

14

Although presentation of the full model of E2 for key-level granularity as described in
Discussion 3.4 would be instructive, its use as a running example would involve a substantial
amount of notational overhead. In particular, it would involve developing a language for ex-
tracting fields from data objects which are tuples, as well as for following pointers (represented
as foreign keys). To keep the data model as simple as possible, with the goal of maintaining fo-
cus on the issues surrounding constraint preservation for concurrent transactions, the simplified
schema E3, described in Table 1, is employed instead. This schema recaptures essential features

Name Description

w Finite set of active customers (read only)

xc
There is a simple data object xc for each c ∈ States〈w〉.
xc is the balance c.Pmt Acct->Balance associated with customer c.

yc
There is a simple data object yc for each c ∈ States〈w〉.
yc is the balance c.Sav Acct->Balance associated with customer c.

zc
There is a simple data object zc for each c ∈ States〈w〉.
zc is c.Dflt Amt associated with customer c.

Constraint for each c occurring in w: xc + yc ≥ 500

Table 1: The simple data objects of the schema E3

of full key-level granularity, as described in Discussion 3.4, while remaining simple enough to
avoid the need to develop a formalism for extracting fields from simple data objects which are
tuples. Both the set of customers (via w) and the set of accounts (via x and y) are fixed,
so there is no need to recapture all possible tuples via the None idea described in Discussion
3.4. Furthermore, the associations of transaction and savings accounts to a given customer are
fixed. Finally, values for customer name and account type are omitted; although useful in a
real application, they are peripheral at best to the theory developed here. Observe in particular
that the only constraint of E3, given at the bottom of Table 1, is in fact an extended constraint.
Except for the requirement that balances be numbers, there are no other constraints, since the
aspects of E2 which involve such constraints have been fixed (made unchangeable) in E3.

The focus now returns to the general case, with the above schema used in clarifying exam-
ples.

Notation 3.6 (Notational convention) Throughout the rest of this paper, unless stated
specifically to the contrary, take D = 〈DObj〈D〉, LDB(D),ELDB(D)〉 to be a (constrained)
database schema.

Definition 3.7 (Subschemata and subobjects) A (syntactic) subobject of D is any subset
of DObj〈D〉. Formally, define SubObj〈D〉 = 2DObj〈D〉 = {y | y ⊆ DObj〈D〉}. A database on a
set of objects restricts naturally to a smaller set. Let y ⊆ x ∈ SubObj〈D〉, and let M ∈ DB(x).
The restriction of M to y is the database on y defined by M|y , the function M restricted to y.

Every y ∈ SubObj〈D〉 defines a constrained database schema in a natural way. Specifically,
the database schema defined on y from D is the triple JD|yK = 〈y, LDB〈D|y〉,ELDB〈D|y〉〉 in

15

which LDB〈D|y〉 = {M|y | M ∈ LDB(D)}. and ELDB〈D|y〉 = {M|y | M ∈ ELDB(D)}. Thus,
the legal (resp. extended legal) databases of JD|yK are precisely those members of DB(y) which
are the restriction of some element of LDB(D) (resp. ELDB(D)).

Definition 3.8 (Updates) A (syntactic) update on D is a pair 〈M1,M2〉 ∈ LDB(D)×DB(D).
M1 is the current or old state before the update, and M2 is the new state afterwards. The set
of all syntactic updates on D is denoted SynUpdates(D).

In a syntactic update, while the state before the update must be legal, the resulting
state need not be. If the resulting state is legal, the update itself is called legal. Formally,
〈M1,M2〉 ∈ SynUpdates(D) is legal if M2 ∈ LDB(D). The set of all legal updates on D is
denoted LUpdates(D). Observe that LUpdates(D) ⊆ SynUpdates(D).

The pair 〈M1,M2〉 ∈ LUpdates(D) is extended legal (or x-legal) if M1,M2 ∈ ELDB(D). The
set of all extended legal updates on D is denoted ELUpdates(D). Note that ELUpdates(D) ⊆
LUpdates(D).

Updates are often identified by name; therefore, it is convenient to have a shorthand for
their components. To this end, if u ∈ SynUpdates(D), then write u(1) and u(2) for the values of
the state before and after the update, respectively; i.e., u = 〈u(1), u(2)〉. For u ⊆ SynUpdates(D),
define u(1) = {u(1) | u ∈ u} and u(2) = {u(2) | u ∈ u}.

The set u ⊆ SynUpdates(D) is legal if u ⊆ LUpdates(D), and extended legal or x-legal if it
is legal and, in addition, for every u ∈ u, u(2) ∈ ELDB(D) whenever u(1) ∈ ELDB(D). In other
words, u is x-legal if it is legal and it preserves x-legality.

A set of updates is complete if there is an update for every legal database of D. Formally,
u ⊆ SynUpdates(D) is complete if for every M ∈ LDB(D), there is a u ∈ u with u(1) = M .

The composition u1 ◦ u2 of two updates u1, u2 ∈ SynUpdates(D) is just their composi-
tion in the sense of mathematical relations. More precisely, u1 ◦ u2 = {(M1,M3) | (∃M2 ∈
LDB(D))((M1,M2) ∈ u1 ∧ (M2,M3) ∈ u2)}.

The restriction operator of Definition 3.7 extends naturally to updates. Specifically, for
u ∈ SynUpdates(D), y ⊆ DObj〈D〉, define u|y = 〈u(1)

|y , u
(2)

|y〉. For a set u ⊆ SynUpdates(D)
of updates, u|y = {u|y | u ∈ u}.

There is a form of selection on sets of updates which is also useful. For M ∈ LDB(D).
define the trimming of u to M to be TrimM〈u〉 = {u ∈ u | u(1) = M}. It will prove useful
to extend this a bit more, to subschemata. If y ⊆ x ⊆ DObj〈D〉, M ∈ LDB〈D|x〉, and u ⊆
SynUpdates(JD|yK), then TrimM〈u〉 is shorthand for TrimM|y 〈u〉. In other words, if M involves
a superset of the attributes of u, then restrict M to the attributes of u before performing the
trimming.

In general, for any M ∈ LDB(D), u(M) denotes {u(2) | (u ∈ u) ∧ (u(1) = M)} = {u(2) | u ∈
TrimM〈u〉}. Call an update set u ⊆ SynUpdates(D) functional if for every M ∈ LDB(D), u(M)
contains at most one element. Finally, for M ⊆ LDB(D), define u(M) = {u(M) |M ∈M}.

Definition 3.9 (Representation via ground updates) Although a database schema often
consists of a very large number of data objects, any single transaction updates only a very few,
leaving the rest unchanged. It is therefore useful to have a notation which identifies only the
changes.

A simple ground update on D is a statement of the form a
x
 b in which x ∈ DObj〈D〉 and

a, b ∈ States〈x〉 with a 6= b. In this case, the simple update is said to act on x, from a to b. The
semantics is clear; the data object x is updated from state value a to state value b. A compound

16

ground update on D is a set S of simple ground updates, subject to the condition that distinct
elements act on distinct data objects. The domain of S is the set of all data objects involved.
More precisely, Domain〈S〉 = {x | (∃a)(∃b)(a x

 b ∈ S)}.
Given a compound ground update S on D, UpdD〈S〉 denotes the subset of SynUpdates(D)

consisting of those updates which change the simple data objects in Domain〈S〉 according to
the elements of S and leave all other simple data objects unchanged. More precisely, UpdD〈S〉
is the set of all u ∈ SynUpdates(D) with the following two properties.

(s-i) For each a
x
 b ∈ S, (u(1))|{x} = a and (u(2))|{x} = b.

(s-ii) For each x ∈ DObj〈D〉 \ Domain〈S〉, (u(1))|{x} = (u(2))|{x}.

Examples 3.10 (Representation of updates) Working within the context of the schema

E3 introduced in Examples 3.5, let c1, c2 ∈ States〈w〉, and let S31 = {300
xc1 210, 300

xc2 260}.
Then UpdE3

〈S31〉 consists of all pairs (M1,M2) ∈ LDB(E3) × DB(E3) with the property that
M1(xc1) = M1(xc2) = 300, M2(xc1) = 210, M2(xc2) = 210, and M1(x) = M2(x) for all other
x ∈ DObj〈E3〉.

These operations need not be applied to the entire main schema. For example, let y31 =
{xc1 , yc1 , xc2 , yc2} ⊆ DObj〈E3〉. Then UpdJE3|y31K〈S31〉 consists of all pairs (M1,M2) ∈
LDB(JE3|y31K)×DB(JE3|y31K) with the property thatM1(xc1) = M1(xc2) = 300, M2(xc1) = 210,
M2(xc2) = 260, M1(yc1) = M2(yc1), and M1(yc2) = M2(yc2).

Choosing y32 = {xc1 , xc2}, UpdJE3|y32K〈S31〉 contains just one update. This construction is
central and is examined further in Definition 3.14 and Examples 3.15.

Definition 3.11 (Updateable objects) It is useful to have a notation which combines the
update executed by a transaction together with the database context in which that update
operates. To that end, define an updateable object over D to be a pair 〈c,u〉 in which c ⊆
DObj〈D〉, called the context, and u ⊆ SynUpdates(JD|cK). The updateable object 〈c,u〉 is
functional, (resp. complete, resp. legal, resp. x-legal precisely in the case that u has that property,
and it is called singleton just in case u consists of just one update; i.e., u = {u} for some
u ∈ SynUpdates(JD|cK).

Updateable objects on all of D occur frequently in this work, so it is advantageous to have a
special notation for them. The updateable object 〈DObj〈D〉,u〉 will be abbreviated to 〈D,u〉.

The trimming operation extends naturally to updateable objects. Specifically, for 〈c,u〉,
x ⊆ DObj〈D〉 with c ⊆ x, and M ∈ LDB〈D|x〉, define TrimM〈〈c,u〉〉 = 〈c,TrimM〈u〉〉.

The restriction operation of Definition 3.8 extends naturally to updateable objects as well.
For y ⊆ c, define 〈c,u〉|y = 〈y,u|y〉.

Finally, it is convenient to have a notation for extracting the components of an updateable
object. If o is an updateable object, then DObject〈o〉 denotes the data object of o while
UpdSet〈o〉 denotes the set of updates of o. More concretely, if o = 〈c,u〉, then DObject〈o〉 = c
and UpdSet〈o〉 = u.

Definition 3.12 (Black-box transactions) In this work, a black-box model of transactions is
employed in which the internal operations are hidden; just the interaction with the environment
is modelled. Formally, a black-box transaction T over D is represented by an updateable object
〈D,UT 〉 which is functional, complete, and x-legal. This update represents precisely the updates
which the transaction performs, when run in isolation.

17

The requirement that UT be functional ensures that the transaction is deterministic; there
is at most one action for each input. Completeness ensures that T is defined on all inputs
(although it may execute the identity update for some). Extended legality is mandated by con-
sistency condition of ACID [10] is satisfied; that is, T must produce an x-legal result whenever
the input snapshot is x-legal.

A transaction, as defined in this paper, always executes a legal update whose result is
furthermore x-legal if the input is. If a transaction must terminate for any reason (an abort,
for example), then it is modelled as a complete transaction which perform the identity update.
However, a transaction will accept legal inputs which are not x-legal; the x-legality of the output
is not guaranteed in that case, although the ordinary legality is.

The set of all black-box transactions over D is denoted BBTransD .

Discussion 3.13 (A framework for expressing example transactions) The abstract
representation of an update as an order pair, and transaction semantics as a set of x-legal
updates, is an appropriate one for the theory presented here. Nevertheless, it is essential to
have a more compact representation for examples. Real transactions are expressed in some sort
of programming language, and in order to cover the general case, a Turing-complete language
would be required. For the purposes of this paper, it is neither practical nor necessary to develop
such a complete language. Rather, a simple language, based upon assignment statements and
conditionals will be used. While far from Turing complete, it will prove to be more than
adequate to express the examples necessary to illustrate the ideas of this paper. Since it is
assumed that the reader is familiar with traditional imperative programming languages, the
ideas will be sketched only briefly, with emphasis upon the special properties necessary to
describe the behavior of transactions.

Taking D to be the database schema, the context of the language is a subschema JD|cK.
The variables of the language are just the simple data objects in c. Expressions are formed in
the usual way; for example, if x, y ∈ c, then x+ y is a proper expression provided that x and y
take numerical values. Programs are constructed using a combination of assignment statements
and conditional statements. Rather than provide a formal grammar and semantics, the ideas
will be illustrated via example.

Working within the context of E3 of Examples 3.5, and for the moment using the entire sub-
schema E3 = JE3|DObj〈E3〉K, consider the transaction τ31 defined by the following statement,
in which c1, c2 ∈ States〈w〉.

if (zc1 < 100)∧(zc2 < 50) then {xc1←xc1 − zc1 , xc2←xc2 − zc2}
else {xc1←xc1 − 100, xc2←xc2 − 50} endif

Recall in particular the constraints and names of data objects identified in Table 1. The
semantics is similar to that for an imperative programming language. The main difference
is that that the assignments are only performed if the result is x-legal. If it is not, then
the identity update is performed instead. To illustrate via example, first consider the state
M311 ∈ ELDB(E3) in which xc1 = 300, yc1 = 300, zc1 = 90, xc2 = 300, yc2 = 300, zc2 = 40. The
values of the other data objects are not relevant. The grounding of this assignment to M311

is obtained by evaluating each expression against M311. The result is the compound ground

update S31 = {300
xc1 210, 300

xc2 260} of Examples 3.10. The result is M ′
311 ∈ ELDB(E3) with

xc1 = 210, xc2 = 260, and with the state of all other data objects the same as for M311.

18

Next, consider the state M312 ∈ ELDB(E3) in which xc1 = 250, yc1 = 300, zc1 = 90,
xc2 = 300, yc2 = 300, zc2 = 40. In this case, the potential compound ground update is

{250
xc1 160, 300

xc2 260}. Were the assignment 250
xc1 160, to be executed on M312, the

constraint xc1 + yc1 ≥ 500 would be violated. Therefore, the update is not allowed; neither
assignment is executed and the transaction performs the identity update. The set of actual
compound ground updates is ∅.

Now consider the state M313 ∈ LDB(E3)\ELDB(E3) in which xc1 = 150, yc1 = 300, zc1 = 90,
xc2 = 300, yc2 = 300, zc2 = 40. Such an initial snapshot M313 must be considered, even though it
does not lie in ELDB(D), since in pure, unaugmented SI, there is a possibility that a transaction
will need to process a state which is not x-legal. For the purposes of this work, it suffices to
assume that the update of the transaction results in some legal state, not necessarily x-legal.
The actual nature of that state is not relevant to this work, since the goal is to preserve x-
legality, not to repair snapshots which are not x-legal. Nevertheless, a real transaction will
almost certainly perform some subset of the elements of the ground update.

As a last example, consider the transaction τ32 defined by the simple assignment set {xc1←
yc1 , yc1←xc1}. The result is a swap of the values of xc1 and yc1 ; evaluation is always in parallel.
The order of evaluation of statements does not matter.

It should also be noted that these updates could be applied to JE3|c31K with c31 = {xc1 , xc2 ,
yc1 , yc2 , zc1 , zc2}; the states of the other data objects do not matter.

In summary, there are three basic principles which are always followed.

Parallel evaluation on the initial snapshot: All expressions are evaluated against the
same initial database; no statement ever uses the result of another statement or a value
which has been committed by a concurrent transaction.

No overlap: A program never assigns more than one value to any data object. Programs
which would perform more than one assignment to a data object are not allowed.

Preservation of x-legality: If the input database is x-legal, then the program must preserve
the property. If the statements would not preserve that property, they are not executed.

Definition 3.14 (Write sets and write trimming) Returning to the general context of
a constrained schema D, let 〈c,u〉 be an updateable object over D. The write set of 〈c,u〉,
denoted WSet〈〈c,u〉〉, is the largest x ⊆ c with the property that for every x ∈ x, there is a
u ∈ u∩LUpdates(JD|cK) with u(1)

|{x} 6= u(2)

|{x}. In other words, x ∈ c is in the write set of 〈c,u〉
if there is some legal u ∈ u which alters the state of x. The write updates of 〈c,u〉, denoted
WUpd〈〈c,u〉〉, is u|WSet〈〈c,u〉〉. The write object of 〈c,u〉, denoted WObj〈〈c,u〉〉, is defined to be
〈WSet〈〈c,u〉〉,WUpd〈〈c,u〉〉〉. Call 〈c,u〉 a full write object if 〈c,u〉 = WObj〈〈c,u〉〉.

For M ∈ LDB(D), define the write trim of 〈c,u〉 to M as WTrimM〈〈c,u〉〉 =
〈c,u〉|WSet〈TrimM 〈〈c,u〉〉〉. In words, the updateable object 〈c,u〉 is first trimmed to reflect just
the updates which apply to M , and then it is restricted to just the write set of those updates.
Clearly, WTrimM〈〈c,u〉〉 is always a full write object. In addition, if 〈c,u〉 is functional and
complete, then WUpd〈〈c,u〉〉 consists of exactly one update. The set of all full write objects
over D is denoted FWObjs〈D〉.

Write trimming is central to defining the action of a transaction under SI. Given a trans-
action T whose updateable object is 〈D,UT 〉 and whose initial snapshot is M ∈ LDB(D),

19

the update which it performs is represented by the (single) update of the updateable object
WTrimM〈〈D,UT 〉〉. All data objects not included in WTrimM〈〈D,UT 〉〉 are left unchanged.

Examples 3.15 (Write sets and write trimming) Return to the transaction τ31, intro-
duced in Discussion 3.13, and consider also the update representation of Examples 3.10. Then

WTrimM311〈〈E3,Uτ31〉〉 = 〈Domain〈S31〉,UpdJE3|Domain〈S31〉K〈S31〉〉

with S31 = {300
xc1 210, 300

xc2 260} and Domain〈S31〉 = {xc1 , xc2}. On the other hand,

WTrimM312〈〈E3,Uτ31〉〉 = 〈∅,UpdJE3|∅K〈∅〉〉

since no writes are performed by τ31 with initial state M312. Since M313 6∈ ELDB(E3), the
value of WTrimM312〈〈E3,Uτ31〉〉 is not fixed in the formal model, but rather depends upon the
implementation.

Definition 3.16 (Liftings on updateable objects) The idea of extending an operation
on a local context to a larger one is termed lifting ; all the states of those simple data objects
which are not part of the context remain fixed. More precisely, let 〈c,u〉 be an updateable
object on D, and let x ⊆ DObj〈D〉 with c ⊆ x. The lifting of 〈c,u〉 from JD|cK to JD|xK, also
called just the lifting of u from JD|cK to JD|xK, and denoted LiftJD|xK〈〈c,u〉〉, is the set of all
v ∈ SynUpdates(JD|xK) with the following two properties:

(ls-i) v agrees with some u ∈ u on c: v|c ∈ u.

(ls-ii) v is the identity on all data objects of x which are not in c: v(1)

|x\c = v(2)

|x\c .

Every update u ∈ u is embedded in some v ∈ LiftJD|xK〈〈c,u〉〉 in the precise sense that v|c = u.
Thus, no update in u is “lost” in the lifting process. Indeed, given u ∈ u, u(1) ∈ LDB〈D|c〉 by
definition of syntactic update. So, by the definition of LDB〈D|c〉, there is some M1 ∈ LDB(D)
with (M1)|c = u(1). Define M2 ∈ DB(D) by (M2)|c = u(2) and (M2)|DObj〈D〉\c = (M1)|DObj〈D〉\c .
Then 〈M1,M2〉|x = u, and so 〈M1,M2〉|x ∈ LiftJD|xK〈〈c,u〉〉.

If 〈c,u〉 is functional, then so too is LiftJD|xK〈〈c,u〉〉. This case is important enough to war-
rant its own notation. Specifically, if 〈c,u〉 is functional, then FLiftJD|xK〈〈c,u〉〉 : LDB〈D|x〉 →
DB(x) is the partial function defined by M 7→ M ′ if 〈M,M ′〉 ∈ LiftJD|xK〈〈c,u〉〉 and is unde-
fined otherwise. Note in particular that if u consists of a single update, then 〈c,u〉 is trivially
functional, and so LiftJD|xK〈〈c,u〉〉 is functional as well.

Because liftings to all of D occur often, it is convenient to introduce a simplified notation
for them; LiftJD|DObj〈D〉K〈〈c,u〉〉 is abbreviated to LiftD 〈〈c,u〉〉, and FLiftJD|DObj〈D〉K〈〈c,u〉〉 is
abbreviated to FLiftD 〈〈c,u〉〉.

Examples 3.17 (Lifting) Return to the transaction τ31, introduced in Discussion 3.13 and
continued in Examples 3.15. Let y ⊆ DObj〈E3〉 with {xc1 , xc2} ⊆ y. Then

LiftJE3|yK〈WTrimM311〈〈E3,Uτ31〉〉〉 = 〈y,UpdJE3|yK〈{xc1←210, xc2←260}〉〉

Lifting to all of E3 is of central importance. In particular,

LiftD 〈WTrimM311〈〈E3,Uτ31〉〉〉 = 〈D,UpdD〈{xc1←210, xc2←260}〉〉

20

Discussion 3.18 (The contexts of a transaction) A transaction T typically operates on
only a small part of the database, sometimes called its database context [15, Sec. 19.2.1]. At the
most fundamental level, there is the distinction between the write context, consisting of those
x ∈ DObj〈D〉 which the transaction actually writes, and the read context, consisting of those
x ∈ DObj〈D〉 which must be read in order to execute the transaction.

The write context is just another name for the write set, as defined in Definition 3.14.
Regarding the read context, there is furthermore an important subclassification, into the

grounding context and the integrity context.7 This idea has already been discussed in the intro-
duction, but it is important enough to be considered in more detail here. Roughly speaking, the
reads of data objects in the grounding context are for the purpose of determining which updates
to apply, while reads of data objects in the integrity context are used to determine whether
or not the grounded update will satisfy the extended integrity constraints. This distinction
is crucial under constraint-preserving SI because while concurrent updates to data objects in
the grounding context have no effect on the correctness, concurrent updates to the integrity
context very much do. A read of the integrity context is called an integrity read while a read
of the grounding context is called a grounding read.

These ideas are best illustrated by example. In the setting of E3 of Examples 3.5, fix
c ∈ States〈w〉 and consider the transaction τ33 for which is defined by the assignment xc←xc−zc.
In order to execute this assignment correctly, two distinct reads must be made. First of all,
xc and zc must be read in order to determine the update to be considered. For example, if
xc = 300 and zc = 100, then the grounded update becomes xc ← 200. Thus, the grounding
context is {xc, zc}. Second, if zc > 0, then the integrity context is {yc}, since yc must be read
in order to determine whether the constraint xc + yc ≥ 500 will be satisfied after the update.
If zc ≤ 0, then the update cannot possibly result in a violation of the integrity constraint, and
so the integrity context is ∅. The write context is {xc} provided that zc 6= 0 and the resulting
update would not violate the integrity constraints.

As illustrated in the above example, these contexts may vary, depending upon the initial
state used to determine the grounding. For a more complex example, consider the transaction
τ34 defined by the following statement:

if (xc2 < 300)∧(xc1 > 300) then {xc1←xc1 − zc1} else {xc2←xc2 − zc2} endif

Clearly, the write context, and also the integrity context, depend upon which branch of
the conditional is taken, provided that zci > 0 for the appropriate i ∈ {1, 2} and the resulting
update is x-legal. However, even more economy is possible. If the conditional is evaluated
left to right, and xc2 ≥ 300 for the snapshot state, then it is not necessary to evaluate the
second condition, since the conjunction will be false regardless of the value of xc1 . The actual
transaction may or may not evaluate the second conjunct and hence xc1 . If so, since the
statement xc2←xc2 − zc2 does not involve xc1 , that data object might not be read at all. The
goal is to model real transactions, as much as possible, so no position on how conditionals should
be evaluated is taken in this paper. While the write context (qua write set) has already been
defined formally in Definition 3.14, and a refined notion of integrity context will be formalized

7 This distinction is also made in [17, Sec. 4], where reads of the integrity context are termed integrity reads.
Since that paper deals exclusively with the maintenance of internal integrity constraints (see Summary 2.4), its
details will not be considered further here.

21

in Definition 5.8, there is no need to formalize further the notion of grounding context. As
remarked above, it is the distinction between the grounding context and the integrity context,
and not the formalization of the former, which is of primary importance. The importance of
this distinction will become apparent in Sec. 5.

Notation 3.19 (Conventions for transactions) The notation 〈D,UT 〉 will be used through-
out the rest of this paper to denote the updateable object which underlies the transaction T .
No confusion should result, because transaction names will always take the form of T or τ ,
possibly with a prime and/or subscript. Thus, for example, the update object associated with
T ′i is 〈D,UT ′i

〉. On the other hand, updateable objects not associated with a transaction will
never use subscripts involving T or τ .

4 A Formal Model of Concurrency and Snapshot Isola-

tion

The purpose of this section is to provide a formal model of snapshot isolation (hereafter SI),
at a level of detail appropriate for the extension which is developed in Sec. 5.

Definition 4.1 (Schedules of transactions under SI) The usual model of execution for a
transaction T employs a start time tStart〈T 〉 and an end time tEnd〈T 〉. Concurrency properties are
then defined in terms of these parameters. Specifically, two transactions T1 and T2 run serially
if tEnd〈T1〉 < tStart〈T2〉 or tEnd〈T2〉 < tStart〈T1〉, and they run concurrently otherwise. In the theory
presented here, the end time of a transaction is its commit time. As explained in Definition
3.12, a transaction which fails for some reason is modelled as executing the identity update.

The actual times do not matter; rather, it is only their ordering relative to each other which
is of interest in terms of behavior. To this end, rather than working with explicit timestamps,
an order-based representation will be employed. Let T be a finite subset of BBTransD . Define
SCSet〈T〉 = {T s | T ∈ T} ∪ {T c | T ∈ T}, in which T s and T c represent the relative start and
commit times of transaction T , respectively. A SI-schedule on T is given by a total order ≤T

on SCSet〈T 〉 with the property that for each T ∈ T, T s <T T
c. (As is common practice, x <T y

denotes that x ≤T y but x 6= y.) It is important to understand that T s and T c are just symbols;
the representation is only for the relative times; no numerical values are specified. In translating
from a representation with explicit timestamps, T s1 <T T s2 iff tStart〈T1〉 < tStart〈T2〉, T c1 <T T c2 iff
tEnd〈T1〉 < tEnd〈T2〉, T s1 <T T

c
2 iff tStart〈T1〉 < tEnd〈T2〉, and T c1 <T T

s
2 iff tEnd〈T1〉 < tStart〈T2〉.

For any T ∈ T, CSPred≤T
〈T 〉 denotes the last transaction to commit before T starts, when

it exists. Thus, (CSPred≤T
〈T 〉)c <T T

s and for no T ′ ∈ T is it the case that (CSPred≤T
〈T 〉)c <T

T ′c <T T s. Similarly, CCPred≤T
〈T 〉 denotes the last T ′ ∈ T which commits before T does,

when it exists. Note that both CSPred≤T
〈−〉 and CCPred≤T

〈−〉 are partial functions, since
some transactions will not have the required predecessors.

For T1, T2 ∈ T, T1 serially precedes T2 if T c1 <T T s2 . If neither T1 serially precedes T2 nor
T2 serially precedes T1, then T1 and T2 execute concurrently and {T1, T2} is said to form a
concurrent pair.

Definition 4.2 (Formal semantics of SI-schedules) In order to be able to model the
interaction of transactions, as well as to characterize constraint-preserving properties, it is

22

necessary to have a formal model of the semantics of an SI-schedule; that is, to have a way
of representing the overall behavior of the execution of a schedule of transactions, given the
semantics of each individual transaction as described in Definition 3.12.

Let T be a finite subset of BBTransD and let <T be an SI-schedule for T. For the execution
of <T , three states in LDB(D) are defined for each transaction T ∈ T and each possible initial
state M ∈ LDB(D) for the entire schedule:

InitSnap〈≤T : M〉〈T 〉: The initial state of the stable database which transaction T reads at the
beginning of its execution. In other words, it is the initial snapshot of T .

BeforeCmt〈≤T : M〉〈T 〉: The state of the stable database immediately before T commits.

AfterCmt〈≤T : M〉〈T 〉: The state of the stable database immediately after T commits.

In the above, the stable database means the global database which is common to all transactions,
and does not include any local modifications made by transactions to local copies before they
commit.

For each possible initial state M ∈ LDB(D), the semantics of SI are defined formally as
follows:

InitSnap〈≤T : M〉〈T 〉 =

{
AfterCmt〈≤T : M〉〈CSPred≤T

〈T 〉〉 if CSPred≤T
〈T 〉↓

M otherwise

BeforeCmt〈≤T : M〉〈T 〉 =

{
AfterCmt〈≤T : M〉〈CCPred≤T

〈T 〉〉 if CCPred≤T
〈T 〉↓

M otherwise

AfterCmt〈≤T : M〉〈T 〉 =

FLiftD〈WTrimInitSnap〈≤T : M〉〈T 〉〈〈D,UT 〉〉〉(BeforeCmt〈≤T : M〉〈T 〉)
if (InitSnap〈≤T : M〉〈T 〉)|WSet〈InitSnap〈≤T : M〉〈T 〉〉〈D,UT 〉

=

(BeforeCmt〈≤T : M〉〈T 〉)|WSet〈InitSnap〈≤T : M〉〈T 〉〉〈D,UT 〉

BeforeCmt〈≤T : M〉〈T 〉〈D,UT 〉 otherwise

Less formally, for an initial state M , InitSnap〈≤T : M〉〈T 〉 is the state of the stable database just
after the last commit operation which occurs before T starts, or the initial state M in the case
that no such commit operation has occurred. BeforeCmt〈≤T : M〉〈T 〉 is the state of the stable
database just after the last commit operation which occurs before the commit operation of
T . It is just M if no previous commit has occurred. Finally, AfterCmt〈≤T : M〉〈T 〉 is the result
of lifting, to BeforeCmt〈≤T : M〉〈T 〉, the trimming of the initial state of T onto its write view,
provided that no transaction which runs concurrently with T has already written a data object
which T writes.

It is important to note that it is only the update to the write trim
WTrimInitSnap〈≤T : M〉〈T 〉〈〈D,UT 〉〉, and not the entire update in UT , which is lifted upon com-

mit. This is critical because the initial snapshot InitSnap〈≤T : M〉〈T 〉 may have been updated
by another concurrent transaction. Changes to data objects which occurred after the transac-
tion T began do not affect the write which T performs upon commit. In the terminology of

23

Discussion 3.18, the grounding context, which determines which update to perform, is deter-
mined when the transaction begins, not when it commits. In ordinary SI, the integrity context
is not involved.

Definition 4.3 (Constraint preservation) It is important to remember that although the
goal of this work is to model and characterize constraint-preserving SI, the above model recap-
tures only ordinary SI. In particular, as long as the initial snapshot for a transaction is legal,
so too will be the database after it commits. Preservation of x-legality requires further effort,
and is the focus of the remainder of this paper. Formally, for M ∈ ELDB(D), and continuing
with the context of Definition 4.2, call ≤T constraint preserving for (initial state) M if for every
T ∈ T, AfterCmt〈≤T : M〉〈T 〉 ∈ ELDB(D). Thus, constraint preservation, as used in the remain-
der of this paper, entails preservation of both internal and external constraints, as defined in
Definition 3.3. Of course, internal constraints are enforced automatically by the DBMS, so the
main task is to show how to ensure that ≤T preserves external constraints.

Notation 4.4 (Notational convention) Throughout the remainder of this paper, unless
explicitly stated to the contrary, take T to be a finite subset of BBTransD and ≤T an SI-
schedule for T.

5 Constraint Preservation and Basic CPSI

The main results of this paper are developed and presented in this section. Specifically, the
notion of constraint-preserving snapshot isolation (CPSI) is developed. There are three distinct
stages. First, a general theory of write independence is developed, which lays the foundation
for guaranteeing constraint preservation while examining the interaction of two (concurrent)
transactions at a time. Next, a means of guaranteeing write commutativity via guards, a
representation of the integrity context of transactions, is developed. Finally, a sketch of how
real systems might be augmented to use these ideas is presented.

Discussion 5.1 (Motivation for write independence) Consider two transactions T1 and
T2 which execute concurrently. Write independence asserts that for any state M ∈ ELDB(D)
(regarded as the initial snapshot) for which both transactions can be applied individually while
preserving x-legality, they may be run concurrently while also preserving x-legality. As defined,
write independence is a very local property; it applies only to two concurrent transactions T1
and T2 which commit one after the other. However, if all pairs of concurrent transactions of ≤T

have this property, then their commit order may be changed at will, without affecting the final
result. This ability to alter the commit order is crucial in the proof by induction of Theorem
5.6, the main result which establishes that the entire schedule ≤T is then constraint preserving
for the given initial state.

In the definitions which develop this idea of write independence, the crucial point to
keep in mind is that the initial snapshot InitSnap〈≤T : M〉〈T 〉 of the transaction T is used
only to determine which updates T will perform. The updates themselves are applied to
BeforeCmt〈≤T : M〉〈T 〉, the state of the stable database just before T commits. Thus, in the
terminology of Discussion 3.18, writes by other, concurrent transactions to the grounding
context have no impact upon correctness. It is only concurrent writes to the integrity con-
text of T which must be considered when evaluating whether or not the update of T may

24

lead to a state which is not x-legal. This observation motivates working with the write trim
WTrimInitSnap〈≤T : M〉〈T 〉〈〈D,UT 〉〉 of a transaction as its update set, applied to BeforeCmt〈≤T : M〉〈T 〉,
and not to InitSnap〈≤T : M〉〈T 〉.

Definition 5.2 (State assignment) Let T′ be a finite subset of BBTransD . A state assign-
ment for T′ is a function ι : T′ → LDB(D). Ultimately, such an assignment will be used, for
T′ = T, to identify the initial snapshot InitSnap〈≤T : M〉〈T 〉 for a transaction T ∈ T. However,
For the moment, it will prove easier to work with a state assignment in its general form, with
T′ not required to be all of T (or even a subset of T for that matter).

To continue, for each T ∈ T′, observe that WTrimι(T)〈〈D,UT 〉〉 is singleton; i.e., UT con-
sists of exactly one update, since the updateable object 〈D,UT 〉 of a transaction T is always
functional. Thus, the partial function FLiftD 〈WTrimι(T)〈〈D,UT 〉〉〉 : LDB(D)→ DB(D) is well
defined. Using this observation and given M ∈ ELDB(D), call the assignment ι extendedly legal
(or x-legal) for M if FLiftD 〈WTrimι(T)〈〈D,UT 〉〉〉(M)↓ ∈ ELDB(D) for every T ∈ T′.

The state assignment ι is nonoverlapping if WSet〈Trimι(T1)〈〈D,UT1〉〉〉 ∩
WSet〈Trimι(T2)〈〈D,UT2〉〉〉 = ∅ for every T1, T2 ∈ T′ with T1 6= T2. This recaptures exactly
the condition that as concurrent transactions, T1 and T2 must not write a common data ob-
ject, which is a fundamental property of SI, as described in Summary 2.1. Note that for any
T ∈ T′, WSet〈Trimι(T)〈〈D,UT 〉〉〉 = WSet〈WTrimι(T)〈〈D,UT 〉〉〉. In other words, the write set
of an ordinary trim is the same as the write set of a write trim. Thus, the above condition may
also be expressed as WSet〈WTrimι(T1)〈〈D,UT1〉〉〉 ∩WSet〈WTrimι(T2)〈〈D,UT2〉〉〉 = ∅.

The following lemma establishes that nonoverlapping transactions may executed in either
order, with the same result. It does not establish, by itself, that this result will be legal. Note
in addition that the starting state M need only be legal; it need not be x-legal.

Lemma 5.3 (Commutativity under nonoverlap) Let {T1, T2} ⊆ BBTransD be a pair of
distinct transactions, let M ∈ LDB(D), and let ι : {T1, T2} → LDB(D) be a nonoverlapping
state assignment. Then the following equality always holds.

(5.3) (FLiftD 〈WTrimι(T2)〈〈D,UT2〉〉〉 ◦ FLiftD 〈WTrimι(T1)〈〈D,UT1〉〉〉)(M)↓
= (FLiftD 〈WTrimι(T1)〈〈D,UT1〉〉〉 ◦ FLiftD 〈WTrimι(T2)〈〈D,UT2〉〉〉)(M)↓∈ DB(D)

Proof For convenience, let M ′ denote FLiftD 〈WTrimι(T2)〈〈D,UT2〉〉〉(M). Since {T1, T2} is
nonoverlapping, WSet〈Trimι(T2)〈〈D,UT2〉〉〉∩WSet〈Trimι(T1)〈〈D,UT1〉〉〉 = ∅, and so the databases
M and M ′ agree on WSet〈Trimι(T1)〈〈D,UT1〉〉〉; i.e., M|WSet〈Trimι(T1)〈〈D,UT1 〉〉〉 =
M ′
|WSet〈Trimι(T1)〈〈D,UT1 〉〉〉. This implies in particular that M ′ is in the domain of

FLiftD 〈WTrimι(T1)〈〈D,UT1〉〉〉. Indeed, M ′ ∈ LDB(D) by assumption, and so 〈M ′,M ′′〉 ∈
LiftD 〈WTrimι(T1)〈〈D,UT1〉〉〉, with M ′′ the database which agrees with
FLiftD 〈WTrimι(T1)〈〈D,UT1〉〉〉(M) on WSet〈Trimι(T1)〈〈D,UT1〉〉〉 and with M ′ everywhere else.
Thus, the expression of the first line of Formula (5.3) is defined.

The situation is analogous for the rôles of T1 and T2 exchanged. Thus, in Formula (5.3)
above, the result in each of the second line is defined as well.

It remains to show that these two compositions are equal when applied to M . Since
WSet〈Trimι(Ti)〈〈D,UTi〉〉〉 ∩ WSet〈Trimι(T2)〈〈D,UT2〉〉〉 = ∅; i.e., the two updates act on dis-
joint data objects, neither update overwrites the other, and so they may be applied in either
order. 2

25

Definition 5.4 (Write-independent pairs) Write independence adds to the conditions
established in Lemma 5.3 by requiring that the state resulting from either composition be x-
legal in case the input state M has that property. More precisely, let {T1, T2} ⊆ BBTransD be a
pair of distinct transactions. Call a state assignment ι : {T1, T2} → LDB(D) write independent
if it is nonoverlapping and, for every M ∈ ELDB(D) for which ι is x-legal, it is the case that
the following two (equivalent) conditions are satisfied.

(FLiftD 〈WTrimι(T2)〈〈D,UT2〉〉〉 ◦ FLiftD 〈WTrimι(T1)〈〈D,UT1〉〉〉)(M)↓∈ ELDB(D)(5.4-a)

(FLiftD 〈WTrimι(T1)〈〈D,UT1〉〉〉 ◦ FLiftD 〈WTrimι(T2)〈〈D,UT2〉〉〉)(M)↓∈ ELDB(D)(5.4-b)

The equivalence of Formulas (5.4-a) and (5.4-b) follows immediately from Lemma 5.3.
It should be noted that a write-independent pair is called a write-commuting pair in [13].

Definition 5.5 (State assignment under SI) Let M ∈ LDB(D). Working within the defi-
nitions associated with the semantics of SI, as formalized in Definition 4.2, the state assignment
for ≤T with initial state M is the function StAssign〈≤T : M〉 : T → LDB(D) given on elements
by T 7→ InitSnap〈≤T : M〉〈T 〉.

For T′ ⊆ T, StAssign
|T′
〈≤T : M〉 : T′ → LDB(D) is the function StAssign〈≤T : M〉 restricted to

T′. In particular, for Ti, Tj ∈ T, StAssign
|{Ti,Tj}
〈≤T : M〉 is the function StAssign〈≤T : M〉 restricted to

{Ti, Tj}.

The main abstract result of this paper — that write independence implies constraint preser-
vation under SI — may now be established.

Theorem 5.6 (Write independence ⇒ constraint-preserving SI-schedules) Let M ∈
ELDB(D). If StAssign

|{T,T ′}
〈≤T : M〉 is write independent for every concurrent pair {T, T ′} of T, then

≤T is constraint preserving for initial state M .

Proof The proof is by induction on the size of T. Let Ti represent the ith transaction which
commits; for n transactions, the commit order is therefore T1, T2, . . . , Ti−1, Ti, Ti+1, . . . , Tn−1, Tn.

The basis step of the induction, for zero transactions or one transaction, is trivial.
For the inductive step, let n ∈ [1, -] and assume that the result is true whenever Card(T) ≤ n.

Consider the case that T now consists of n+1 transactions, with commit order T1, T2, . . . , Ti−1,
Ti, Ti+1, . . . , Tn−1, Tn, Tn+1.

If Tn+1 starts after Tn has committed; that is, the two transactions are not concurrent, then
the result is immediate, since the final state AfterCmt〈≤T : M〉〈Tn+1〉 is just the result of running
Tn+1 on input state AfterCmt〈≤T : M〉〈Tn〉. There cannot be any constraint violation, extended
or otherwise, with serial transactions which operate correctly in isolation.

So, assume that {Tn, Tn+1} forms a concurrent pair. Define Tn+1 = T \ {Tn+1} and
Tn = T \ {Tn}, with ≤T

n+1
and ≤Tn

the schedules obtained by restricting ≤T to the trans-
actions in Tn+1, and Tn, respectively. Then by the inductive hypothesis, each of ≤T

n+1

and ≤Tn
is constraint preserving for initial state M . Letting N ∈ ELDB(D) be given by

N = M if n = 2 and N = AfterCmt〈≤T : M〉〈Tn−1〉 if n ≥ 3, this implies in particular that

26

FLiftD 〈WTrimι(Tn)〈〈D,UTn〉〉〉(N) ∈ ELDB(D) as well as FLiftD 〈WTrimι(Tn+1)〈〈D,UTn+1〉〉〉(N) ∈
ELDB(D). Thus, in view of Definition 5.4, the following holds.

(FLiftD 〈WTrimι(Tn)〈〈D,UTn〉〉〉 ◦ FLiftD 〈WTrimι(Tn+1)〈〈D,UTn+1〉〉〉)(N)↓∈ ELDB(D)

However, the database state which results from the above composition applied to N is just that
obtained by running ≤T , which establishes that it is constraint preserving, as required.

As a point of clarification, in the above, while it is assumed that {Tn, Tn+1} forms a concur-
rent pair, if Tn−1 exists, it need not be the case that {Tn−1, Tn+1} and {Tn−1, Tn} are concurrent;
it does not matter. 2

Definition 5.7 (Guards for singleton full write objects) The property of write indepen-
dence is an abstract one, not directly applicable to the implementation of constraint preservation
under SI. The notion of a guard provides a much more concrete and useful condition of this
abstract notion, as it is based upon the integrity context of a transaction (see Discussion 3.18).
A guard reduces the global test for lifting to all of D to the much more local test of lifting to
just the context of the update plus its guard. Before presenting the definition for transactions
(in Definition 5.8 below), the more general concept of a guard object is developed.

Let 〈c, {u}〉 be a singleton full write object over D; that is, a full write object with just
one update. A guard object for 〈c, {u}〉 is a y ∈ DObj〈D〉 which satisfies the following two
properties.

(go-i) y ∩ c = ∅.

(go-ii) For every M ∈ ELDB(D) with M|c = u(1),
FLiftD 〈〈c, {u}〉〉(M)↓ ∈ ELDB(D)⇔ FLiftJD|y∪cK〈〈c, {u}〉〉(M|y∪c)↓ ∈ ELDB(JD|y ∪ cK).

Condition (go-i) simply states that the guard object does not overlap the write set. Condition
(go-ii) requires that the lifting of u to the entire schema D is extendedly legal iff the lifting to
just y ∪ c has that property. In the context of a transaction, in order to determine whether
the update u may be applied without a constraint violation, it suffices to read the data object
of the guard object y.

Definition 5.8 (Guard functions and guarded black-box transactions) Now let T be
a transaction. Applying Definition 5.7 with N ∈ ELDB(D) and 〈c, {u}〉 = WTrimN〈〈D,UT 〉〉
yields the basis for a concrete representation of write commutativity. Note that
WTrimN〈〈D,UT 〉〉 is a singleton functional full-write object by construction, so the context
of that definition applies.

Formally, a guard function for T is a function g : LDB(D)→ SubObj〈D〉 with the property
that for any N ∈ ELDB(D) the following two conditions are met.

(g-i) g(N) is a guard object for WTrimN〈〈D,UT 〉〉.

(g-ii) (∀N ′ ∈ LDB(D))((WTrimN〈〈D,UT 〉〉 = WTrimN ′〈〈D,UT 〉〉) ⇒ (g(N) = g(N ′))).

Given N ∈ ELDB(D), g(N) is called the guard object for N .
The core idea is that the update of the transaction will not result in a constraint violation

iff that update when restricted to the complex data object consisting of the guard plus the
write set of the update does not result in a constraint violation. In other words, the test for

27

correctness on all of DObj〈D〉 may be reduced to a test on just the guard object plus the objects
to be updated.

Condition (g-ii) requires that the guard object depend only upon the associated grounded
update, and not further upon the input state. In other words, if two initial states produce the
same ground update, then the guard objects for those two states are the same as well. It is
important to keep in mind that the guard object g(N) for a database N ∈ ELDB(D) must
be valid for applications of the update WTrimN〈〈D,UT 〉〉 to all N ′ ∈ ELDB(D) to which it is
applicable, and not just those databases to which T applies it. See Definition 6.2 for a further
discussion of this issue.

It is useful to observe that (go-i) of Definition 5.7 translates to the following:

(go-i′) g(N) ∩WSet〈TrimN〈〈D,UT 〉〉〉 = ∅.

In the context of ≤T with initial state M ∈ ELDB(D) and T ∈ T, the utility of the
notion of guard is immediate — if the guard object g(InitSnap〈≤T : M〉〈T 〉) is not written by
any concurrent transaction, then as long as the write update TrimM〈〈D,UT 〉〉 is legal for its
initial snapshot InitSnap〈≤T : M〉〈T 〉, it will also be legal when the transaction writes its update
to BeforeCmt〈≤T : M〉〈T 〉, since InitSnap〈≤T : M〉〈T 〉 and BeforeCmt〈≤T : M〉〈T 〉 must agree on the
guard. Actually, a stronger condition will be established in Theorem 5.17 — to ensure constraint
preservation, it will be shown to suffice that for two concurrent transactions T1 and T2, at least
one not write the guard object of the other. It is not necessary that neither write the guard
object of the other.

The set of all guard functions for T is denoted GuardsD〈T 〉.
It is convenient to have a notation for black-box transactions involving guards which extends

that of Definition 3.12. To that end, a guarded black-box transaction T is represented by a pair
〈〈D,UT 〉,GT 〉 in which 〈D,UT 〉 ∈ FUpdObj(D) and GT ∈ GuardsD〈T 〉, with T represented by
〈D,UT 〉 in the latter.

The set of all guarded black-box transactions over D is denoted GBBTransD .
A guard function g for T is static if g is a constant function; that is, if g(M1) = g(M2) for all

M1,M2 ∈ LDB(D). Otherwise, it is dynamic. In [13], guards are static by definition. The use
of dynamic guards in this paper constitutes a major generalization over [13], and is addressed
in more detail in Discussion 5.25.

Notation 5.9 (Notational convention) From now on, unless stated explicitly to the con-
trary, augment Notation 4.4 so that T is taken to be a finite subset of GBBTransD , and not
just of BBTransD . In other words, assume that every transaction in T has a guard function
associated with it. Furthermore, as explained in Definition 5.8 above, the guard function of
T ∈ T will be denoted GT .

Guards always exist. Indeed, the set of all data objects not in the write set form a guard,
as formalized by the following.

Observation 5.10 (Guards always exist) For any T ∈ BBTransD, the function gmax :
LDB(D) → SubObj〈D〉 defined on elements by M 7→ DObj〈D〉 \WSet〈TrimM〈〈D,UT 〉〉〉 is a
guard for T . 2

Examples 5.11 (Guards) First, fix c ∈ States〈w〉 and consider the transaction τ35 on D,
defined by the rule xc←xc− zc, as in Discussion 3.18. A simple static guard function for τ35 is

28

the constant function g′35 : LDB(D) → DObj〈E3〉 given on elements by M 7→ {yc}. Indeed, at
most xc is changed by this transaction, and the only constraint involving xc is xc + yc ≥ 500.
Thus, the lifting set g′35(M) ∪ WSet〈TrimM〈〈E3,Uτ35〉〉〉 of (g-ii) of Definition 5.8 is {xc, yc}.
Since xc is written if the transaction does anything at all, and since by (go-i′) of Definition 5.8,
the write set and the guard set are always disjoint, g′35 suffices as a guard.

It is, however, possible to do better when the guard is allowed to depend upon the initial
snapshot M . The natural guard function for τ35 is g35 : LDB(E3)→ DObj〈E3〉 given on elements
as follows.

M 7→

{
{yc} if (M(zc) > 0) ∧ (M(xc) +M(yc)−M(zc) ≥ 500)

∅ otherwise

To understand this guard function, it is convenient to break the process of the transaction into
steps. First, it evaluatesM(xc), M(yc), andM(zc) to obtain the simple ground updateM(xc)

xc
M(xc)−M(zc). This is just a representation of the unique update in WTrimM〈〈D,UT35c〉〉.

If M ∈ ELDB(D), then the update will be constraint preserving provided that M(xc) +
M(yc)−M(zc) ≥ 500 holds, and the values of xc and yc are not changed by any other transaction.
It is important here to think of M(xc), M(yc), and M(zc) as numbers, as fixed values, not

variables. Now if M(zc) > 0, then M(xc)
xc M(xc) −M(zc) could result in a violation of the

constraint xc + yc ≥ 500, even if M(xc) +M(yc)−M(zc) ≥ 500 holds, in the case that another
transaction T were to modify the value of xc or yc. Arguing as above, yc serves as the suitable
data object for the guard in this case; T must not write yc. Of course, T will not write xc
either, since distinct, concurrent transactions never write the same data object under SI.

If M(zc) < 0, then FLiftE3 〈WTrimM〈〈E3,UT35c〉〉〉 ∈ ELDB(E3) must always hold, since
adding a positive value to xc cannot result in a constraint violation if yc is held constant and
xc + yc ≥ 500 holds for the original values. It might seem that yc must still be included in the
guard, since another transaction could reduce its value by more than M(zc), but in this case, it
is the guard of the other transaction which will flag the problem. This will become clear after
the results below are presented.

If M(zc) = 0, ∅ is also a guard, since the resulting update is the identity, which is always
x-legal.

Finally, for M ∈ LDB(E3) \ ELDB(E3), the value of the guard does not matter (since the
initial state is not x-legal in that case).

Static guards need not exist. Indeed, again fixing c ∈ States〈w〉, consider the transaction
τ36 on E3 defined by the following rule.

if (xc > 300) then {xc←xc − zc} else {yc←yc − zc} endif

Arguing as above, if M(zc) > 0 and M(xc) + M(yc) −M(zc) ≥ 500, and the then part of the
conditional is executed so xc is written, then yc must be part of the guard object. On the other
hand, if the else part is executed and yc is written, then xc must be part of the guard object.
Thus, the smallest static guard is given by M 7→ {xc, yc}. In view of (go-i′) of Definition 5.8,
the guard object and the write object must be disjoint, and this is clearly impossible, since xc
and yc are written in some cases.

The non-existence of static guard functions is not a fundamental one, but rather one which
is enforced since dynamic guard functions are employed in this paper. First of all, if static

29

guards are preferred for some reason, an alternate definition which drops condition (go-i′) may
be used. Condition (go-i′) is enforced largely for bookkeeping purposes, to make it easier to
separate read-only data objects from objects which are written. If condition (go-i′) is dropped,
the theory will still be correct, but reads may then overlap with writes, making the theory and
presentation less tidy. A more detailed explanation of how to manage this is not presented here,
because as elaborated in Discussion 5.25, dynamic guard functions admit increased concurrency
while also providing implementation advantages.

Definition 5.12 (Minimal and least guards) It is always possible to add additional simple
data objects to a guard object, as long as those added objects are not written by the transaction.
Indeed, the result of Observation 5.10 shows that maximal guard objects always exist. Far more
useful is the notion of a minimal guard object. For T ∈ BBTransD , a minimal guard function
for T is a g ∈ GuardsD〈T 〉 with the property that for any g′ ∈ GuardsD〈〈D,u〉〉 and any
M ∈ LDB(D), the inclusion g′(M) ⊆ g(M) implies the equality g′(M) = g(M). A unique
minimal guard view is called least.

It is always desirable to choose a minimal guard, because it will be the independence of the
guard view of one transaction from the write view of another which will prove to be the critical
property in characterizing schedules which are constraint preserving.

Examples 5.13 (Minimal guards) Returning to the context of Examples 5.11, g35c is a
minimal guard, while the static guard function g′35c is not.

Discussion 5.14 (Existence of least guards) Although they are clearly a desirable feature,
it is easy to show that least guard functions need not exist. Let E4 be the database schema
with DObj〈E4〉 = {x, y, z}. Assume that while x takes integer state values, y and z take ordered
pairs of integers as state values. Write y1 (resp. y2) for the first (resp. second) integer in the
state of y. Thus, if y = (3, 4), y1 = 3 and y2 = 4. Define z1 and z2 similarly for z. Assume
that the entire schema is governed by the constraints y1 = z1 and x + y1 ≥ 500. Consider the
transaction τ41 given by the rule x←x− 100. There are two minimal guard functions for τ41.
Arguing as in Examples 5.11, the first is given by

M 7→

{
{y} if M(x) +M(y1)− 100 ≥ 500)

∅ otherwise

while the second is identical, save for that y is replaced by z. The simple data objects y and
z are incomparable; each contains further information. There is nothing in the model which
provides a way to prefer one over the other. The fields y1 and z1 are not simple data objects;
rather, they are parts of simple data objects which cannot be decomposed. Therefore, neither
can be chosen as a guard object by itself. Thus, there is no least guard function.

This is not a serious problem, since as will be argued in Discussion 5.25 below, guards are
typically determined dynamically by trigger code, and not fixed beforehand mathematically.
Nevertheless, in the general case, the theory cannot always identify an optimal guard, if optimal
is interpreted as least.

Definition 5.15 (Independent and conflicting pairs of guarded transactions)Return-
ing to the general case, it is time to use the notion of guard function to obtain a concrete
characterization of write independence. To this end, call two transactions guard independent

30

for a given M ∈ ELDB(D) if at least one does not write the guard of the other. More formally,
let {T1, T2} ⊆ GBBTransD . A state assignment ι : {T1, T2} → ELDB(D) is guard independent
if it is nonoverlapping and at least one of the following two conditions holds.

WSet〈Trimι(T1)〈〈D,UT1〉〉〉 ∩ GT2(ι(T2)) = ∅(5.15-a)

WSet〈Trimι(T2)〈〈D,UT2〉〉〉 ∩ GT1(ι(T1)) = ∅(5.15-b)

As established next, guard independence is sufficient to ensure write independence.

Proposition 5.16 (Guard independence ⇒ write Independence) Let {T1, T2}
∈ GBBTransD and let ι : {T1, T2} → ELDB(D) be an x-legal state assignment for {T1, T2}.
If ι is guard independent, then it is write independent.

Proof Without loss of generality, assume that Formula (5.15-b) holds. It is immediate that
Formula (5.4-a) is satisfied, since {T1, T2} is nonoverlapping and T2 does not write the guard
of T1, so the update which T2 performs does not affect the x-legality of the update which T1
performs. 2

The main theorem of this paper may now be established.

Theorem 5.17 (Guard independence guarantees constraint preservation) Let M ∈
ELDB(D). If StAssign

|{T,T ′}
〈≤T : M〉 is guard independent for every concurrent pair {T, T ′} of T, then

≤T is constraint preserving for initial state M .

Proof The proof follows immediately from Theorem 5.6 and Proposition 5.16. 2

Examples 5.18 (Guard independence) Return to the context of E3, as well as the trans-
action τ35 defined in Discussion 3.18 via the rule xc← xc − zc, and elaborated for guards in
Examples 5.11. Let τ37 be the transaction defined by the rule yc← yc − 100. Arguing as in
Examples 5.11 for τ35, a minimal guard function for τ37 is gτ37 : LDB(E3)→ DObj〈E3〉 given on
elements as follows.

M 7→

{
{xc} if M(xc) +M(yc)− 100 ≥ 500

∅ otherwise

Since it is possible to choose M ∈ ELDB(E3) such that the guard object of τ35 is {yc} while
writing xc, and the guard object of τ37 is {xc} while writing yc, it follows that these two
transactions are not guard independent. More precisely, let M33 ∈ ELDB(E3) with the property
that M33(xc) = M33(yc) = 300 and M33(zc) = 50. Then each of WSet〈TrimM33〈〈E3,Uτ35〉〉〉 =
{xc}, Gτ35(M33) = {yc}, WSet〈TrimM33〈〈E3,Uτ37〉〉〉 = {yc}, and Gτ37(M33) = {xc} holds, whence
neither (5.15-a) nor (5.15-b) is satisfied. These two transactions cannot be run concurrently
without risking a constraint violation. This is none other than the classical write-skew example
of [2]. The use of this notion of conflict in CPSI is developed further in Definition 5.20 and
Theorem 5.21.

Next, let τ38 be the transaction defined by the rule yc ← yc + 25. Arguing in a manner
similar to that for the case of M(zc) > 0 for τ35 in Examples 5.11, it follows that the constant
function gτ38 : LDB(E3) → DObj〈E3〉 given on elements by M 7→ ∅ is a guard function for τ38.

31

Indeed, adding a positive value to yc can never, by itself, result in a constraint violation. Thus,
{τ35, τ38} forms a guard-independent pair, and so the two transactions may be run concurrently.

Now it is clear that τ35 may commit before τ38 without risking a constraint violation, since
τ35 does not write the (static) guard of τ38, that guard being the constant function which maps
every M ∈ ELDB(E3) to ∅. More interesting is that τ38 may commit before τ35, even though
it does write the guard of τ35. Intuitively, think of τ38 as performing a “harmless” write of the
guard of τ35. Since τ35 increases the value of yc, it can only make things “better” with respect
to the constraint xc−yc ≥ 500. If that constraint were satisfied before adding 25 to yc, surely it
will be satisfied afterwards as well. Of course, that these two transaction may commit in either
order without a constraint violation is guaranteed by write independence, but it is nevertheless
interesting to see how that abstract property manifests itself in a concrete example.

Guard objects need not be simple. Consider the transaction τ39 on E3 given, for fixed
c1, c2 ∈ States〈w〉, by S39 = {xc1 ← xc1 − zc1 , xc2 ← xc2 − zc2}. The two assignments are
independent in terms of constraints; the x-legality of one does not depend in any way upon
the x-legality of the other. In effect, τ39 consists of two independent subtransactions. A guard
function may be obtained by replacing c with c1, xc with xc1 , and yc with yc1 , and then
independently c with c2, xc with xc2 and yc with yc2 , all in in τ35 above. The guard object will
be one of ∅, {y1}, {yc2}, and {yc1 , yc2}. The details are omitted. The point is that the guard
is determined dynamically, based upon the initial snapshot, and not statically, with one guard
object for all cases.

As a final example, again in the context of E3, let τ3a be the transaction defined by the
assignment xc1 ← xc1 − xc2 , and let τ3a′ be the transaction defined by the assignment xc2 ←
xc2 − xc1 . Arguing as above, a minimal guard for τ3a is gτ3a : LDB(E3) → DObj〈E3〉 given on
elements as follows.

M 7→

{
{yc1} if (M(xc2) > 0) ∧ (M(xc1) +M(yc1)−M(xc2) ≥ 500)

∅ otherwise

A guard function g3a′ for τ3a′ is obtained by exchanging c1 and c2 in the above. Clearly, {τ3a, τ3a′}
forms a guard-independent pair, since neither transaction writes any yci . Nevertheless, for
certain cases of M , each transaction does write a data object which the other reads. More
precisely, for any M ∈ ELDB(D) with M(xc1) = M(xc2) = 300 and M(yc1) = M(yc2) = 600,
τ3a writes xc1 and τ3a′ writes xc2 . However, in the terminology of Discussion 3.18, the reads
are grounding reads, not integrity reads. Writing of the values of those read data objects by a
concurrent transaction has no effect upon whether the final result will be x-legal or not. This
illustrates clearly the importance of distinguishing grounding reads from integrity reads.

Ordinary SSI makes no such distinction; this issue will now be examined in more detail.

Summary 5.19 (A short summary of serializable SI) In order to make a proper com-
parison between CPSI and SSI, it is necessary to begin by providing a brief summary of the
latter. Although some ideas of SSI have already been sketched in Sec. 1, there are other, im-
portant aspects which were not needed in the overview presented there. The summary here is
nevertheless very terse, touching only upon those aspects necessary to contrast SSI with CPSI.
For details of the theory underlying SSI, the reader is referred to the papers [9] and [5].

An understanding of SSI must necessarily begin with knowledge of the direct serialization
graph [1], or DSG for short, associated with a schedule ≤T and an initial state M ∈ ELDB(D).

32

In that graph, which is denoted DSG〈≤T :M〉 in this paper, the vertices are transactions. There

are three types of edges. There is a read-write edge, or rw-edge, from T1 to T2, denoted T1
rw−→ T2,

if T1 reads some data object x for which T2 is the next writer. Similarly, there is a write-write
edge, or ww-edge, from T1 to T2, denoted T1

ww−→ T2 if T1 writes some data object x and T2
is the next writer of x. Finally, there is write-read edge, or wr-edge, from T1 to T2, denoted
T1

wr−→ T2, if T1 writes some data object x and T2 subsequently reads the version of x which T1
wrote. Observe that ww-edges and wr-edges can never connect concurrent transactions under
SI, while the transactions connected by an rw-edge may be, but need not be, concurrent. The
relationships indicated by edges in DSG〈≤T :M〉 are called dependencies. So, for example, if
there is a rw-edge from T1 to T2, then it is said that there is rw-dependency from T1 to T2 for ≤T

with initial state M . The notions of ww-dependency and wr-dependency are defined similarly.
In the implementation of SSI, as described in [5], the critical notion is the dangerous struc-

ture, which consists of two consecutive read-write edges between concurrent pairs in the DSG
which occur in a cycle; that is, two dependencies of the form T1

rw−→ T2 and T2
rw−→ T3 with

{T1, T2} and {T2, T3} concurrent pairs. In a dangerous structure, T1 and T3 may be, but need
not be, the same transaction. A sufficient condition for an SI schedule to be serializable is that
the DSG be free of dangerous structures [9, Thm. 3.1].

Unfortunately, in order to determine whether a sequence of two consecutive rw-edges lies
within a cycle of the DSG, it may be necessary to build a large part of, if not all of, that
graph. As illustrated by the example surrounding E0 of Sec. 1, in the worst case, it may
be necessary to construct the entire graph. Therefore, in the version of SSI described in [5],
a simpler test is used. Specifically, define a potential dangerous structure to be the same as
a dangerous structure, save that it need not lie in a cycle of the DSG. SSI does not permit
potential dangerous structures, regardless of whether or not they are true dangerous structures.
This results in a much simpler test, involving at most three transactions a a time, at the expense
of a greater number of false positives.8 If a potential dangerous structure is found, at least one
of the participating transactions must not be allowed to commit.

Definition 5.20 (Guard-write dependencies, the GDSG, and guard-write pairs)
Let M ∈ ELDB(D). Say that there is a gw-dependency from T1 to T2 for ≤T with initial state
M ∈ ELDB(D) if T2 writes the guard of T1; that is, if the following inequality holds.

(5.20) WSet〈TrimInitSnap〈≤T : M〉〈T2〉〈〈D,UT2〉〉〉 ∩ GT1(InitSnap〈≤T : M〉〈T1〉) 6= ∅

Observe that the above is essentially the negation of Formula (5.15-b).

T1 T2

gw

gw

Figure 5.1: A
guard-write pair

The guard-augmented DSG extends the DSG by adding gw-edges.
Formally, the guard-augmented DSG or GDSG associated with a schedule
≤T and an initial state M ∈ ELDB(D) has all of the edges of DSG〈≤T :G〉,
together with a gw-edge from T1 to T2 precisely in the case that T2 writes
the guard of T1, that is, if inequality (5.20) is satisfied. The GDSG for
≤T for initial state M is denoted GDSG〈≤T :M〉.

Call {T1, T2} a guard-write pair, or gw-pair, in GDSG〈≤T :M〉 if it

forms a concurrent pair for which both T1
gw−→ T2 and T2

gw−→ T1 hold. In
other words, a gw-pair is a loop in the GDSG consisting of exactly two gw-edges, as illustrated
in Fig. 5.1.

8Actually, this test may be refined even further; T3, the last transaction in the chain T1
rw−→ T2

rw−→ T3, must
be the first transaction to commit. See [9, proof of Thm. 2.1] for details.

33

T1 T2

gw

Figure 5.2:
Alternate notation
for a guard-write
pair

It is more compact to represent a guard-write pair using a single edge
with double arrows, as shown in Fig. 5.2, and also in Fig. 1.4. However,
it is often desirable to show not only the dependency, but also the data
objects involved. In that case, a two-arrow representation, as illustrated
in Fig. 5.5 below, is more appropriate. Both notations will be used in
that which follows.

The strengthened result for detecting conflicts which may result in
constraint violation may be expressed as follows.

Theorem 5.21 (Freedom from gw-pairs⇒ constraint preservation) Let M ∈ ELDB(D).
If GDSG〈≤T :M〉 is free of gw-pairs, then ≤T is constraint preserving for initial state M .

Proof This is essentially a reformulation of Theorem 5.17, and follows immediately from that
theorem. 2

Examples 5.22 (The GDSG) Consider three mutually concurrent transactions

τ3b τ3c τ3drw〈xc2〉

rw〈xc1〉

gw〈yc1〉

rw〈yc1〉

rw〈xc2〉

Figure 5.3: A GDSG with danger-
ous structures but no gw-pairs

on the schema E3 of Examples 3.5 for c1, c2 ∈ States〈x〉.
The transaction τ3b is defined via the rule xc1←xc1 − 0.2 ∗
xc2 , τ3c is defined via the rule xc2←xc2 − 0.2 ∗ xc1 , and τ3d
is defined via the rule yc1 ← yc1 + 0.2 ∗ |xc2 |. The GDSG
conflict graph for these three transactions is shown in Fig.
5.3, for initial state M34 ∈ ELDB(D) defined by M34(xc1) =
M34(xc2) = M34(yc1) = M34(yc2) = 300. The values of the
other members of DObj〈E3〉 are irrelevant. For convenience,
the data objects underlying the rw- and gw-dependencies
are shown as well. Note in particular that although τ3b
reads xc2 , it does so only as a grounding read, and similarly
for τ3c reading xc1 and τ3d reading xc2 . Because these reads are not used to check integrity
constraints, they cannot contribute to non-preservation of a constraint. Observe also that τ3d
uses only the absolute value of xc2 in the computation of the new value for y1, and so xc1 will
not lie in a minimal guard object. Indeed, τ3d has the a uniform guard defined on elements
by g3d : M 7→ ∅. Adding a nonnegative value to yc1 can never result in a constraint violation.
Although the GDSG contains cycles, in view of Theorem 5.21, the schedule is constraint-
preserving for M34, since it is free of gw-pairs. Indeed, it is not difficult to see that the
schedule is constraint-preserving for any M ∈ ELDB(E3). Of course, the associated schedule
is potentially non-serializable, since the GDSG contains a dangerous structure, and if full view
serialization is needed, the techniques of SSI must be applied.
Cycles of length greater than two do not represent gw-dependencies. To illustrate, let EA be
the schema with DObj〈E1〉 = {x1, x2, x3, x4}, each taking integer values, and governed by the
four constraints x1 +x2 ≥ 500, x2 +x3 ≤ 500, x3 +x4 ≥ 500, and x4 +x1 ≤ 500, There are four
transactions. τA1 executes the update x1← x1 − 100, τA2 executes the update x2← x2 + 100,
τA3 executes the update x3← x3 − 100, and τA4 executes the update x4← x4 + 100. τA1 has
the constant function M 7→ {x2} as guard. Note in particular that the data object x4 is not
in the guard of τA1 since the constraint x4 + x1 ≤ 500 can never be violated by a reduction
in the value of x1. Similarly, τA2 has the constant function M 7→ {x3} as guard, τA3 has the
constant function M 7→ {x4} as guard, and τA4 has the constant function M 7→ {x1} as guard.

34

τA1

τA2

τA3

τA4

gw〈x2〉

rw〈x2〉

gw〈x3〉

rw〈x3〉

gw〈x4〉

rw〈x4〉

gw〈x1〉

rw〈x1〉

Figure 5.4: A gw-cycle not con-
taining any gw-pairs

If these four transactions are run concurrently, the asso-
ciated GDSG for any initial state is shown in Fig. 5.4. Even
though there is a loop consisting of four gw-edges, there are
no gw-loops, and no constraint violation is possible. Note
further that the same loop is connected by four rw-edges, so
SSI would flag this as potentially nonserializable. In fact,
any subset of three of these transactions form the vertices
of a potential dangerous structure, and would be flagged as
potentially nonserializable.

τ35 τ37

gw〈yc〉

gw〈xc〉

Figure 5.5: A gw-
pair for {τ35, τ37}

To obtain a simple example which involves a guard-write pair, return
to the the pair {τ35, τ37} of Examples 5.18, defined by the rules xc←xc−zc
and yc ← yc − 100. For this pair run concurrently, the GDSG for M33

has a gw-pair, as illustrated in Fig. 5.5. Thus, the two cannot be run
concurrently without risking constraint violation.

Discussion 5.23 (Comparison to approaches which convert reads to writes) In [9,
p. 497], two related alternatives to addressing problems of constraint violation under SI are
suggested. The first is to report integrity reads as writes. For a concrete example, return to the
context of E3 introduced in Examples 3.5. To enforce a constraint of the form xc + yc ≥ 500
when xc is written by a transaction T , it is considered, for the purposes of concurrency control,
to have written both xc and yc, thus eliminating the possibility of write skew. An advantage
of this approach is that ordinary SI may be used to ensure constraint satisfaction, but at the
expense of reduced concurrency in comparison to CPSI. For example, the guard-independent
pair {τ35, τ38} of Examples 5.18 would not be allowed to run concurrently under such a strategy.

A second strategy is to materialize the constraint xc+yc ≥ 500 by using a third data object,
say vc, which is constrained to be the sum of xc and yc; i.e., vc = xc + yc. Then, any update to
either xc or yc will also update vc. The net effect is the same, and the limitation is the same,
as in the first approach noted above. In short, these approaches results in strictly more false
positives than does CPSI.

Discussion 5.24 (Constraint-preserving snapshot isolation (CPSI)) The above the-
orem and examples form the basis for constraint-preserving snapshot isolation (CPSI). The
strategy for CPSI is similar to that for SSI. If a gw-pair is discovered, then further action
must ensure that a constraint violation does not occur. Various implementation alternatives
are discussed in Discussion 5.25 below.

Discussion 5.25 (Implementation of CPSI) The question remains as to how an exist-
ing DBMS could be modified to support CPSI. To answer that question with authority and
thoroughness would require much more investigation, as well as the implementation of CPSI
in various ways, followed by performance studies. Therefore, this discussion is limited to the
identification of the most important points to consider in any such implementation, as well as
the main alternatives.

Any such strategy will be based upon Theorem 5.21, with the presence of one or more gw-
pairs in the GDSG a signal that constraint satisfaction cannot be guaranteed, so that further

35

action must be taken. It is important to understand that a guard does not, by definition, consist
of data objects which a transaction actually reads. Rather, it consists of a set of data objects
which are sufficient to protect, from updates by concurrent transactions, in order to guarantee
that the transaction does not violate any integrity constraints. There are thus two tasks which
must be carried out. First, the guard object which is associated with the ground update to be
performed by the transaction must be identified. Second, the guards of concurrent transactions
must be used to identify gw-conflicts. and the the system must act upon such conflicts.

For the first task, to identify the necessary guard objects, there are two main strategies. One
is to have each transaction take the responsibility to identify its guard, which has the obvious
disadvantage that even one transaction which computes a guard incorrectly could lead to false
negatives, clearly an undesirable situation. The second alternative, which avoids this drawback,
is to use a service common to all transactions. A natural way to implement extended integrity
constraints is via triggers, and in that case, the guards may be computed within the triggers
themselves, for which there are two strategies. The first is to look up the guard in a guard
database, or else to to compute it from some rules. This strategy is particularly attractive
in situations in which there is a relatively small number of parametric transactions which are
executed frequently. Some simple examples for business processes involving travel are given in
[14] and [12]. A second strategy is to extract the guard dynamically, from the actual reads of
the transactions. An example will help illustrate. Consider again the transaction τ35, defined by
the rule xc←xc − zc as elaborated in Examples 5.11. The main transaction code will evaluate
zc (as well as xc) in order to identify the associated ground update. For example, if xc = 300

and zc = 100, then the ground update 300
xc 200 will be computed by the transaction code,

and it is this ground update which will be checked by the trigger. The trigger need not and in
any reasonable implementation will not read zc. However, it must read yc in order to determine
whether or not the constraint xc + yc ≥ 500 would be satisfied after the update is performed.
In other words, in addition to xc, it will read only yc.

It must be noted, however, that in order to obtain an optimal guard object, some additional
care may need to be taken in writing the trigger. For example, suppose that zc = −100 instead
of zc = 100 in the initial snapshot. The associated ground update will then be 300

xc 400.
Assuming that the initial snapshot satisfies the extended constraint xc + yc ≥ 500, the result
after that update will also satisfy this constraint; the trigger function need not read the value
of yc in order to determine this. However, the trigger code for updates to xc must utilize the
knowledge that the constraint xc + yc ≥ 500 need not be checked if the value of xc is increased.
Of course, if it does check yc in all cases, correctness will not be affected, although unnecessary
gw-pairs may occur, resulting in false positives which may limit concurrency.

There is one detail — a transaction may perform several simple updates, each supported by
its own trigger. In this case, the guard object for the entire update performed by the transaction
is just the union of the guard objects for each component update. Thus, the guard object for
the entire transaction will be the union of the guard objects obtained from each individual
trigger.

It should finally be noted that it is possible to use a form of lazy guard evaluation, in which
the entire guard set need not be read in all circumstances. In such cases, the full guard may
need to be determined in other ways. See Discussion 6.4 for additional information.

For the second task — to identify and act upon gw-conflicts, there are three high-level
strategies. The first is to service gw-conflicts in the same way as potential violations to internal

36

integrity constraints. As noted in Summary 2.4, the latter are enforced immediately, during the
lifetime of the transaction. The snapshot of a transaction is modified, by the system, whenever
a concurrent transaction performs an update which affects an internal integrity constraint. This
happens immediately, before either transaction commits. In principle, such a strategy could
also be used for extended constraints. However, there are at least two issues which limit this
possibility. First and foremost, it would require major modifications to the DBMS. Second, that
strategy compromises one of the main selling points of SI — that writers do not block readers
(and conversely). Employing immediate constraint maintenance on a scale which also includes
extended constraints (which often involve large sets of data objects) could easily compromise
the performance of the system beyond acceptable levels.

The second approach is at the other extreme — to treat gw-conflicts in much the same way
that concurrent-write conflicts are handled in ordinary SI. An analog of either FCW or FUW
could be used. With the analog of FUW, gw-conflicts would be handled at commit time, a
transaction would not be allowed to commit if it participates in a gw-conflict and the other
transaction in the pair has already committed. With the analog of FCW, a transaction would
be blocked as soon as it declares a read or write which would result in a gw-conflict with a
concurrent transaction. It would not be allowed to continue unless the other transaction is
terminated for some reason.

For interactive transactions, there is a third possibility which is far preferable and particu-
larly well-suited to the binary nature of gw-conflicts. Since gw-conflicts are binary in nature,
two transactions which have a conflict may be able to negotiate in order to see whether a
constraint violation will actually result, and, if so, to modify their updates to avoid such a
violation. Of course, in the worst case, it may be that every transaction has a conflict with
every other concurrent transaction, but that is unlikely to occur in practice. It is, in any case,
an approach which deserves further development, as suggested in Sec. 7.

6 Enhancements to CPSI

As sketched in the introduction, there are certain situations in which CPSI can produce false
positives which SSI does not, and conversely. The purpose of this section is twofold. First, to
highlight why these false positives may occur, a formal model of conditional guard functions,
which generalize the ordinary guard functions developed in Sec. 5, is developed and then il-
lustrated with a number of examples. The goal is to provide some insight into how difficult
it would be to implement extended integrity constraints, guaranteeing correctness, without
reading the entire guard.

The second topic of this section is to examine the idea of combining CPSI with SSI or one of
its variants, in order to provide an isolation level which guarantees constraint satisfaction while
resulting in fewer false positives than either strategy alone. Central to this is a constraint-only
version of SSI, called Constraint-Only SSI, or CSSI, which operates much as does SSI, but
which ignores ground reads and so flags only cycles which may result in constraint violation.

Definition 6.1 (Conditional guards for full write objects) To recapture the guard phe-
nomena surrounding the schema E′1, as sketched in Sec. 1, it is convenient to begin by extending
Definition 5.7 to a conditional case. Specifically, let 〈c, {u}〉 be a singleton full write object

37

over D. A conditional guard object for 〈c, {u}〉 is a pair 〈y,P〉 in which y ∈ DObj〈D〉 and
P ⊆ ELDB(JD|yK), satisfying the following property.

(pgo-ii) For every M ∈ ELDB(D) with M|c = u(1) and M|y ∈ P,
FLiftJD|y∪cK〈〈c, {u}〉〉(M|y∪c)↓ ∈ ELDB(JD|y ∪ cK)⇒ FLiftD 〈〈c, {u}〉〉(M)↓ ∈ ELDB(D)

In contrast to the definition of guard object in Definition 5.7, there is no condition corresponding
to (go-i); i.e., it need not be the case that y ∩ c = ∅. As will be illustrated in Examples 6.3,
it is sometimes necessary to have the condition depend upon the objects to be updated as well
as the read-only guard set. The set ROGuard〈〈y,P〉〉 = y \ c is called the read-only guard of
〈y,P〉.

Condition (pgo-ii) expresses that correctness of the update is only guaranteed if the restric-
tion of the input database to y matches some database in P, and the update restricted to the
write set plus the guard object is x-legal. Note that the implication in (pgo-ii) is only in one
direction, in contrast to that of (go-ii) of Definition 5.7, which is bidirectional. Compared to a
full guard object, it potentially reads less and thus guarantees correctness in fewer cases.

If y is a guard object (in the sense of Definition 5.7) and P = ELDB(JD|y ∪ cK), then the
conditional guard behaves exactly as the guard object y. Thus, a conditional guard object
generalizes an ordinary guard object.

The set of all conditional guard objects for 〈c, {u}〉 is denoted CondGd〈〈c, {u}〉〉, with
CondGd〈D〉, the set of conditional guard objects for D, defined to be⋃
{CondGd〈〈c, {u}〉〉 | 〈c, {u}〉 ∈ FWObjs〈D〉}. In 〈y,P〉, y is called the object and P is

called the condition set.
It is convenient to have a notation for extracting the components of a conditional guard ob-

ject. If o is a conditional guard object, then DObject〈o〉 denotes the object and CondSet〈o〉 de-
notes the condition set. More concretely, if o = 〈y,P〉, then DObject〈o〉 = y and CondSet〈o〉 =
P. If y = ∅ and P = {�DB}, then 〈y,P〉 is called trivial ; otherwise, it is nontrivial. Thus, the
trivial conditional guard object is 〈∅, {�DB}〉. (See Definition 3.2 for �DB.)

Definition 6.2 (Conditional guard functions) Definition 5.8 is extended to the conditional
case as follows. Let T be a transaction. A conditional guard pair for T is a pair 〈g,Π〉 in which
g : LDB(D) → CondGd〈D〉 is a function and Π is a partition on ELDB(D) such that the
following conditions hold for any N ∈ ELDB(D).

(cg-i) g(N) is a conditional guard object for WTrimN〈〈D,UT 〉〉.

(cg-ii) If N ′ ∈ ELDB(D) with (N,N ′) ∈ Π; i.e., if N and N ′ are equivalent under Π, then
g(N) = g(N ′).

There are two forms of condition which are present in a conditional guard pair which are
absent in an ordinary guard function. First of all, the guard for a given state N ∈ ELDB(D) is
conditional in the sense of Definition 6.1. Second, the same ground update may have different
conditional guards, depending upon the state. This is in stark contrast to an ordinary guard
function, in the sense of Definition 5.8.

Examples 6.3 (Conditional guards) These ideas are best illustrated via example. Consider
again the schema E′1 of Sec. 1, and consider a typical transaction, say τ d1ij, which applies the
update di←dij − eij conditionally, just in case dij + di(j+1)mod n1 − eij ≥ 1000. Recall also the

38

applicable constraint ϕd1i, given by
∑n1−1

j=0 dij ≥ 1000, and that all data values are nonnegative

integers. The conditional guard pair 〈gd1ij,Π2
1ij〉 in which gd1ij : ELDB(E′1) → CondGd〈E′1〉 for

τ d1ij is defined on elements by

M 7→

{
〈{dij, di(j+1) mod n1|},Pd

1′ij〉 if M(dij − eij) < 1000

〈∅, {�DB}〉 if M(dij − eij) ≥ 1000

with

Pd
1′ij = {N ∈ ELDB(JD|{dij, di(j+1) mod n1}K) | dij + di(j+1) mod n1 − eij ≥ 1000}

and Π2
1ij is the partition of ELDB(D) which has two blocks, one one in which the states have

dij−eij < 1000, and a second in which dij−eij ≥ 1000. In the second line of the definition of gd1ij
on elements, 〈∅, {�DB}〉 states that no membership check is made, since the empty data object ∅
has just one possible database, �DB. Thus, the update is always performed if M(dij−eij) ≥ 1000.
Note also that dij lies in both the update set {dij} and the guard set {dij, di(j+1)mod n1|} in the
first case; these sets cannot be disjoint for this transaction.

In the example above, there is only one nontrivial guard object. However, there may
be several. Assume that n1 ≥ 3, and let τ̈ d1ij be the transaction which has two cases. If
ei(j+1)mod n1 ≥ 99, then it applies the update dij ← dij − eij conditionally, just in case dij +
di(j+1)mod n1 − eij ≥ 1000. On the other hand, if ei(j+1)mod n1 < 99, it applies the same update
dij←dij − eij conditionally, but this time just in case dij + di(j−1)mod n1 − eij ≥ 1000. Here the
same ground update is tested with different conditions, depending upon the value of ei(j+1)mod n1 .
The conditional guard pair 〈g̈d1ij,Π3

1ij〉 in which g̈d1ij : ELDB(E′1)→ CondGd〈E′1〉 for τ̈ d1ij is defined
on elements by

M 7→

〈{dij.di(j+1) mod n1|},P

d≥
1′ij〉 if M(dij − eij) < 1000 ∧M(ei(j+1) mod n1) ≥ 99

〈{dij, di(j−1) mod n1|},Pd<
1′ij〉 if M(dij − eij) < 1000 ∧M(ei(j+1) mod n1) < 99

〈∅, {�DB}〉 if M(dij − eij) ≥ 1000

with

Pd≥
1′ij ={N ∈ ELDB(JD|{dij, di(j+1) mod n1}K) | dij + di(j+1) mod n1 − eij ≥ 1000}

Pd<
1′ij ={N ∈ ELDB(JD|{dij, di(j−1) mod n1}K) | dij + di(j−1) mod n1 − eij ≥ 1000}

and Π3
1ij the partition which divides ELDB(E1) into three blocks, one in which the states have

dij− eij < 1000 and ei(j+1)mod n1 ≥ 99, a second in which dij− eij < 1000 and ei(j+1)mod n1 < 99,
and a third in which dij − eij ≥ 1000. Note in particular that the same ground update may be
applied with two distinct conditional guard functions. If ei(j+1)mod n1 ≥ 99, then the element
di(j+1)mod n1 to the right (modulo n1) of dij is used to validate the constraint conditionally. On
the other hand, if ei(j+1)mod n1 < 99, then the element di(j−1)mod n1 to the left (modulo n1) is
used.

The second example in particular illustrates just how complex conditional guard pairs can
become. This leads to significant implementation issues, as are discussed next.

39

Discussion 6.4 (Implementation of conditional guards and lazy evaluation of ordi-
nary guards) As described in Discussion 5.25, it is highly desirable to have a central authority
manage the enforcement of integrity constraints, even extended constraints. The above exam-
ples show that this will be a very difficult task when conditional guards are involved. Triggers,
the natural tool for managing guards, operate on ground updates. A trigger is not aware of
how the proposed ground update was obtained; it only knows that there is a request to perform
it, and it must perform a full check to make certain that no constraints will be violated. Thus,
the only feasible way to support conditional guards is to allow the transaction itself to manage
the entire process of integrity enforcement. As noted in Discussion 5.25, this carries a large
risk in that even one faulty transaction will corrupt the entire database. Therefore, it must
be accepted that if enforcement of extended integrity constraints is a priority, then conditional
guards are not a viable option. It is crucial to keep in mind that excluding conditional guards
would not exclude any transactions; rather, it would require the use of ordinary guards, which
may involve a higher rate of false positives.

Even if conditional guards are not used, it is possible for a trigger to avoid reading the entire
guard in some cases. Consider again the schema E′1 of the introduction, together with the
transaction τ dij for fixed i and j, which applies the update dij←dij − eij provided no constraint

violation will result. The constraint ϕd1i, given by
∑n1−1

j=0 dij ≥ 1000, yields that a guard object
for any instance of this transaction with dij − eij < 1000 is {dik | (0 ≤ k ≤ n1)∧(k 6= j)}.
However, a trigger which implements this guard need not read all of it in all cases. A further
constraint on E′1 is that all data objects have nonnegative values. Therefore, if the code of
the trigger reads the elements of {dik | (0 ≤ k ≤ n1)∧(k 6= j)} one at a time and maintains a
running sum of dij−eij plus the elements already read, it may stop as soon as that sum reaches
1000. Whether this will actually improve performance is questionable, since block reads are
generally more efficient than individual, one-at-a-time reads, but it does show that such lazy
evaluation could be used to limit the read set. This is significant if the strategy sketched in
Discussion 5.25, which obtains the guard set from the actual reads of the trigger, is used. In
this case, such a strategy will underreport the trigger set, so the guard set must be determined
in another way.

Definition 6.5 (CPSI+SSI) As illustrated via Examples 5.22, there are schedules for which
SSI reports possible nonserializability while CDSG reports that no constraint violation is pos-
sible. On the other hand, as illustrated in Sec. 1 using E′1 and in particular the situation
illustrated in Fig. 1.4, CPSI may report a possible constraint violation for a schedule which
SSI reports to be serializable. Thus, each strategy can produce false positives which the other
does not. It is easy to conceive of a strategy which runs both tests, and which will be called
CPSI+SSI. This strategy will have a false positive only if both CPSI and SSI both report pos-
itive falsely, indicating possibility of constraint violation (CPSI) or of nonserializability (SSI),
when neither is actually the case. It has the advantage that since implementations of SSI al-
ready exist, if CPSI is implemented in such a system, and if CPSI reports a possible constraint
violation, then that report by CPSI may safely be disregarded if SSI reports serializability.
Similarly, if SSI reports nonserializability while CPSI reports no constraint violation, then the
transactions may be allowed to complete. This would require at most a straightforward modi-
fication of a system which supports CPSI and which also has SSI built in, to run the SSI test
but to allow the constraint manager to decide how to use its result.

40

It is possible to reduce the occurrence of false positives by modifying SSI so that it it
does not enforce full serializability, but rather only possible constraint violation. This idea is
explored next.

Definition 6.6 (The CDSG) Recall from Discussion 3.18 the distinction between the in-
tegrity context and the grounding context. For the purpose of detecting constraint viola-
tion, as opposed to full serializability, it is convenient to work with a variant of the DSG
which includes only integrity reads, while excluding grounding reads which are not integrity
reads. Formally, let ≤T be a schedule and let M ∈ ELDB(D). The associated constraint
DSG, or CDSG for short, denoted CDSG〈≤T :M〉, is the same as the DSG, save for that
only integrity reads (i.e., reads of the integrity context) are included. To be more precise,
begin by identifying three sets of data objects for a transaction T operating on initial snap-
shot M . InRdSet〈T,≤T : M〉 is the set of all integrity reads which transaction T performs,
GrRdSet〈T,≤T : M〉 the set of all grounding reads which it performs, and WrSet〈T,≤T : M〉 is
the set of all writes which it performs, all within the context of ≤T for initial state M . Then
there is a rw-edge T1

rw−→ T2 in CDSG〈≤T :M〉 iff there is the same edge in DSG〈≤T :M〉, with
the further property that there is an x ∈ InRdSet〈M,≤T : T1〉 ∩WrSet〈M,≤T : T2〉. Similarly,

there is a wr-edge T1
wr−→ T2 in CDSG〈≤T :M〉 iff there is the same edge in DSG〈≤T :M〉, with

the further property that there is an x ∈ WrSet〈M,≤T : T1〉 ∩ InRdSet〈M,≤T : T2〉. The ww-
edges of CDSG〈≤T :M〉 are exactly those of DSG〈≤T :M〉. Keep in mind that it need not be
the case that InRdSet〈T,≤T : M〉 ∩GrRdSet〈T,≤T : M〉 = ∅. Integrity reads which also happen
to be grounding reads are included in CDSG〈≤T :M〉.

It is important to understand that an rw-edge of CDSG〈≤T :M〉 is not necessarily the same
as a gw-edge of GDSG〈≤T :M〉. The rw- and wr-edges in CDSG〈≤T :M〉 represent actual reads
by the transaction. On the other hand, gw-edges in GDSG〈≤T :M〉 represent guards, which are
properties of ground updates. In Fig. 1.4, the actual reads are all integrity reads, illustrating
that this set may be much smaller than the guard set, although, as sketched in Discussion 6.4,
such an implementation may be difficult and not worth the additional cost.

Definition 6.7 (CSSI) Constraint-only SSI, or CSSI for short, is the strategy which operates
exactly as SSI (see Summary 5.19), except that it works with the CDSG instead of the full
DSG. It flags a conflict precisely in the case that the CDSG has a potential dangerous structure.

It will next be shown that CSSI works.

Definition 6.8 (The grounding of a DSG) Let T ∈ T and let N ∈ LDB(D). The
grounding of T with respect to N , denoted GndTrN〈T 〉, is obtained by hardwiring the ground
update of T to be that obtained by using the initial snapshot N . For example, in the context
of τ33 on E3, defined by xc←xc − zc as in Discussion 3.18, if xc = 300, yc = 300, and zc = 100
in N , then the grounding of T with respect to N hardwires the update to be xc←200. On the
other hand, if xc = 300, yc = 300, and zc = 200 in N , then the grounding of then the grounding
of T with respect to N hardwires the update to no change, since the constraint xc + yc ≥ 500
would be violated.

Now let ≤T be a schedule of the set T of transactions and let M ∈ ELDB(D). The
grounding of ≤T for M , denoted ≤T:M , is obtained from ≤T by replacing each T ∈ T with
GndTrInitSnap〈≤T : M〉〈T 〉〈T 〉, with InitSnap〈≤T : M〉〈T 〉 the initial snapshot which T sees in ≤T for

initial database M to ≤T , as developed in Definition 4.2.

41

The grounding of DSG〈≤T :M〉 for M , denoted GndDSG〈≤T :M〉, is DSG〈≤T:M :M〉. Tech-
nically, DSG〈≤T:M :M〉 is a schedule on the set {GndTrInitSnap〈≤T : M〉〈T 〉〈T 〉 | T ∈ T} of grounded

transactions. However, since this notation is very cumbersome, when no confusion can re-
sult, GndTrInitSnap〈≤T : M〉〈T 〉〈T 〉 will be represented by just T in the graph GndDSG〈≤T :M〉,
so that it becomes a graph with vertices in T, just as is DSG〈≤T :M〉. The difference is
that GndDSG〈≤T :M〉 has had all grounding reads excised, with the equivalent ground updates
hardwired into the corresponding transactions.

Lemma 6.9 (CDSG cycle free implies constraint preserving) Let M ∈ ELDB(D). If
GndDSG〈≤T :M〉 is free of cycles, then ≤T is constraint preserving for initial state M .

Proof Using exactly the same argument which establishes that ≤T is serializable if DSG〈≤T :M〉
is free of cycles, it follows that if GndDSG〈≤T :M〉 is free of cycles, then ≤T:M is serializable [1,
Sec. 5.3]). Now, from initial state M ∈ ELDB(D), ≤T and ≤T:M produce exactly the same final
state, since each transaction produces exactly the same output. Thus, since ≤T:M is serializable
for initial state M , it is a fortiori constraint preserving, whence ≤T is constraint preserving for
initial state M as well. 2

Theorem 6.10 (CSSI is constraint preserving) For any M ∈ ELDB(D), if
GndDSG〈≤T :M〉 is free of potential dangerous structures, then ≤T is constraint preserving
for initial state M .

Proof The argument is identical to that which shows that SSI works. If GndDSG〈≤T :M〉 does
not contain a potential dangerous structure, then it must be cycle free. (See Summary 5.19
and the references there for further information.) An invocation of Lemma 6.9 completes the
proof. 2

Definition 6.11 (CSSI+CPSI) CSSI may be combined with CPSI to obtain a hybrid, which
will be called CPSI+CSSI. The idea is analogous to that of CPSI+SSI — CPSI and CSSI are
run in parallel, and as long as either one reports that the schedule is constraint preserving,
the computation is allowed to continue. Since both CSSI (Theorem 6.10) and CPSI (Theorem
5.21) have been shown to be correct, it follows immediately that CSSI+CPSI is also correct.

Examples 6.12 (CPSI+SSI and CPSI+CSSI) It is instructive to illustrate the kind of
situations which one but not the other of CPSI and CSSI flags as a false positive. First of all, in
the context of EA, any three of the four transactions described in Examples 5.22 and presented
visually in Fig. 5.4, form the basis for a potential dangerous structure in GDSG〈≤T :M〉 for any
M ∈ ELDB(EA), while all four together form a true cycle in that graph. On the other hand,
no pair of these transactions forms a gw-pair, so CPSI certifies it to be constraint preserving
for any initial state.

For an example which has perhaps a better ground in modelling financial transactions,
return to the schema E3 of Examples 3.5, and consider three transactions. The transaction
τ3e has the update defined by the single assignment x1 ← x1 − 50, which may be thought
of as a withdrawal from account x1. The transaction τ3f has the update defined by the two
assignments x2←x2− 50 and y1←y1 + 50, which may be thought of as a transfer from account
x2 to account y1. Finally, the transaction τ3g has the update defined by the two assignments
x3 ← x3 − 10 and y2 ← y2 + 10, which may be thought of as a transfer from account x3 to

42

account y2. Then τ3e
rw−→ τ3f

rw−→ τ3g forms a potential dangerous structure in CDSG〈≤T :M〉
for any M ∈ ELDB(D) for which these updates do not create any constraint violations when the
transactions are run in isolation, yet no pair of these transactions forms a gw-pair. The problems
is that CSSI does not distinguish rw-pairs involving “benign” updates, such as deposits, which
cannot lead to a constraint violation, from more general writes. It is true, for example, that
τ3f writes the guard of τ3e, but this write is guaranteed not to cause a constraint violation, so
the definition of independence (see Definition 5.20) does not flag it as a problem.

The schema E′1, introduced in Sec. 1, provides the context for situations which CSSI flags as
constraint preserving while CPSI produces false positives. For any fixed i with 0 ≤ i ≤ m1− 1,
any pair {τ d1ij1 , τ

d
1ij2
} with j1 6= j2 forms a gw-pair. Yet, the only potential dangerous structures

are of the form τ d1ij
rw−→ τ d1i(j+1)mod n3

rw−→ τ d1i(j+2)mod n3
. In this case, CSSI does not flag any

false positives which CPSI does not also flag.

Discussion 6.13 (Possible improvements to CPSI+CSSI) In CPSI+CSSI,
the tests of each of the two components are independent of one another. One possible im-
provement would be to find a characterization which employs both simultaneously. It might
be conjectured that for a schedule to fail constraint preservation, there must be a poten-
tial dangerous structure in which both concurrent pairs are also gw-pairs. Unfortunately, it
is easy to show that this need not be the case. As a specific example, return once again

τ3e τ3h

τ3r

rw〈y1〉

ww〈y1〉rw〈x1〉

Figure 6.1: A
potential dan-
gerous structure
containing only
one gw-pair

to the schema E3 of Examples 3.5, and consider the three transactions
τ3e defined by x1← x1 − 50, τ3h defined by y1← y1 + 50, and τ3r defined
by y1← y1 − 100, with {τ3r, τ3e} and {τ3e, τ3h} each concurrent pairs, as

illustrated in Fig. 6.1. The arrangement τ3r
rw−→ τ3e

rw−→ τ3h forms a
potential dangerous structure in the CDSG, yet {τ3e, τ3h} does not form
a gw-pair.
On the other hand, it does appear that in any dangerous structure
T1

rw−→ T2
rw−→ T3, the first concurrent pair {T1, T2} must also be a gw-

pair. However, the proof requires the lengthy development of a number of
properties of the DSG, and is beyond the scope of this paper, so for the
time being, this is left as an unproven conjecture. Nevertheless, such a
result would be very useful in limiting the number of false positives, and
so increasing the attractiveness of a strategy which combines CPSI with
a variant of SSI.

7 Conclusions and Further Directions

A method for identifying conflicts leading to violations of integrity constraints in transactions
whose concurrency is governed by snapshot isolation has been presented. In contrast to methods
for ensuring full serializability, the method of identification involves only pairs of transactions.
It promises to have application in settings in which aborting and or delaying the execution of
transactions is not a viable option.

There are several key areas for further work on this subject.

Prototype implementation: It would definitely be useful to implement a prototype of
CPSI. This would be done using an open-source system such as PostgreSQL or MariaDB by

43

modifying the source code to capture the reads performed by triggers and then feeding that
information to the transaction manager. It would be particularly advantageous to modify a
system which already supports SSI, since that would facilitate implementation of CPSI+SSI
and even CPSI+CSSI.

Strategies for revising transactions: The motivation for this work arose from earlier
studies on cooperative updates [14, 12]. The focus there is particularly upon interactive, long-
running business processes in which abort and restart for transactions is not a viable option.
Rather, the best strategy in such settings would seem to be to identify methods for cooperative
revision of updates in the case of conflict. The current work constitutes a substantial step in
that direction, in that the conflicts which are considered are between pairs of transactions,
rather than large sets. The goal of exploiting the current work in that context is a subject for
further study.

Integration with SSI and its variants: As suggested in Sec. 6, it may be fruitful to
combine CPSI with SSI or CSSI, in order to obtain a strategy for constraint preservation
which is superior to either one alone. This will require, in particular, the solution of some
theoretical problems, as sketched in Discussion 6.13.

Integration with work on independence and overlap: In [11], the foundations for a
theory of structured data objects for transactions is developed. These structured objects have
both writeable parts and read-only parts, with the read-only parts allowed to overlap, even
for writeable objects. As that work was also motivated by work on cooperative updates, an
integration of those results with the ideas of this paper would likely prove a fruitful area for
study.

Acknowledgments: M. Andrea Rodŕıguez, as well as the anonymous referees, made valuable
comments on earlier drafts which have led to the improvement of this version.

References

[1] Adya, A., Liskov, B., O’Neil, P.E.: Generalized isolation level definitions. In: D.B. Lomet,
G. Weikum (eds.) Proceedings of the 16th International Conference on Data Engineering,
San Diego, California, USA, February 28 - March 3, 2000, pp. 67–78 (2000)

[2] Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A critique
of ANSI SQL isolation levels. In: Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, San Jose, California, May 22-25, 1995, pp. 1–10
(1995)

[3] Bernstein, P., Newcomer, E.: Principles of Transaction Processing, second edn. Morgan
Kaufmann (2009)

[4] Breitbart, Y., Georgakopoulos, D., Rusinkiewicz, M., Silberschatz, A.: On rigorous trans-
action scheduling. IEEE Trans. Software Eng. 17(9), 954–960 (1991)

44

[5] Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snapshot databases. ACM
Trans. Database Syst. 34(4) (2009)

[6] Date, C.J.: A Guide to the SQL Standard. Addison-Wesley (1997). (with Hugh Darwen)

[7] Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, sixth edn. Addison Wesley
(2011)

[8] Eswaran, K.P., Gray, J., Lorie, R.A., Traiger, I.L.: The notions of consistency and predi-
cate locks in a database system. Comm. ACM 19(11), 624–633 (1976)

[9] Fekete, A., Liarokapis, D., O’Neil, E.J., O’Neil, P.E., Shasha, D.: Making snapshot isola-
tion serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005)

[10] Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM Com-
put. Surv. 15(4), 287–317 (1983)

[11] Hegner, S.J.: A model of independence and overlap for transactions on database schemata.
In: B. Catania, M. Ivanović, B. Thalheim (eds.) Advances in Databases and Information
Systems, 14th East European Conference, ADBIS 2010, Novi Sad, Serbia, September
20-24, 2010, Proceedings, Lecture Notes in Computer Science, vol. 6295, pp. 209–223.
Springer-Verlag (2010)

[12] Hegner, S.J.: A simple model of negotiation for cooperative updates on database schema
components. In: Y. Kiyoki, T. Tokuda, A. Heimbürger, H. Jaakkola, N. Yoshida. (eds.)
Frontiers in Artificial Intelligence and Applications XX11, pp. 154–173. IOS Press (2011)

[13] Hegner, S.J.: Guard independence and constraint-preserving snapshot isolation. In:
C. Bierle, C. Meghini (eds.) Foundations of Information and Knowledge Systems: Eighth
International Symposium, FoIKS 2014, Bordeaux, France, March 3-7, 2014, Proceedings,
Lecture Notes in Computer Science, vol. 8367, pp. 231–250. Springer-Verlag (2014)

[14] Hegner, S.J., Schmidt, P.: Update support for database views via cooperation. In: Y. Ioan-
nis, B. Novikov, B. Rachev (eds.) Advances in Databases and Information Systems, 11th
East European Conference, ADBIS 2007, Varna, Bulgaria, September 29 - October 3, 2007,
Proceedings, Lecture Notes in Computer Science, vol. 4690, pp. 98–113. Springer-Verlag
(2007)

[15] Kifer, M., Bernstein, A., Lewis, P.M.: Database Systems: An Application-Oriented Ap-
proach, second edn. Addison-Wesley (2006)

[16] Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM Trans.
Database Systems 6(2), 213–226 (1981)

[17] Lin, Y., Kemme, B., Jiménez-Peris, R., Patiño-Mart́ınez, M., Armendáriz-Iñigo, J.E.:
Snapshot isolation and integrity constraints in replicated databases. ACM Trans. Database
Systems 34(2) (2009)

[18] Papadimitriou, C.: The Theory of Database Concurrency Control. Computer Science
Press (1986)

45

[19] Ports, D.R.K., Grittner, K.: Serializable snapshot isolation in PostgreSQL. Proc. VLDB
Endowment 5(12), 1850–1861 (2012)

[20] Revilak, S., O’Neil, P.E., O’Neil, E.J.: Precisely serializable snapshot isolation (PSSI). In:
Proceedings of the 27th International Conference on Data Engineering, ICDE 2011, April
11-16, 2011, Hannover, Germany, pp. 482–493 (2011)

[21] Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: Consistency and serializability in con-
current database systems. SIAM J. Comput. 13(3), 508–530 (1984)

[22] Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, sixth edn. Mc-
Graw Hill (2011)

[23] Weikum, G., Vossen, G.: Transactional Information Systems. Morgan Kaufmann (2002)

46

	Introduction
	An Overview of Snapshot Isolation
	Data Objects, Schemata, Updates, and Transactions
	A Formal Model of Concurrency and Snapshot Isolation
	Constraint Preservation and Basic CPSI
	Enhancements to CPSI
	Conclusions and Further Directions

