
Information-Based Distane Measuresand the Canonial Re�etion of View UpdatesStephen J. HegnerUmeå UniversityDepartment of Computing SieneSE-901 87 Umeå, Swedenhegner�s.umu.sehttp://www.s.umu.se/~hegnerAbstratFor the problem of re�eting an update on a database view to the main shema, theonstant-omplement strategies are preisely those whih avoid all update anomalies, andso de�ne the gold standard for well-behaved solutions to the problem. However, thefamilies of view updates whih are supported under suh strategies are limited, so it issometimes neessary to go beyond them, albeit in a systemati fashion. In this work, aninvestigation of suh extended strategies is initiated for relational shemata. The approahis to haraterize the information ontent of a database instane, and then require that theoptimal re�etion of a view update to the main shema embody the least possible hangeof information. The key property is identi�ed to be strong monotoniity of the view,meaning that view insertions may always be re�eted as insertions to the main shema,and likewise for deletions. In that ontext it is shown that for insertions and deletions,an optimal update, entailing the least hange of information, exists and is unique up toisomorphism for wide lasses of onstraints.1 Introdution1.1 The limitations of onstant omplement The problem of re�eting view updatesto the main shema of a database system is a di�ult one whose solution invariably involvesompromise. The onstant-omplement approah [BS81℄ avoids all so-alled update anomalies[Heg04℄, and so is the gold standard for well-behaved strategies. On the other hand, it isalso quite onservative regarding the updates whih it admits. A short example will help toillustrate the sope of this approah. Let E0 be the relational shema onsisting of the singlerelation symbol R[ABC], onstrained by the join dependeny 1 [AB,BC], and let ΠE0

AB bethe view whose single relation symbol is RAB[AB] and whose morphism πE0

AB is the projetionof R[ABC] onto AB. In the onstant-omplement strategy, all updates to ΠE0

AB must hold aso-alled omplementary view �xed. The natural omplement to ΠE0

AB is the view ΠE0

BC , de�nedby the projetion of R[ABC] onto RBC [BC]. It is easy to see that the updates to ΠE0

AB whihhold ΠE0

BC �xed are preisely those whih hold the projetion onto B �xed. Thus, for example, ifReport: orreted 20110218 AMAI2009 page 1



{R(a0, b0, c0), R(a1, b1, c1)} is the urrent instane of E0, so that the instane of the view shemais {RAB(a0, b0), RAB(a1, b1)}, then insertion of RAB(a2, b1) is realized by inserting R(a2, b1, c1)into the instane of the main shema. Unfortunately, even so simple an update as inserting
RAB(a2, b2) into ΠE0

AB is not supported, sine the projetion onto B annot be held �xed undersuh an update.Of ourse, there is a reason for this limitation. In order to insert RAB(a2, b2) into theview, it is neessary to insert some tuple of the form R(a2, b2, cx) into the main shema, withinformation about cx not visible within the view. Suh an insertion would violate the priniplethat views be enapsulated with respet to the updates whih are allowed, in the sense thatthe e�et of all suh updates be ontained entirely within the view itself. It is preisely theonstant-omplement strategy whih guarantees this sort of enapsulation [Heg04, Se. 1.2℄.Nevertheless, there are ertainly situations in whih it is desirable, if not neessary, to lift thislimitation in a ontrolled manner. The goal of this paper is to develop an extension to theonstant-omplement strategy whih admits a wider lass of view updates while preserving asmany of the desirable properties of the original strategy. In partiular, the following threeproperties are regarded as unompromisable.Invariane of admissibility : The admissibility of a view update must depend only upon theurrent view instane, and not upon the instane of the main shema whih gave rise to it.Canoniity of re�etions: All allowable re�etions of a view update to the main shema mustbe equivalent up to some natural notion of isomorphism.Re�etion of monotoniity : If the view mapping is monotoni, then every insertion (resp.deletion) on the view must be re�eted as an insertion (resp. deletion) on the main shema.These onditions are all natural extensions of that whih is expeted from a onstant omple-ment strategy. Invariane of admissibility is always satis�ed by a onstant-omplement strategy;see (:1) of [Heg04, Se. 1.2℄. While the re�etion de�ned by a onstant-omplement strategymay in priniple depend upon the hoie of omplement, it has been shown that it is in fatindependent of that hoie when the view morphism is monotoni [Heg04, Thm. 4.3℄ [Heg08,Cor. 4.24℄. Re�etion of monotoniity is similarly guaranteed in wide variety of irumstanes;see [Heg04, Def. 3.1 (upt:6)℄ and [Heg08℄.Muh of the existing work on this problem, suh as [DB82℄, [Kel85℄, [Lan90℄, [BL97℄, and[BL98℄, fouses upon translation of view updates via the relational algebra. As suh, while theyprovide useful insight into ommonly ourring problem instanes, and all support the simpleupdate problem of inserting RAB(a2, b2) skethed above, they do not provide a uni�ed theoryof how and under whih irumstanes view updates ould be re�eted. While suh a detailedomparison is a very interesting topi, it must be left to a di�erent paper.1.2 Database repairs, distane measures, and information ontent More losely re-lated to the approah developed here is one whih has been developed in the logi-programmingommunity � database repair. Roughly, in the repair problem, a database M is given whihis inonsistent with respet to a set Ψ of onstraints, the task being to �repair� M to aonsistent version M ′ whih obeys the onstraints in Ψ. It is straightforward to reast aview-update problem in this ontext, at least in priniple. Extending the example of 1.1,Report: orreted 20110218 AMAI2009 page 2



let E
′
0 be the shema whih augments E0 with the relation symbol RAB[AB] together withits de�ning onstraint (∀x)(∀y)(RAB(x, y) ⇔ (∃z)(R(x, y, z))). Thus, the urrent instane ofthis shema is Mold = {R(a0, b0, c0), R(a1, b1, c1), RAB(a0, b0), RAB(a1, b1)}. The �defetive�new instane whih inludes the inserted view tuple RAB(a2, b2) but not the orrespondingupdate to the main shema is M ′def = Mold ∪ {RAB(a2, b2)}. The task is to repair M ′defto be a legal instane, i.e., one whih satis�es the integrity onstraints of E0, subjet tothe ondition that the instane of RAB is held onstant. A ranking funtion measures thequality of the of various solutions. For any two sets S1 and S2, let SymDiff〈S1, S2〉 de-note their symmetri di�erene (S1 \ S2) ∪ (S2 \ S1), and let Card(Si) denote the ardinal-ity of Si. Two prinipal measures are subset ranking in whih Mnew is preferred to M ′new if

SymDiff〈Mold,Mnew〉 ⊆ SymDiff〈Mold,M ′new〉 and the ount ranking in whih Mnew is preferredto M ′new if Card(SymDiff〈Mold,Mnew〉) ≤ Card(SymDiff〈Mold,M ′new〉). Under either of thesemeasures, the optimal solutions are preisely those of the form Insert〈R(a2, b2, v)〉, with v anyallowable value for the domain C. See [ADNB06℄ for further details, as well as a omprehensivelist of other papers whih employ related approahes.A drawbak of both of these measures is that tuple similarity is an all-or-nothing a�air � alltuples whih are not idential are equally di�erent from one another. Consequently, R(a0, b0, c1)is just as di�erent from R(a0, b0, c0) as is R(a1, b1, c1). Reently, more sophistiated distanemeasures have been proposed [ADB07℄, some of whih are based upon (pseudo-)distane mea-sures of individual tuples, suh as those proposed in [Hut97℄ or [NC97℄. These tuple-basedmeasures may then be extended to sets of tuples via measures suh as that of Eiter and Man-nila [EM97℄, whih de�nes the distane between database instanes M1 and M2 in terms of thedistanes between tuples to be
Dist〈M1,M2〉 =

1

2
·

(

∑

t1∈M1

min
t2∈M2

Dist〈t1, t2〉+
∑

t2∈M2

min
t1∈M1

Dist〈t1, t2〉

)

.Using a model of distane between tuples suh as that of [NC97℄, whih de�nes suh dis-tane in terms of how muh eah term of one tuple di�ers from the orresponding term in theother, and assuming that distint terms have positive distane from one another, it follows that
Dist〈R(a2, b2, c1), R(a1, b1, c1)〉 < Dist〈R(a2, b2, c2), R(a1, b1, c1)〉 and so Insert〈R(a2, b2, c1)〉 ispreferred to Insert〈R(a2, b2, c2)〉 in support of the view update request Insert〈RAB(a2, b2)〉.Similarly, Insert〈R(a2, b2, c0)〉 is preferred to Insert〈R(a2, b2, c2)〉, while Insert〈R(a2, b2, c0)〉 and
Insert〈R(a2, b2, c1)〉 are of equal preferene.Despite the obvious attrativeness of suh tuple-based metris from both a mathematial andan aestheti point of view, in this paper it is argued that quite a di�erent type of metri is moreappropriate � one whih in fat prefers Insert〈R(a2, b2, c2)〉 to both Insert〈R(a2, b2, c1)〉 and
Insert〈R(a2, b2, c0)〉� preisely the opposite of that whih the above tuple-based metri advises.The idea is to measure the information ontent of database instanes relative to a set of sen-tenes, and to prefer updates whih involve less hange of information. More preisely, relativeto a set Φ of sentenes, the information ontent Info〈M,Φ〉 of the database instaneM is the setof all sentenes in Φ whih are satis�ed by M . The information distane relative to Φ betweendatabase instanes M1 and M2 is then ∆〈(M1,M2),Φ〉 = SymDiff〈Info〈M1,Φ〉, Info〈M2,Φ〉〉.The information distane between M1 and M2 is thus not a number but rather the set of for-mulas of Φ on whihM1 andM2 di�er. Preferene of repairs is then de�ned in the obvious way,with hanging M1 to M2 preferred to hanging M1 to M3 if ∆〈(M1,M2),Φ〉 ⊆ ∆〈(M1,M3),Φ〉.Report: orreted 20110218 AMAI2009 page 3



The utility of this approah depends, of ourse, upon a suitable hoie for Φ. If Φ hosen tobe the set of all atoms for the shema, then information distane redues to subset ranking asde�ned above. The most suitable hoie in many situations is to let Φ be the set of all sentenesin the language of the shema whih are existential (no universal quanti�ation), positive (nonegation of any kind), and onjuntive (no disjuntion), and whih employ at most the onstantsymbols whih our in the formulation of the update itself � those whih our in the urrentinstanes of the main shema and the view as well as those whih our in the proposed newinstane of the view. In the ontext of repairs, if the proposed update is an insertion, thenthis amounts to just the onstant symbols whih our in the database to be repaired. Onthe other hand, if deletion of tuples is also allowed, then the onstant symbols in tuples to bedeleted must also be inluded. Updates will be formalized in detail in the ore of this paper;for now, it su�es to write ConstSym(u) for the set of all onstant symbols whih our inthe update request u. Then, using the notation to be introdued in the next setion, thesentenes of importane are WFS(D , ∃∧+,ConstSym(u)), with D the database shema underonsideration.Returning to the example based upon E
′
0, whih augments E0 with the relation symbol

RAB[AB] together with its de�ning onstraint, insertion of RAB(a2, b2) into the view requiresthat the sentene (∃z)(R(a2, b2, z)) be true in the main shema. This may be satis�ed bybinding z to any available onstant and adding the orresponding tuple. However, if it is boundto a onstant in ConstSym(Mdef′) = {a0, a1, a2, b0, b1, b2, c0, c1}, then additional sentenes willappear in the information ontent of the new instane. For example, if z is bound to c1, thenthe sentene RAB(a2, b2, c1) will also be in the information ontent of the new instane, as wouldthe sentene (∃z)(R(a1, b1, z)∧R(a2, b2, z)). Neither would be true were R(a2, b2, c2) insertedinstead. Thus, to add the least possible information relative to sentenes whih only involveonstants whih are already used, z must be bound to a onstant whih does not our in
ConstSym(Mdef′). Intuitively, this orresponds to binding it to a generi onstant, and not onewhih also plays some other r�le in the database.By itself, this information-based approah does not ensure tuple minimality. The insertionof both R(a2, b2, c2) and R(a2, b2, c3) into Mold produes exatly the same added informationas does the insertion of either alone, sine eah tuple adds preisely (∃z)(R(a2, b2, z)) to theinformation ontent. To remedy this, tuple minimality (i.e., minimality with respet to subsetranking) is also required. Thus, an optimal repair, whenever it exists, must be tuple minimalas well as minimal with respet to information hange.1.3 Further example To illustrate the ideas of information-based optimization of updatesmore ompletely, a slightly more omplex example is presented. Let E1 be the relationalshema with relations R[ABC] and S[CD], onstrained by the inlusion dependeny R[C] ⊑
S[C]. Regard a database as a set of ground atoms over the assoiated logi. For example,
M00 = {R(a0, b0, c0), R(a1, b1, c1), S(c0, d0), S(c1, d1)} is suh a database. Now, let K be a setof onstants in the underlying logial language, regarded as domain elements for this shema.For information ontent, the base set Φ of sentenes is WFS(E1, ∃∧+, K), the set of all positive(i.e., no negation, expliit or impliit), existential, and onjuntive sentenes in the languageof the shema E1 whih involve at most the onstant symbols in K. Relative to this set, theinformation ontent of M is the set of all sentenes in WFS(E1, ∃∧+, K) whih are implied by
M . The entral step is to hoose K properly. Using the notation to be introdued in 3.2, thisReport: orreted 20110218 AMAI2009 page 4



information ontent is denoted Info〈M,WFS(E1, ∃∧+, K)〉.A over for this information ontent is a subset Ψ ⊆ Info〈M,WFS(E1, ∃∧+, K)〉 suh that Ψand Info〈M,WFS(E1, ∃∧+, K)〉 are logially equivalent. For K00 = {a0, a1, b0, b1, c0, c1, d0, d1},the set of all onstant symbols of M00, the set M00 itself is learly a over for
Info〈M00,WFS(E3, ∃∧+, K00)〉. On the other hand, withK ′

00 = {a0, a1, b0, b1, c0, d0}, a over for
Info〈M00,WFS(E1, ∃∧+, K

′
00)〉 is {R(a0, b0, c0), S(c0, d0), (∃x)(∃y)(R(a1, b1, x)∧S(x, y))}. Notethat the onstants in K00 \K

′
00 have been replaed by existentially quanti�ed variables.To see how this idea is useful in the ontext of view updates, let ΠE1

RAB [AB]

= (RAB[AB], πE1

R[AB]) be the view of E1 whih projets R[ABC] onto RAB[AB] and whihdrops the relation S entirely. Consider M00 to be the initial instane of shema E1; its imageinstane in the view is then N00 = {RAB(a0, b0), RAB(a1, b1)}. Now, suppose that the viewupdate Insert〈RAB(a2, b2)〉 is requested, so that N01 = N00 ∪ {RAB(a2, b2)} is the desired newview instane, and onsiderM01 =M00∪{R(a2, b2, c2), S(c2, d2)} as a proposed re�etion to themain shema E1. Relative to its entire set K01 = {a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2} of on-stant symbols, a over for Info〈M01,WFS(E1, ∃∧+, K01)〉 is justM01 itself. Similarly, forM02 =
M00 ∪ {R(a2, b2, c3), S(c3, d3)} with K02 = {a0, a1, a2, b0, b1, b2, c0, c1, c3, d0, d1, d3} a over for
Info〈M02,WFS(E1, ∃∧+, K02)〉 is just M02 itself. However, relative to K00, whih onsists of theonstant symbols found in elements of M00, Info〈M01,WFS(E1, ∃∧+, K00)〉 =
Info〈M02,WFS(E1, ∃∧+, K00)〉 = M00 ∪ {(∃x)(∃y)(R(a2, b2, x)∧S(x, y))}. Denote this set ofsentenes by I1. This reaptures formally that the proposed updates M01 and M02 are identialup to a renaming of the new onstants. The utility of information measure is that it providesa means to reapture this idea formally.Now, onsider the alternative solution M03 = M00 ∪ {R(a2, b2, c3), S(c3, d1)} to this view-update problem. A over for Info〈M03,WFS(E1, ∃∧+, K00)〉 is I3 = M00 ∪
{(∃x)(R(a2, b2, x)∧S(x, d1))}, whih is stritly stronger than I1, i.e., I2 |= I1, sine
(∃x)(R(a2, b2, x)∧S(x, d1)) |= (∃x)(∃y)(R(a2, b2, x)∧S(x, y))), but not onversely. Thus, rela-tive to the information measure de�ned by K00, M03 adds more information to M00 than does
M01 or M02. Similarly, M04 = M00 ∪ {R(a2, b2, c0))} adds more information than does M01 or
M02, sine a over for its information ontent is just M04 itself, whih is stronger than I1, sine
R(a2, b2, c0)∧S(c0, d0) |= (∃x)(∃y)(R(a2, b2, x)∧S(x, y))), but not onversely.The �rst and primary measure of quality of a re�eted update is the hange of informationontent whih it indues. Under this measure, M01 and M02 are equivalent, and both are supe-rior to either of M03 or M04. However, this measure alone is not quite adequate. Rather, thereis an additional measure of quality whih must be taken into aount. To illustrate, onsiderthe proposed solutionM05 =M01∪M02 =M00∪{R(a2, b2, c2), R(a2, b2, c3), S(c2, d2), S(c3, d3)}to this update problem. It has the same information ontent, I1, relative to K00, as do M01and M02. The information measure annot distinguish the insertion of two new tuples withompletely new onstants from the insertion of just one. However, it is lear that M05 shouldbe onsidered inferior to both M01 and M02 as a solution to the given update problem, sine itis a proper superset of eah. Therefore, a seond riterion of quality is invoked; namely thatno solution whose set of hanges is a proper superset of those of another an be onsidered tobe superior. In the terminology introdued earlier in this setion, the update must be minimalunder subset ranking, and not just under ount ranking. For example, onsider again the pro-posed solution M04. From a strit ounting point of view, M04 involves fewer hanges than do
M01 or M02. However, neither M01 nor M02 is a superset of M04. Thus, the superiority of M01Report: orreted 20110218 AMAI2009 page 5



and M02 is not ontradited. In other words, only solutions whih are tuple minimal, in thesense that no proper subset of the hanges is also an admissible solution, are permitted.The main modelling premise of this paper is that the quality of a view update an bemeasured by the amount of hange in information ontent whih it indues, and so an optimalre�etion of a view update request is one whih is both tuple minimal and whih induesthe least amount of hange of information ontent. Under this premise, both M01 and M02 aresuperior to eah ofM03,M04, andM05. Furthermore, sineM01 andM02 indue the same hangein information ontent, they are equivalent. In Setion 3, it is established that, under suitableonditions, all suh optimal solutions are equivalent, up to a renaming of the onstant symbols.In Setion 4, it is established, again under suitable onditions, that for insertions, a minimalsolution (in terms of hange of information ontent) must be optimal. These onditions inludein partiular shemata onstrained by a very wide lass of dependenies alled generalized Horndependenies.In summary, there are two onditions whih must be met for optimality of a proposedupdate re�etion u. First, it must be tuple minimal, in that there an be no other solutionwhose set of hanges is a proper subset of those of u. Seond, it must indue a least hange ofinformation relative to a spei� set of sentenes. This approah applies also to deletions andupdates whih involve both insertion and deletion, and this generality is inorporated into theformalism whih is presented.1.4 Further issues Despite the onnetion to database repair just presented, the primaryfous of this paper is not to present yet another measure for suh repairs, but rather to presenta uni�ed approah to the support of updates on traditional relational shemata whih payspartiular attention to the requirements of invariane of admissibility, anoniity of re�etions,and re�etion of monotoniity. Suh an approah requires that areful hoies be made re-garding the lass of shemata and views whih are supported. Foremost, shemata or viewmappings whih allow disjuntion prelude anoniity of re�etions in most ases. For ex-ample, let E2 have the three unary relation symbols R[A], S[A], and T [A], subjet to theonstraint (∀x)(T (x) ⇔ (R(x)∨S(x))), and let ΩT be the view whih ontains only T [A]. Itis easy to see that anoniity of re�etions an never be satis�ed. Consider the database
Mold = {R(a0), S(a0), T (a0)}, with the insertion request Insert〈T (a1)〉. A minimal solutionwould insert either {R(a1), T (a1)} or else {(S(a1), T (a1)}; to insert {R(a1), S(a1), T (a1)} wouldnot be minimal. For this reason, attention in this work is restrited to relational shematawhih are restrited by Horn onstraints, suh as the XEIDs of Fagin [Fag82℄.Unfortunately, even within ontexts whih involve at most funtional dependenies (FDs)and projetions, two sorts of problems may our for insertions. First of all, an attemptedre�etion to the main shema of a view update may introdue new tuples in the main shema,alled orphan tuples, whose images are visible in the view. This phenomenon is illustrated viaa onrete example in 4.8. Seondly, an insertion to a given view instane may be possiblefor some instanes of the main shema whih map to it, but not others. This phenomenon isillustrated via a onrete example in 4.12. It is shown that these anomalies may be remedied byrequiring that the view be strongly monotoni � that is, that every deletion to the view maybe re�eted as a deletion to the main shema, and every insertion to the view may be re�etedas an insertion to the main shema. Simple onditions whih guarantee strong monotoniityfor projetions of relations onstrained by FDs and inlusion dependenies are developed.Report: orreted 20110218 AMAI2009 page 6



At �rst thought, it might appear that the management of deletions would be simpler thanthat of insertions, sine generi values need not be reated. However, there is a quite dif-ferent type of ompliation whih arises. Spei�ally, Horn-style dependenies of the form
A1∧A2∧ . . . ∧An ⇒ B are disjuntion free with respet to insertions, but not deletions. Roughly,to delete B minimally, it is neessary to delete one of the Ai, but generally not all. One mighttherefore be lead to propose weak optimal realizations, as illustrated in the example of 6.4 andde�ned formally in 6.5, in whih all of the ontributing Ai's are deleted. Unfortunately, asillustrated in 6.9, it is not even possible in general to delete them all and obtain a orretsolution. Therefore, attention is foused upon shemata whose tuple-generating dependeniesare of the form A⇒ B, with just one assertion in the head of the rule. Fortunately, even withsuh a restrition, many ommon situations, partiularly shemata onstrained by funtionaland inlusion dependenies, and views de�ned by projetion, are supported.The most di�ult ases surround updates whih involve both insertions and deletions. Ingeneral, the information-based approah forwarded here does not provide optimal solutions tosuh requests, and so that topi must remain a subjet for future work.This artile is a based upon [Heg08a℄, but has been ompletely reworked to address someshortomings in that preliminary version.2 The Relational ModelThe results of this paper are formulated within the relational model, and familiarity withits standard notions, as presented in referenes suh as [PDGV89℄ and [AHV95℄, is assumed.Nevertheless, there are aspets whih must be formulated with partiular are. Most importantare the need to take all relational shemata over the same domain, with the same onstantsymbols, and the need to express databases themselves as sets of ground atoms. For thisreason, the entral ideas whih are speial to this formulation are presented in this setion.2.1 Relational ontexts and onstant interpretations A relational ontext ontainsthe logial information whih is shared amongst the shemata and database mappings. For-mally, a relational ontext D onsists of a �nite nonempty set AD of attribute names, a ount-able set Vars(D) of variables, and for eah A ∈ AD, a ountable set ConstD(A) of onstantsymbols, with Const(D) =

⋃

{ConstD(A) | A ∈ AD}. The variables in Vars(D) are furtherpartitioned into two disjoint sets; a ountable set GenVars(D) = {x0, x1, x2, . . .} of general vari-ables, and speial AD-indexed set AttrVars(D) = {xA | A ∈ AD} of attribute variables. Thelatter is used in the de�nition of interpretation mappings; see 2.6 for details. Lowerase lettersat the end of the alphabet, suh as v, w, x, y, and z, as well as subsripted instanes usingthese names, will also be used as general variables.Databases are represented as ground atoms, as elaborated in 2.2 below. Therefore, it isneessary that eah domain element, in the sense of a logial struture for a �rst-order language,[Mon76, Def. 11.1℄, be bound to a unique onstant symbol. Formally, a onstant interpretationfor the relational ontext D is a pair I = (DomI , IntFnI) in whih DomI is a ountably in�niteset, alled the domain of I, and IntFnI : Const(D) → DomI is a bijetive funtion, alled theinterpretation funtion of I. This e�etively stipulates the following two well-known onditions[GN87, p. 120℄:Report: orreted 20110218 AMAI2009 page 7



Domain losure: (∀x ∈ Vars(D))(
∨

a∈Const(D) x = a) (DCA(D))Unique naming: (¬(a = b)) for distint a, b ∈ Const(D) (UNA(D))Sine there are ountably many onstant symbols, the domain-losure axiom is not a �nitedisjuntion. This is not a problem however, sine it is never used in a ontext in whih a �rst-order onstraint is neessary. Rather, the assignment of a onstant to eah variable is taken tobe part of the ontext in whih this work is arried out.As a notational onvention, from this point on, unless stated otherwise, �x a relationalontext D and a onstant interpretation I = (DomI, IntFnI) for it.2.2 Tuples and databases An unonstrained relational shema over (D, I) is a pair D =
(Rels(D),ArD) in whih Rels(D) is a �nite set of relational symbols and ArD : Rels(D) → 2

ADa funtion whih assigns an arity, a set of distint attributes from AD, to eah R ∈ Rels(D).An R-atom is a funtion t : ArD(R) → Const(D) ∪ Vars(D) with the property that t[A] ∈
ConstD(A) ∪ GenVars(D) ∪ {xA}; in other words, all terms, onstant and variable, are of theappropriate type. A ground R-atom has the additional property that it ontains no variables;i.e., t[A] ∈ ConstD(A). The set of all R-atoms (resp. ground R-atoms) is denoted Atoms(R,D)(resp. GrAtoms(R,D)).A D-atom is an R-atom for some R ∈ Rels(D); the set of all suh atoms is denoted
Atoms(D). A ground atom is de�ned to be a ground R-atom for some R ∈ Rels(D), withthe set of all suh atoms denoted GrAtoms(D). An atom database for D is a �nite subset of
GrAtoms(D), with the set of all atom databases for D denoted DB(D). In this work, groundatoms are also alled tuples.It is onvenient to be able to reover the assoiated relation name from a tuple, and sotagging is employed, in whih tuples are marked with the relation name. Formally, this isaomplished by introduing a new attribute RName 6∈ AD, and then regarding an R-atom notas a funtion t just on ArD(R), but rather as one on {RName} ∪ ArD(R) with the propertythat t[RName] = R. Tagging of R-atoms will be used from this point on throughout the paper.Nevertheless, in writing suh atoms, the more onventional notation R(a1, a2, . . . , an) will beused in lieu of the tehnially more orret (R, a1, a2, . . . , an), although tags will be used informal onstrutions. To be ompletely pedanti, this entails introduing a new attribute name
RNames ∈ AD with ConstD(RNames) = Rels(D), and these onstant values used only for theattribute RNames. Furthermore, in any atom, the value for the RNames attribute must be aonstant, never a variable. Sine this is a logially inessential tati whose full formal treatmentis tedious but routine, the details will not be elaborated further.There is a third type of atom whih will be of use in de�ning onstraints, the equalityatom. Formally, an equality atom is of one of the forms (xi = xj), (xi = aj), or (ai = aj),for xi, xj ∈ GenVars(D) and ai, aj ∈ Const(D). The set of all equality D-atoms is denoted
EqAtoms(D). Equality atoms whih equate two onstants; e.g., (ai = aj) are alled groundequality atoms; note that the truth value of suh atoms is predetermined by the unique namingassumption. All other equality atoms; e.g., those of the forms (xi = xj) or (xi = aj), are alledvariable equality atoms. The set of all variable equality atoms is denoted VarEqAtoms(D). Notethat the de�nitions of equality atoms depend only upon the relational ontext D, and not uponthe spei� shema D.Report: orreted 20110218 AMAI2009 page 8



2.3 Formulas and onstraint lasses The �rst-order language assoiated with the rela-tional shema D is de�ned in the natural way; however, it is useful to introdue some notationwhih identi�es partiular sets of formulas. De�ne WFF(D) to be the set of all well-formed�rst-order formulas with equality in the language whose set of relational symbols is Rels(D),whose set of onstant symbols is Const(D), and whih ontains no non-nullary funtion sym-bols. The variables are those of D; these formulas are typed to the extent that for A ∈ AD , aterm in a position of type A must lie in GenVars(D) ∪ {xA} ∪ ConstD(A).A onstraint lass C identi�es a subset of WFF(D), denoted WFF(D,C). For this paper,the two most important onstraint lasses are ∃∧+ and GrAtoms, de�ned as follows.
• WFF(D, ∃∧+) is the subset of WFF(D) in whih in whih only existential quanti�ation isallowed, and the only logial onnetive whih is allowed is onjuntion (∧). These formulasde�ne the so-alled onjuntive queries [CGT90, Se. 4.2℄. It is not neessary to allow theequality prediate in suh formulas, sine equality an always be expressed by simply usingthe same name for the two atoms whih are equated.
• WFF(D,GrAtoms) is just GrAtoms(D).

WFF(D,C) may be trimmed further by limiting the onstant symbols whih may our init. Spei�ally, if S ⊆ Const(D), then WFF(D,C, S) denotes the formulas in WFF(D) whihinvolve only onstant symbols from S.Eah of these lasses may be limited to sentenes; i.e., formulas without free variables.
WFS(D)(resp. WFS(D,C), resp. WFS(D,C, S)) denotes the subset of WFF(D) (resp. WFF(D,C), resp.
WFF(D,C, S)) onsisting of sentenes.Let Φ ⊆ Ψ ⊆ WFS(D). The losure of Φ in Ψ, denoted Closure〈Φ,Ψ〉, is {ϕ ∈ Ψ | Φ |= ϕ}.A over for Φ relative to Ψ is a subset Φ′ ⊆ Φ with Closure〈Φ′,Ψ〉 = Closure〈Φ,Ψ〉. A minimalover Ψ′ has the property that none of its proper subsets is itself a over.Finally, the symbol ⊥ will be used to denote the sentene whih is always false.2.4 Atomi models Even though databases are represented as sets of ground atoms, andnot as interpretations in the usual logial sense, it is still essential to have an appropriatenotion of model for a given sentene. This is relatively straightforward; a model for a sentene
ϕ is a database whih is onsistent with both ϕ and the unique-naming axioms. There isone ompliation, however. In representing a database as a set of D-atoms, the losed-worldassumption is impliit. On the other hand, to express what it means for suh a representationto satisfy an arbitrary sentene in WFS(D), it is neessary to state expliitly whih atoms arenot true as well. Formally, for M ∈ DB(D), de�ne the diagram of M to be Diagram

D
(M) =

M ∪ {¬t | t ∈ GrAtoms(D) \ M}. Now, say that M ∈ DB(D) is an atomi I-model of
ϕ ∈ WFS(D) if Diagram

D
(M) ∪ {ϕ} ∪ UNA(D) is onsistent. AtModI(ϕ) denotes the set ofall atomi I-models of ϕ, with AtModI(Φ) =

⋂

{AtModI(ϕ) | ϕ ∈ Φ} for Φ ⊆ WFS(D). Sineonly atomi I-models will be onsidered in this paper, the simple term model will be used as asynonym for atomi I-model.2.5 Shemata with onstraints and onstrained databases To obtain full relationalshemata, onstraints are added to the unonstrained shemata of 2.2. Formally, a relationalReport: orreted 20110218 AMAI2009 page 9



shema over (D, I) is a triple D = (Rels(D),ArD,Constr(D)) in whih (Rels(D),ArD) is anunonstrained relational shema over (D, I) and Constr(D) ⊆ WFS(D) is the set of dependeniesor onstraints of D.De�ne the legal (or onstrained) databases LDB(D) of D to be AtModI(Constr(D)).Although Constr(D) is allowed to be an in�nite set, it will always be assumed that Constr(D)is onstant �nite; that is, that all of the sentenes in Constr(D) together ontain only a �nitenumber of distint onstant symbols.2.6 Database morphisms and views Let D1 and D2 be relational shemata over (D, I).There are two fundamental ways to represent a database morphism f : D1 → D2 in therelational ontext. On the one hand, suh a morphism may be represented as a funtion
f : DB(D1) → DB(D2), using expressions from the relational algebra. On the other hand,by providing an interpretation formula fR ∈ WFF(D1) for eah R ∈ Rels(D2), the morphismmay be represented using the relational alulus [JAK82℄. The equivalene of these two repre-sentations is one of the lassial results of relational database theory [PDGV89, Se. 2.4-2.6℄.The interpretation formulation is taken as the base de�nition for views in this work. Formally,given R ∈ Rels(D2), an interpretation for R into D1 is a ϕ ∈ WFF(D1) in whih preiselythe variables {xA | A ∈ ArD(R)} are free, and in whih xA is used to mark the positionin the formula whih is bound to attribute A. Sine eah position in the view relation isassoiated with a distint attribute, one variable per attribute su�es. The set of all interpre-tations of R into D1 is denoted Interp(R,D1). A syntati morphism f : D1 → D2 is a family
f = {fR | R ∈ Rels(D2) and fR ∈ Interp(R,D1)}. The morphism f is said to be of lass ∃∧+if fR ∈ WFF(D, ∃∧+) for eah R ∈ Rels(D2).Let t ∈ Atoms(R,D2). The substitution of t into f , denoted Substf〈f, t〉, is the formula in
WFF(D1) obtained by substituting, into fR, t[A] for xA, for eah A ∈ ArD(R). Note that if tis a ground atom, then Substf〈f, t〉 ∈ WFS(D1).For M ∈ DB(D1), de�ne f(M) = {t ∈ GrAtoms(D2) | M ∈ AtModI(Substf〈f, t〉)}. fis alled an LDB-morphism if it maps legal databases to legal databases; formally, an LDB-morphism has the property that f(M) ∈ LDB(D2) for eah M ∈ LDB(D1). When no quali�-ation is given, database morphism will always mean LDB-morphism.Let D be a relational shema over (D, I). A (relational) view of D is a pair Γ = (V, γ)in whih V is a relational shema over (D, I) and γ : D → V is an LDB-morphism whih isfurthermore LDB-surjetive in the sense that for every N ∈ LDB(V), there is an M ∈ LDB(D)with γ(M) = N . Surjetivity is required beause the instane of the view must always bedetermined by the instane of the main shema D. The view Γ = (V, γ) is said to be of lass
∃∧+ preisely in the ase that γ has that property.In order to illustrate these ideas, a simple example is in order. Consider again the shema
E0 and the view ΠE0

AB of 1.1. The view mapping πE0

AB is expressed as an interpretation via theformula (πE0

AB)
RAB = (∃z)(R(xA, xB, z)). Note in partiular how xA and xB are used to markthe appropriate attributes. For t = RAB(a0, b0), Substf〈πE0

AB, t〉 = (∃z)(R(a0, b0, z)), while for
t = RAB(x0, x1), Substf〈πE0

AB, t〉 = (∃z)(R(x0, x1, z)).Oasionally, it will be useful to separate the quanti�ers from the rest of the formula of aninterpretation γR. To this end, de�ne γR to be that whih is left when the quanti�er pre�x isremoved from γR. For example, in the above, (πE0

AB )
RAB = (R(xA, xB, z)).Report: orreted 20110218 AMAI2009 page 10



2.7 Notation � extrating onstant symbols and variables For X an entity (forexample, an atom, a formula, a database, et.), or a set of entities, ConstSym(X) denotes the setof all a ∈ Const(D) whih our inX . Furthermore, forD a database shema, ConstSymD(X) =
ConstSym(X ∪ Constr(D)), and for Γ = (V, γ) a view of D, ConstSymΓ(X) = ConstSym(X ∪
Constr(D) ∪ Constr(V)) ∪ ConstSym(γ), where ConstSym(γ) is the set of all onstant symbolswhih our in the de�ning interpretation formulas assoiated with γ.Similarly, Vars(X) denotes the set of all variables whih our in X . This will not beformalized further, but the meaning should always be unambiguous.2.8 Notation for inlusion dependenies It is assumed that the reader is familiar withthe relational model and the standard dependenies whih have been studied in that ontext.Here only some notation and terminology is lari�ed. First, R[X ] ⊑ S[Y ] (note the squaredsubset symbol) will be used to denote the inlusion dependeny (IND) whih states that theprojetion onto attributes X of relation R is a subset of the projetion onto attributes Y ofrelation S. Seond, a unary inlusion dependeny, abbreviated UIND, is one in whih eah of
X and Y onsist of a single attribute.3 Information and Canonial ModelsThe theory of support for view updates whih is forwarded in this paper is based upon aduality between a set of sentenes de�ning information ontent and anonial models for suhinformation. In this setion, that duality is developed in detail.3.1 Notational onvention Throughout the rest of this paper, unless stated spei�allyto the ontrary, take D to be a relational shema over (D, I). The notation Υ will be used as anabbreviation for WFS(D, ∃∧+), and ΥK will be used as an abbreviation for WFS(D, ∃∧+, K).Furthermore, in the ontext of a set of the form WFS(D, ∃∧+, K), if no further information isgiven, K will be taken to be an arbitrary subset of Const(D).3.2 Information ontent and Φ-equivalene Let Φ ⊆ WFS(D) and let M ∈ DB(D).The information ontent of M relative to Φ is the set of all sentenes in Φ whih are true for
M . More preisely, Info〈M,Φ〉 = {ϕ ∈ Φ | M ∈ AtModI(ϕ)}. For ϕ ∈ WFS(D), Info〈M,ϕ〉denotes Info〈M, {ϕ}〉. M1 and M2 are Φ-equivalent if they have the same information ontentrelative to Φ; i.e., Info〈M1,Φ〉 = Info〈M2,Φ〉.The semantis of onventional databases are based upon the losed-world assumption �all assertions whih annot be established to be true are taken to be false. Thus, intuitively,information ontent should be monotone; that is, for any M1,M2 ∈ DB(D) if M1 ⊆ M2, then
Info〈M1,Φ〉 ⊆ Info〈M2,Φ〉. However, this is manifestly false for most hoies of Φ. Indeed, if ϕholds in M2 but not M1, then ¬ϕ holds in M1 but not M2. Thus, if there is some ϕ ∈ Φ forwhih ¬ϕ ∈ Φ as well, Φ annot be information monotone.Formally, it is best to begin by de�ning monotoniity for individual sentenes. To bepreise, the sentene ϕ ∈ WFS(D) is information monotone if for any M1,M2 ∈ DB(D) if
M1 ⊆M2, then Info〈M1, ϕ〉 ⊆ Info〈M2, ϕ〉. The set Φ ⊆ WFS(D) is then said to be informationmonotone if eah ϕ ∈ Φ has this property. It is easy to see that any ϕ ∈ WFS(D) whihReport: orreted 20110218 AMAI2009 page 11



does not involve negation, when expressed entirely in terms of the onnetives ∧, ∨, and ¬, isinformation monotone. Connetives suh as ⇒ involve negation impliitly, and so senteneswhih involve impliation need not be (and usually are not) information monotone.In this work, there are two families of information-monotone sentenes whih are of entralimportane. The �rst is WFS(D,GrAtoms). It is easy to see that Info〈M,WFS(D,GrAtoms)〉 =
M for any M ∈ DB(D), so that the information ontent of a database relative to
WFS(D,GrAtoms) is just that database itself. Although trivial in its haraterization, this aseis nonetheless important. The seond important family of information monotone sentenes is
WFS(D, ∃∧+, K) for a given K ⊆ Const(D), and is far less trivial in its haraterization.3.3 Tuple-minimal models Let Φ ⊆ WFS(D). and let M ∈ AtModI(Φ). M is a tuple-minimal model of Φ if for anyM ′ ∈ AtModI(Φ) withM ′ ⊆M , it must be thatM ′ =M . The setof all tuple-minimal models of Φ is denoted MinAtModI(Φ). For ϕ ∈ WFS(D), MinAtModI(ϕ)is shorthand for MinAtModI({ϕ}).For Φ ⊆ WFS(D) and ϕ ∈ WFS(D), say that Φ minimally entails ϕ, written Φ |=min ϕ, if
MinAtModI(Φ) ⊆ AtModI(ϕ). In other words, Φ minimally entails ϕ if every tuple-minimalmodel of Φ is also a model (not neessarily minimal) of ϕ.3.4 Fully Redued ∃∧+-families The onept of a minimal over for a set Φ of sentenesis well known and has already been realled in 2.3. In the ontext of sentenes in Υ, there is astronger notion whih is entral to the development of the ideas presented here. To motivatethis idea, let Ξ = {R(a1, a2), R(a2, a3), (∃x1)(∃x2)(∃x3)(R(x1, x2)∧R(x2, a3)∧R(a3, x3))}. It iseasy to see that Ξ is a minimal over of itself, in that none of its proper subsets is equivalentto it. However, it is also lear that ξ0 = (∃x1)(∃x2)(∃x3)(R(x1, x2)∧R(x2, a3)∧R(a3, x3)) maybe replaed with (∃x3)(R(a3, x3)) while retaining logial equivalene. In other words, onjuntsmay be removed from one of the sentenes while preserving information ontent.To formalize this notion, let ϕ = (∃x1) . . . (∃xm)(A1∧ . . . ∧An) ∈ Υ have at least two on-junts, and for any i, 1 ≤ i ≤ n, de�ne Reduction〈ϕ,Ai〉 to be the sentene obtained byremoving Ai as a onjunt from ϕ, and removing any quanti�er term whih is no longerused as well. For example, Reduction〈ξ0, R(x1, x2)〉 = (∃x2)(∃x3)(R(x2, a3)∧R(a3, x3)) and
Reduction〈Reduction〈ξ0, R(x1, x2)〉, R(x2, a3)〉 = (∃x3)(R(a3, x3)). Call Φ ⊆ Υ onjunt re-dued if for no ϕ ∈ Φ with at least two onjunts is there a onjunt Ai of ϕ with (Φ \ ϕ) ∪
{Reduction〈ϕ,Ai〉} logially equivalent to Φ. Call Φ fully redued if it is both onjunt reduedand a minimal over of itself. In the above example, {R(a1, a2), R(a2, a3), (∃x3)(R(a3, x3))} isfully redued.The goal is to establish that by substituting distint onstants for eah variable in a �nite,fully redued family of sentenes, a anonial model of those sentenes is obtained. Thus, inthe above example, {R(a1, a2), R(a2, a3), (R(a3, b1))} would be suh a model, with b1 a �generi�onstant. To render all of this formal, some additional notions are neessary.3.5 Armstrong models in an information-monotone ontext Let Ψ ⊆ WFS(D) andlet Φ ⊆ Ψ. Informally, an Armstrong model for Φ relative to Ψ is a model of Φ whih satis�esonly those onstraints of Ψ whih are implied by Φ. More formally, an Armstrong model for Φrelative to Ψ is an M ∈ AtModI(Φ) with the property that for any ψ ∈ Ψ, if M ∈ AtModI(ψ),Report: orreted 20110218 AMAI2009 page 12



then AtModI(Φ) ⊆ AtModI(ψ). A tuple-minimal Armstrong model for Φ relative to Ψ is anArmstrong model with the property that no proper subset is an Armstrong model for Φ relativeto Ψ. In general, a tuple-minimal Armstrong model M of Φ relative to Ψ need not be a tuple-minimal model of Φ, sine there may be an M ′ ( M whih is a non-Armstrong model of Φ.However, if Ψ is information monotone, it is easy to see that this annot happen, so everytuple-minimal Armstrong model must in fat be a minimal model. Armstrong models havebeen studied extensively for database dependenies; see, for example, [Fag82℄ and [FV83℄.In the urrent ontext, for a given �nite, fully redued set Φ ⊆ Υ, a suitably onstrutedArmstrong model for Φ relative to ΥK for a given K with ConstSym(Φ) ⊆ K will serve as aanonial representation for insertions with generi onstants, as skethed in the introdution.To proeed further, a speial representation is useful.3.6 Representation of ∃∧+-sentenes as sets of D-atoms There is an alternativesyntati representation for formulas in Υ whih will be used in that whih follows. Speif-ially, for ϕ ∈ Υ de�ne AtRep(ϕ) to be the set of all atoms whih our as onjunts in ϕ.For example, if ϕ = (∃x1)(∃x2)(∃x3)(R(x1, a)∧R(x1, b)∧S(x2, a)∧T (x2, x3)) then AtRep(ϕ) =
{R(x1, a), R(x1, b), S(x2, a), T (x2, x3)}.This representation is dual to that used in theorem-proving ontexts in lassial arti�ialintelligene [GN87, 4.1℄. Here the variables are existentially quanti�ed and the atoms areonjunts of one another; in the AI setting the atoms are disjunts of one another and thevariables are universally quanti�ed.3.7 Substitutions Let V = {x1, x2, . . . , xn} ⊆ GenVars(D). A substitution for V (in D) isa funtion s : V → Const(D) ∪ GenVars(D). If s(xi) = τi for i ∈ {1, 2, . . . , n}, following (some-what) standard notation this substitution is {τ1/x1, τ2/x2, . . . , τn/xn} [CL73, Se. 5.3℄ and willbe used here, although the reader is autioned that some authors write {x1/τ1, x2/τ2, . . . , xn/τn}instead [GN87, 4.2℄.Let ϕ ∈ Υ with Vars(ϕ) ⊆ V . Call s orretly typed for ϕ if for eah t ∈ AtRep(ϕ) andeah A ∈ ArD(t[RName]), if t[A] ∈ Vars(D) then s(t[A]) ∈ ConstD(A) ∪ GenVars(D). De�ne
Subst(ϕ, s) to be the set of atoms obtained by substituting s(xi) for xi in AtRep(ϕ). For ex-ample, with s = {a1/x1, a2/x2, a3/x3} and AtRep(ϕ) = {R(x1, a), R(x1, b), S(x2, a), T (x2, x3)},
Subst(ϕ, s) = {R(a1, a), R(a1, b), S(a2, a), T (a2, a3)}.If s(xi) ∈ Const(D) for eah xi ∈ V , s is alled a onstant substitution. In this ase,
Subst(ϕ, s) is a set of ground atoms.Now let Φ ⊆ Υ be a �nite set. A onstant substitution set for Φ is a Φ-indexed set
S = {sϕ | ϕ ∈ Φ} of substitutions, with sϕ a onstant substitution for Vars(ϕ). For K a �niteset with ConstSym(Φ) ⊆ K ⊆ Const(D), S is free for 〈Φ, K〉 if eah sϕ is orretly typed for ϕ,injetive, sϕ(xi) 6∈ K for any ϕ ∈ Φ and xi ∈ V , and, furthermore, for any distint ϕ1, ϕ2 ∈ Φ,
sϕ1

(Vars(ϕ1)) ∩ sϕ2
(Vars(ϕ2)) = ∅.With S free for 〈Φ, K〉, the Armstrong model de�ned by 〈Φ, K, S〉 is obtained by applying thesubstitution sϕ to ϕ for eah ϕ ∈ Φ. Formally, ArmMod〈Φ, K, S〉 =

⋃

{Subst(ϕ, sϕ) | ϕ ∈ Φ}.Of ourse, this terminology is a bit presumptuous, as it has not yet been established that
ArmMod〈Φ, K, S〉 is in fat an Armstrong model of anything; this will be reti�ed in 3.9 below.Report: orreted 20110218 AMAI2009 page 13



3.8 Constant endomorphisms Informally, an endomorphism on D is a funtion whihrenames onstants. More formally, an endomorphism on D is a funtion h : Const(D) →
Const(D) whih preserves attribute types, in the preise sense that for eah A ∈ AD andeah a ∈ ConstD(A), h(a) ∈ ConstD(A). If h is additionally a bijetion, then it is alled anautomorphism of D. For K ⊆ Const(D), all h K-invariant if h(a) = a for all a ∈ K.Given a database shema D, an endomorphism on D indues a mapping from GrAtoms(D)to itself given by sending t ∈ GrAtoms(D) to the tuple t′ with t′[RName] = t[RName] and
t′[A] = t[h(A)] for all A ∈ Art[RName] . This mapping on atoms will also be represented by h, aswill the indued mapping from DB(D) to itself given by M 7→ {h(t) | t ∈ M}.The following theorem establishes that ArmMod〈Φ, K, S〉 is a weak sort of initial model for
Φ, in the sense that for any other database M whih satis�es Φ, there is an endomorphism
h : ArmMod〈Φ, K, S〉 → M whih holds K onstant. On the other hand, it is not an initialmodel for Φ in the traditional ategorial sense [HS73, �7℄, sine h need not be unique.3.9 Theorem � Charaterization of tuple-minimal Armstrong models Let Φ ⊆
Υ be �nite and fully redued, let K be a �nite set with ConstSym(Φ) ⊆ K ⊆ Const(D), and let
S be a onstant substitution set whih is free for Φ. Then the following hold.(a) For any M ∈ DB(D) ∩ AtModI(Φ), there is a K-invariant endomorphism h on D with

h(ArmMod〈Φ, K, S〉) ⊆M .(b) ArmMod〈Φ, K, S〉 is a tuple-minimal Armstrong model for Φ relative to ΥK.() If M ∈ DB(D) is any other tuple-minimal Armstrong model for Φ relative to ΥK, thenthere is a ConstSym(Φ)-invariant automorphism h on D with h(ArmMod〈Φ, K, S〉) =M .Proof: To establish (a), let M ∈ ModI(Φ), and for eah ϕ ∈ Φ, let Mϕ be a minimal subsetof M with Mϕ ∈ ModI(ϕ). Let Vϕ denote the set of variables of sϕ ∈ S. It is easy to see thatthere must be a onstant substitution s′′ with Vars(s′′) = Vϕ and Subst(ϕ, s′′) = Mϕ. Indeed,there is trivially a onstant substitution with Subst(ϕ, s′′) ⊆ Mϕ, but if the subset inlusionwere proper, Mϕ would not be tuple minimal.Now de�ne h : sϕ(Vϕ) → s′′(Vϕ) by a 7→ s′′(s−1
ϕ (a)). Sine sϕ is injetive, h is well de�ned.Sine sϕ1

(Vars(ϕ1)) ∩ sϕ2
(Vars(ϕ2)) = ∅ for distint ϕ1, ϕ2 ∈ Φ, there are no on�its in thisde�nition of h. Finally, extend h to be the identity on all a ∈ Const(D) whih are not overed bythe above de�nition. The result is a endomorphism on D whih satis�es h(ArmMod〈Φ, K, S〉) ⊆

M . For (b), �rst observe that ArmMod〈Φ, K, S〉 is a model of Φ just by onstrution. It isfurthermore easy to see that sine Φ is fully redued, it is tuple minimal. Indeed, if any tuple
t ∈ ArmMod〈Φ, K, S〉 ould be removed, then the orresponding onjunt ould be removedfrom the ϕ ∈ Φ assoiated with t, ontraditing the fat that Φ is fully redued. To show that
ArmMod〈Φ, K, S〉 is an Armstrong model, let ψ ∈ Υ with ArmMod〈Φ, K, S〉 ∈ ModI(ψ), and let
M ∈ ModI(Φ). In view of (a), there is an endomorphism h on D with h(ArmMod〈Φ, K, S〉) ⊆
M . In view of Lyndon's theorem [Mon76, Thm. 25.22℄, whih states that satisfation of sen-tenes not involving negation is losed under endomorphi images, it follows thatM ∈ ModI(ψ)also. Hene, Φ |= ψ, and so ArmMod〈Φ, K, S〉 is an Armstrong model of Φ.To show (), let M be any other tuple-minimal Armstrong model for Φ relative to ΥK . Inthe above onstrution for the proof of (a), the resulting h must be surjetive (else M wouldReport: orreted 20110218 AMAI2009 page 14



not be tuple minimal), and it must be injetive (sine there must also be an endomorphism inthe opposite diretion, and both ArmMod〈Φ, K, S〉 and M are �nite, by assumption). Hene,
h is an automorphism. 2It is easy to see that the endomorphism h need not be unique. For example, if D has thesingle unary relation symbol R[A], and Φ = {(∃x)(R(x))}, then M1 = {R(a)} is a minimalArmstrong model, while M2{R(b), R(c)} is an Armstrong model whih is not tuple minimal.There are two endomorphisms from M1 to M2, h1 : a 7→ b and h2 : a 7→ c.In some ways, the onstrution given above is similar to the onstrution of the universalsolutions of [FKMP05, Def. 2.4℄, in that both are based upon similar notions of endomorphism(there termed homomorphism). However, those universal solutions are not required to be tupleminimal. On the other hand, they are not limited to positive sentenes, but rather apply tothe more general lass of XEIDs [Fag82℄.The existene of a (�nite) Armstrong model for a set of Φ is guaranteed under fairly simpleirumstanes; all that is neessary is that Φ have a �nite over.3.10 Lemma Let Φ ⊆ ΥK. Then Φ admits a tuple-minimal Armstrong model with respetto ΥK i� Φ admits a �nite over relative to ΥK .Proof: If Φ admits a �nite over, then Φ admits a tuple-minimal Armstrong model withrespet to ΥK by 3.9(b). Conversely, if Φ is not �nite and has no �nite over, then for anypositive integer n, there is a ϕ ∈ Φ whih ontains at least n distint onjunts and whih is notequivalent to any �nite subset of ΥK , eah of whose elements ontains fewer than n onjunts.An Armstrong model must thus ontain at least n tuples. Sine n may be hosen arbitrarilylarge, it follows that no suh �nite model an exist. 23.11 Canonial models Let K be a �nite subset of Const(D). In (a)-() and (e) below,take Φ ⊆ ΥK as well.(a) Φ is D-onsistent if AtModI(Φ) ∪ LDB(D) 6= ∅.Thus, Φ is D-onsistent if there is some legal database whih satis�es Φ. Suh a database mustalso satisfy the sentenes in Constr(D); the total set of sentenes whih it must satisfy is theextended information, expressed formally as follows.(b) De�ne the extended information of Φ with respet to ΥK to be XInfoD〈Φ,ΥK〉 = {ϕ ∈

ΥK | Φ ∪ Constr(D) |= ϕ}.Note that if Φ is not D-onsistent, then XInfoD〈Φ,ΥK〉 = ΥK . Also note that, equivalently,
XInfoD〈Φ,ΥK〉 = {ϕ ∈ ΥK | (∀M ∈ LDB(D))((M ∈ AtModI(Φ)) ⇒ (M ∈ AtModI(ϕ)))}whenever Φ is D-onsistent. In other words, XInfoD〈Φ,ΥK〉 is the set of all sentenes in ΥKwhih are true in every M ∈ LDB(D) ∩ AtModI(Φ).Sine the databases of this paper are �nite, onsisteny is not enough. Rather, Φ togetherwith Constr(D) must admit a �nite model. In view of 3.10, this property is equivalent to Φhaving a �nite over. Formally, this is reaptured as follows.() Φ extends �nitely to D with respet to ΥK if XInfoD〈Φ,ΥK〉 has a �nite over with respetto ΥK .Report: orreted 20110218 AMAI2009 page 15



(d) The shema D admits �nite extensions with respet to ΥK if every �nite and D-onsistent
Φ ⊆ ΥK extends �nitely to D with respet to ΥK .(e) A anonial database for Φ in D with respet to ΥK is a tuple-minimal Armstrong model
M for XInfoD〈Φ,ΥK〉 with respet to ΥK .Observe that, in view of 3.9(), anonial databases are unique up to automorphism. D admitsanonial databases onditionally if there is a anonial model whenever the extended infor-mation is �nite, with unonditional extension requiring further that this �niteness onditionalways be satis�ed.(f) The shema D admits anonial models onditionally with respet to ΥK if for every
Φ ⊆ ΥK whih extends �nitely to D with respet to ΥK , every anonial database withrespet to ΥK is in LDB(D).(g) The shema D admits anonial models unonditionally ifD admits �nite extensions withrespet to ΥK and every anonial database with respet to ΥK is in LDB(D).These existene onditions are haraterized preisely in the following lemma.3.12 Lemma Continue with the notation of 3.11 above.(a) D admits anonial models onditionally with respet to ΥK i� for every D-onsistent
Φ ⊆ ΥK, XInfoD〈Φ,ΥK〉 |=min ϕ for every ϕ ∈ Constr(D),(b) D admits anonial models unonditionally with respet to ΥK i� it admits anonialmodels onditionally and XInfoD〈Φ,ΥK〉 has a �nite over relative to ΥK .Proof: Both parts follow immediately from 3.10. 23.13 Example � Canonial models onditionally but not unonditionally It isnot the ase that every shema whih admits anonial models onditionally admits themunonditionally. For example, let the shema E2 have three relational symbols R1[A], R2[AB],and R3[AB], with the inlusion dependenies R1[A] ⊆ R2[A], R2[A] ⊆ R3[A], and R3[B] ⊆

R2[B]. Let M1 = {R1(a0), R2(a0, b0), R3(a0, b0), R1(a1)}, let K = {a0, a1, b0}, and note that
M1 ⊆ WFS(E3, ∃∧+, K), sine databases are taken to be sets of ground atoms.In XInfoE3

〈M1,WFS(E3, ∃∧+, K)〉, a tuple of the form R2(a1, b1) must be present, whihimplies that one of the form R3(a2, b1) must be present as well, whih in turn implies thatone of the form R2(a2, b2) must be present, and so forth. If the onstant symbols whihare introdued to satisfy the dependenies, are always new ones whih have not been usedpreviously, then this onstrution proeeds inde�nitely. In terms of the onstrution of theextended information XInfoD〈M1,WFS(E3, ∃∧+, K)〉, it is not di�ult to see that an in�-nite inreasing sequene 〈ϕ0, ϕ1, ϕ2, . . . , ϕi, . . .〉 of sentenes arises, as shown in Fig. 1, with
ϕi+1 stritly longer than ϕi and furthermore not a onsequene of {ϕ0, ϕ1, . . . , ϕi}. Thus,
XInfoE3

〈M1,WFS(E3, ∃∧+, K)〉 annot have a �nite over. If the sequene is terminated, byhoosing, say, b2 = b1, then an additional sentene beyond those in
XInfoE2

〈M1,WFS(E2, ∃∧+, K)〉 is inluded, and so the resulting database is not Armstrongwith respet to WFS(E3, ∃∧+, K). On the other hand, the database M2 = {R1(a0), R2(a0, b0),
R3(a0, b0)} already satis�es every onstraint in XInfoE3

〈M2,WFS(E2, ∃∧+, K)〉, and so is aReport: orreted 20110218 AMAI2009 page 16



(∃x1)(R2(a1, x1))

(∃x1)(∃x2)(R2(a1, x1)∧R3(x1, x2))

(∃x1)(∃x2)(∃x3)(R2(a1, x1)∧R3(x1, x2)∧R2(x3, x2))

(∃x1)(∃x2)(∃x3)(∃x4)(R2(a1, x1)∧R3(x1, x2)∧R2(x3, x2)∧R3(x3, x4))...Figure 1: A stritly inreasing sequene of information sentenestuple-minimal Armstrong model of itself. Thus, the terminology onditionally is justi�ed; E2admits anonial models for some sets of sentenes, but not for others. In 3.22, onditionsunder whih anonial models are always admitted unonditionally are identi�ed.3.14 Example � Canonial models and positive disjuntion While the de�nitionsof 3.11 apply to any relational database shema, further restritions must be imposed to renderthem meaningful. Consider again the shema E2 of Setion 1, with the three unary relationsymbols R[A], S[A], and T [A], subjet to the onstraint (∀x)(R(x) ⇔ (S(x)∨T (x))). For
M1 = {R(a0)} and K = {a0}, XInfoE2

〈M1,WFS(E2, ∃∧+, K)〉 = M1, yet M1 6∈ LDB(E2). Theproblem is that the �full� extended information, relative to WFS(E2) is {R(a0), S(a0)∨T (a0)},but the disjuntion S(a0)∨T (a0) does not lie inWFS(E2, ∃∧+). Hene the anonial database for
M1 with respet to WFS(E2, ∃∧+) is not in LDB(E2). It is lear that the notion of a anonialdatabase is not really meaningful in the presene of suh disjuntions. Rather, attention must berestrited to Horn dependenies, whih avoid suh positive disjuntion and whih are desribedbelow.3.15 Generalized Horn dependenies The vast majority of relational database depen-denies whih have been onsidered over the years belong to a general lass of logial formulasalled Horn lauses. Originally presented as a haraterization of formulas whih are true underdiret produts [Hor51℄, they are more generally entral to the modelling anonial instanesin omputer siene [Mak87℄. In the ontext of database dependenies, the following form isused, with eah Ai and eah Bi an atom.

(∀x1)(∀x2) . . . (∀xm)((A1∧A2∧ . . . ∧An) ⇒ (∃y1)(∃y2) . . . (∃yr)(B1∧B2∧ . . . ∧Bs))(GHD)In this work, suh dependenies will be allowed in their most general form, whih will be alledgeneralized Horn dependenies, or GHDs. The only restritions are the following.(ghd-1) Eah GHD is in fat a sentene, so that eah variable lies within the sope of aquanti�er.(ghd-2) {x1, x2, . . . , xm} ∩ {y1, y2, . . . , yr} = ∅.(ghd-3) Eah xi ours in some Aj ; no universally quanti�ed variable ours only in a Bj .(ghd-4) Ai ∈ Atoms(D) for eah i.(ghd-5) If s > 0, then either eah Bi ∈ Atoms(D), in whih the sentene is tuple generating(also alled a TGHD), or else s = 1, r = 0, and B1 ∈ VarEqAtoms(D)∪{⊥}, in whih aseReport: orreted 20110218 AMAI2009 page 17



the sentene is alled equality generating (also alled an EGHD). If B1 = ⊥, the senteneis alled a mutual exlusion. (⊥ may be thought of as an equality whih an never besatis�ed, suh as (a = b).)As a onvenient notation, GHD(D) will be used to denote the set of all GHDs on D, with
TGHD(D) (resp. EGHD(D)) the subset onsisting of the tuple-generating (resp. equality-generating) sentenes. Mutual exlusions will be regarded as speial ases of EGHDs in whihthere is no atom on the right-hand side.The GHDs are a generalization of the XEIDs of Fagin [Fag82, Se. 7℄, and are essentially thesoure-to-target dependenies of [FKMP05, Def. 2.1℄. As suh, the GHDs enompass virtuallyall lasses of database onstraints whih have been studied, inluding in partiular funtionaland inlusion dependenies. In ontrast to XEIDs, the left-hand side need be neither unirela-tional nor typed. Of ourse, the more stringent requirement on XEIDs is made for a reason �XEIDs enjoy the property of possessing Armstrong models [Fag82, Thm. 3.1℄ whih GHDs donot. Although they were used as the general lass of dependeny in [Heg08a℄, it turns out thatthis property of possessing Armstrong models is only required of sentenes in WFS(D, ∃∧+)whih are used to haraterize the information ontent of database, and not for more generalHorn lauses whih are used to haraterize the underlying onstraints. Therefore, there is noneed to enfore the additional requirements of XEIDs.GHDs also generalize XEIDs in a less essential way � there is no requirement that n begreater than zero, although both are not allowed to be zero in the same lause. If n = 0, asentene in WFS(D, ∃∧+) is obtained; thus, WFS(D, ∃∧+) ⊆ GHD(D). As a spei� exampleof suh a onstraint, onsider (∃y1)(∃y2)(R(y1, y2)), whih states that the relation instane for
R is always nonempty. Additionally, onstant symbols are allowed in a GHD. For example, aonstraint of the form (∀x1)(∀x2)(R(x1, x2) ⇒ S(x1, x2, ν) might assert that for every tuple in
R, a similar tuple, padded with the onstant ν in the third position (with ν representing a nullvalue, for example), is required. Finally, an unsatis�able right-hand side is allowed. If B1 = ⊥, astatement of the form (∀x1)(∀x2) . . . (∀xm)((A1∧A2∧ . . . ∧An) ⇒ ⊥) is obtained, with ⊥ denotingthe identially false assertion. As noted in (ghd-5) above, suh as sentene is alled a mutualexlusion. An example is the antisymmetry onstraint (∀x1)(∀x2)((R(x1, x2)∧R(x2, x1)) ⇒ ⊥.The idea of forward haining on databases by applying Horn-style rules is well known [DG84℄,and forms one of the ornerstones of logi programming [Llo87℄. However, in the urrent ontext,rather than reasoning on ground atoms, it is essential to apply forward haining on information� that is, on sentenes in ΥK . This idea is addressed via notions of information assoiatedwith TGHDs, as developed below.3.16 Information inferene for TGHDs In so-alled forward haining in lassial propo-sitional logi, given a Horn lause of the form A1∧A2∧ . . . ∧An ⇒ B, if all of the Ai's are knownto be true, the rule may ��re� and assert that B is also true. This idea also works for TGHDsoperating on ground atoms; a ground substitution is applied to the left-hand side, and if all ofthe resulting ground atoms are true, the sentene obtained by applying the same substitution tothe right-hand side must be true, and further substitutions may then be applied to identify theground atoms whih it implies. More generally, however, when the pool of knowledge onsistsof sentenes in WFS(D, ∃∧+), the left-hand side and right-hand sides are oupled via variables.In other words, a rule �res for spei� bindings of variable ommon to both sides. It is thereforeReport: orreted 20110218 AMAI2009 page 18



not possible to separate the onlusion (i.e., the right-hand side) from the hypotheses (i.e., theleft-hand side). The solution is a rather simple one. When a rule of the above form �res,rather than onluding simply B from A1∧A2∧ . . . ∧An, the onjuntion A1∧A2∧ . . . ∧An∧B isdedued as a new fat. In this way, any binding of quanti�ed variables whih ourred duringthe inferene proess are preserved.Let ϕ be a GHD of the form (GHD) of 3.15 above, and let s be a substitution on
{x1, x2, . . . , xn}. Call s GHD-ompatible with ϕ if s(xi) 6= yj for any indies i and j, andassume that s has this property. GHD ompatibility ensures only that a substitution does notrename a universally quanti�ed variable to oinide with one whih is existentially quanti�edin the original formula. The left-hand-side information of ϕ with respet to s is the senteneobtained by applying s to the left-hand side of ϕ. Formally, LHSinfo〈ϕ, s〉 is the sentene in
WFS(D, ∃∧+) obtained from (∀x1)(∀x2) . . . (∀xm)(A1∧A2∧ . . . ∧An) as follows.(lhs-i) For i ∈ {1, 2, . . . , m}, if s(xi) = v and v ∈ GenVars(D), replae (∀xi) with (∃v).(lhs-ii) For i ∈ {1, 2, . . . , m}, if s(xi) ∈ Const(D), delete (∀xi).(lhs-iii) For i ∈ {1, 2, . . . , n}, replae eah Ai with the sole element of Subst(Ai, s).Note in partiular that universally quanti�ed variables beome existentially quanti�ed. Theexistentially quanti�ed versions represent a single but unspei�ed binding on those formerlyuniversally quanti�ed positions. Now, the left-plus-right-hand-side information of ϕ with re-spet to s, denoted LRHSinfo〈ϕ, s〉, is the sentene obtained from

(∀x1)(∀x2) . . . (∀xm)(∃y1)(∃y2) . . . (∃yr)(A1∧A2∧ . . . ∧An∧B1∧B2∧ . . . ∧Bs)by following the steps (i)-(iii) above and, in addition to the following step.(rhs) Replae eah Bi with Subst(Bi, s).For example, if ϕ = (∀x1)(∀x2)(R(x1, x2) ⇒ (∃y)(S(x1, x2, y))) and s = {a1/x1, x/x2} then
LHSinfo〈ϕ, s〉 = (∃x)(R(a1, x)) and LRHSinfo〈ϕ, s〉 = (∃x)(∃y)(R(a1, x)∧S(a1, x, y)).The following lemma states formally the intuition that if LHSinfo〈ϕ, s〉 is satis�ed, and therule ϕ holds, then LRHSinfo〈ϕ, s〉 holds as well. It is an immediate onsequene of the abovede�nitions.3.17 Lemma Let ϕ ∈ TGHD(D) and let M ∈ DB(D). Then M ∈ AtModI(ϕ) i� for everyGHD-ompatible substitution s on Vars(ϕ), if LHSinfo〈ϕ, s〉 ∈ Info〈M,ΥK〉, then
LRHSinfo〈ϕ, s〉 ∈ Info〈M,ΥK〉 as well. 2The ase of EGHDs must be handled a bit di�erently, sine the result of a dedution is nota new sentene in ΥK but rather a restrition on existing sentenes. Therefore, the ruial ideais to onsider the e�et of reduing a given sentene ψ ∈ ΥK by an EGHD ϕ, with the latterpossibly foring ertain terms of ψ to be equal.3.18 Information assoiated with an EGHD Let ϕ be an EGHD of the form (GHD)of 3.15 above, and let ψ ∈ ΥK . Here ψ is a sentene to whih the ϕ will be applied. If ψ anbe uni�ed with the left-hand side of ϕ, then the equality de�ned by the right-hand side of ϕmust be applied to ϕ.Report: orreted 20110218 AMAI2009 page 19



For this to work, a suitable substitution must be applied, so s be any substitution on
{x1, x2, . . . , xn}, the variables of ϕ. (In an EGHD, there are no existentially quanti�ed variablesof the form yi in (GHD).) Note further that the GHD-ompatibility property on a substitutiondoes not apply here, sine every EGHD is a universal sentene. However, the result of applying
s to the left-hand side of ϕ must math ψ, so that the rule an �re. Formally, all s ϕ-ompatiblefor ψ if AtRep(LHSinfo〈ϕ, s〉) ⊆ AtRep(ψ). Thus, s is ϕ-ompatible if, when applied to the left-hand side of ϕ, the onjunts whih are obtained (after removing any quanti�ers) are a subsetof those of ψ. Let RHSinfo〈ϕ, s〉 denote the equality atom obtained by applying the substitution
s to B1, the right-hand side of ϕ. (If ϕ is a mutual exlusion, then RHSinfo〈ϕ, s〉 = ⊥.) Theredution of ψ by RHSinfo〈ϕ, s〉, denoted Reduction〈ψ,RHSinfo〈ϕ, s〉〉 is de�ned by ases asfollows.(red-i) If RHSinfo〈ϕ, s〉 is of the form (ai = aj) with i 6= j, or RHSinfo〈ϕ, s〉 = ⊥, then

Reduction〈ψ,RHSinfo〈ϕ, s〉〉 = ⊥, the identially false assertion.(red-ii) If RHSinfo〈ϕ, s〉 is of the form (ai = ai) or (xi = xi), then Reduction〈ψ,RHSinfo〈ϕ, s〉〉 =
ψ.(red-iii) If RHSinfo〈ϕ, s〉 is of the form (xi = aj) or (aj = xi), then Reduction〈ψ,RHSinfo〈ϕ, s〉〉is obtained by substituting aj for xi in ψ and removing the quanti�er (∃xi).(red-iv) If RHSinfo〈ϕ, s〉 is of the form (xi = xj) with i 6= j, then Reduction〈ψ,RHSinfo〈ϕ, s〉〉is obtained by substituting xi for xj in ψ and removing the quanti�er (∃xj). (Note thatthe quanti�er (∃xi) must also be present in this ase, and is not removed.)For example, if ϕ = (∀x1)(∀x2)(∀x3)((R(x1, x2)∧R(x1, x3)) ⇒ (x2 = x3)) and ψ =

(∃x1)(∃x2)(R(a1, x1)∧R(a1, x2)∧S(x1, x2)) then for s = {(a1/x1, x1/x2, x2/x3)}, LHSinfo〈ϕ, s〉 =
(∃x1)(∃x2)(R(a1, x1)∧R(a1, x2)) and so is ϕ-ompatible. RHSinfo〈ϕ, s〉 = (x1 = x2), and so
Reduction〈ψ,RHSinfo〈ϕ, s〉〉 = (∃x1)(∃x2)(R(a1, x1)∧R(a1, x1)∧S(x1, x1)). On the other hand, if
ψ = (∃x1)(R(x1, a1)∧R(x1, a2) then s = {x1/x1, a1/x2, a2/x3} is ϕ-ompatible but
RHSinfo〈ϕ, s〉 = (a1 = a2). and so Reduction〈ψ,RHSinfo〈ϕ, s〉〉 = ⊥.The following lemma is a routine onsequene of the above.3.19 Lemma Let ϕ ∈ EGHD(D), let M ∈ DB(D), and let Ψ be a over for Info〈M,ΥK〉with respet to ΥK . Then M ∈ AtModI(ϕ) i� for every ψ ∈ Ψ and every substitution s whihis ϕ-ompatible for ψ, Reduction〈ψ,RHSinfo〈ϕ, s〉〉 ∈ Info〈M,ΥK〉 as well. 2Finally, the main result, that shemata onstrained by GHDs always admit anonial modelsonditionally, may be established.3.20 Theorem � Conditional existene of anonial models If Constr(D) ⊆
GHD(D), then for any �nite K ⊆ Const(D), D admits anonial models onditionally withrespet to ΥK.Proof: Let Φ ⊆ WFS(D, ∃∧+, K) have the property that it extends �nitely to D for ΥK .First, let ϕ ∈ Constr(D) be a TGHD, and let s be a GHD-ompatible substitution for ϕ. Itfollows diretly from 3.17 and the de�nition of XInfo (3.11(b)) that whenever LHSinfo〈ϕ, s〉 ∈Report: orreted 20110218 AMAI2009 page 20



XInfoD〈Φ,ΥK〉, then LRHSinfo〈ϕ, s〉 ∈ XInfoD〈Φ,ΥK〉 as well. A seond appliation of 3.17 es-tablishes that M ∈ MinAtModI(ϕ) for every tuple-minimal Armstrong model M of
XInfoD〈Φ,ΥK〉 with respet to ΥK .The proof for ϕ ∈ Constr(D) an EGHD is similar. Choose ψ ∈ Φ and let s be a ϕ-ompatible substitution for ψ. In view of 3.19 and the de�nition of XInfo, it must be thease that Reduction〈ψ,RHSinfo〈ϕ, s〉〉 ∈ XInfoD〈Φ,ΥK〉 as well. Again, a seond appliationof 3.19 establishes that M ∈ MinAtModI(ϕ) for every tuple-minimal Armstrong model M of
XInfoD〈Φ,ΥK〉 with respet to ΥK . 23.21 Weakly ayli TGHDs To admit anonial models unonditionally, it is neessaryto ensure that in�nite inreasing sequenes in XInfoD〈Φ,ΥK〉, as illustrated in 3.13, do notour. Suh in�nite models are related to yles in the tuple-generating dependenies. In[FKMP05, Def. 3.7℄, the notion of a weakly ayli set of TGDs is developed, and it is shown[FKMP05, Thm. 3.9℄ that the hase proedure always terminates when the dependenies arelimited to an ayli set of of TGDs together with EGDs. The TGDs and EGDs of [FKMP05℄di�er only in relatively minor ways from the TGHDs and EGHDs of this paper; in partiular,the result extends diretly to TGDs. The details will not be worked out, but the followingresult is noted for ompleteness.3.22 Corollary � (to 3.20) If Constr(D) is �nite and onsists of a weakly ayli set ofTGHDs, together with any set of EGHDs, then then for any �nite K ⊆ Const(D), D admitsanonial models unonditionally with respet to ΥK .Proof: Combine the result of 3.20 with [FKMP05, Thm. 3.9℄. 24 Optimal Re�etion of InsertionsThe fous is now turned to the problem of haraterizing optimal re�etions of insertions intothe view shema. Roughly, the idea is to re�et the information whih must be added to themain shema and then onstrut an Armstrong model (with respet to ΥK for a suitable K) ofthat information together with the urrent instane of the main shema. There are, of ourse,details to be developed and pitfalls to be avoided, all of whih are disussed in this setion.First of all, some basi de�nitions surrounding updates and information are developed.4.1 Notational onvention Throughout the rest of this paper, unless stated spei�allyto the ontrary, take Γ = (V, γ) to be a relational view of D of lass ∃∧+.4.2 Updates and re�etions An update on D is a pair (M1,M2) ∈ LDB(D)× LDB(D).
M1 is the urrent instane, and M2 the new instane. It is an insertion if M1 ⊆ M2, and adeletion if M2 ⊆ M1.To desribe the situation surrounding an update request on Γ, it is su�ient to speify theurrent instane M1 of the main shema and the desired new instane N2 of the view shema
V. The urrent instane of the view an be omputed as γ(M1); it is only the new instane M2of the main shema (subjet to N2 = γ(M2)) whih must be obtained from an update strategy.Formally, an update request from Γ to D is a pair (M1, N2) in whih M1 ∈ LDB(D) (the oldReport: orreted 20110218 AMAI2009 page 21



instane of the main shema) and N2 ∈ LDB(V) (the new instane of the view shema). If
γ(M1) ⊆ N2, it is alled an insertion request, and if N2 ⊆ γ(M1), it is alled a deletion request.Colletively, insertion requests and deletion requests are termed unidiretional update requests.A realization of (M1, N2) along Γ is an update (M1,M2) on D with the property that γ(M2) =
N2. The update (M1,M2) is alled a re�etion (or translation) of the view update (γ(M1), N2).The set of all realizations of (M1, N2) along Γ is denoted UpdRealiz〈(M1, N2),Γ〉. The subset of
UpdRealiz〈(M1, N2),Γ〉 onsisting of insertions (resp. deletions) is denoted InsRealiz〈(M1, N2),Γ〉(resp. DelRealiz〈(M1, N2),Γ〉.4.3 Update di�erene and optimal re�etions The update di�erene of an update
(M1,M2) on D with respet to a set Σ ⊆ WFS(D) is a measure of how muh M2 di�ers from
M1 in terms of satisfation of the sentenes of Σ. Formally, the positive (∆+), negative (∆−),and total (∆) update di�erenes of (M1,M2) with respet to Σ are de�ned as follows:

∆+〈(M1,M2),Σ〉 = Info〈M2,Σ〉 \ Info〈M1,Σ〉

∆−〈(M1,M2),Σ〉 = Info〈M1,Σ〉 \ Info〈M2,Σ〉

∆〈(M1,M2),Σ〉 = ∆+〈(M1,M2),Σ〉 ∪∆−〈(M1,M2),Σ〉Note that, given ϕ ∈ ∆〈(M1,M2),Σ〉, it is always possible to determine whether ϕ ∈
∆+〈(M1,M2),Σ〉 or ϕ ∈ ∆−〈(M1,M2),Σ〉 by heking whether or not M1 ∈ AtModI(ϕ). Givenan update request (M1, N2), the quality of a realization (M1,M2) is measured by its updatedi�erene. Formally, let Σ ⊆ WFS(D), let (M1, N2) be an update request from Γ to D, let
T ⊆ UpdRealiz〈(M1, N2),Γ〉, and let (M1,M2) ∈ T .(a) (M1,M2) is minimal in T with respet to Σ if for any (M1,M

′
2) ∈ T , if ∆〈(M1,M

′
2),Σ〉 ⊆

∆〈(M1,M2),Σ〉, then ∆〈(M1,M
′
2),Σ〉 = ∆〈(M1,M2),Σ〉.(b) (M1,M2) is least in T with respet to Σ if for all (M1,M

′
2) ∈ T , ∆〈(M1,M2),Σ〉 ⊆

∆〈(M1,M
′
2),Σ〉.4.4 Update lassi�ers An update lassi�er forD is simply a set Σ of information-monotonesentenes. In this work, the set Σ will always be taken to be either GrAtoms(D) or else

WFS(D, ∃∧+, K) = ΥK for an appropriate set K of onstants.Let (M1, N2) be an update request from Γ to D, let T ⊆ UpdRealiz〈(M1, N2),Γ〉, and let
(M1,M2) ∈ T .(a) (M1,M2) is 〈ΥK , T 〉-admissible if it is minimal in T with respet to bothΥK and GrAtoms(D).(b) (M1,M2) is 〈ΥK , T 〉-optimal if it is 〈ΥK , T 〉-admissible and least in T with respet to Σ.Roughly, (M1,M2) is admissible if no other realization is better, and it is optimal if it is betterthan all others, up to the equivalene de�ned by Σ. Observe that if some update request is
〈ΥK , T 〉-optimal, then all 〈ΥK , T 〉-admissible update requests are 〈ΥK , T 〉-optimal.As a notational shorthand, if T = InsRealiz〈(M1, N2),Γ〉 (resp. T = DelRealiz〈(M1, N2),Γ〉),that is, if T is the set of all possible insertions (resp. deletions) whih realize (M1, N2), then
〈ΥK , T 〉-admissible and 〈ΥK , T 〉-optimal will be abbreviated to 〈ΥK , ↑〉-admissible and 〈ΥK , ↑〉-optimal (resp. 〈ΥK , ↓〉-admissible and 〈ΥK , ↓〉-optimal).Report: orreted 20110218 AMAI2009 page 22



For Σ = GrAtoms(D), admissibility redues to minimality in the sense of symmetri di�er-ene of sets as skethed in 1.2. More onretely, given an update request (M1, N2), a realization
(M1,M2) is 〈GrAtoms(D), T 〉-admissible if for no other realization (M1,M

′
2) ∈ T is it the asethat SymDiff〈M1,M

′
2〉 ⊆ SymDiff〈M1,M2〉. Similarly, (M1,M2) is 〈GrAtoms(D), T 〉-optimal iffor every other realization (M1,M

′
2), SymDiff〈M1,M2〉 ⊆ SymDiff〈M1,M

′
2〉. Minimality withrespet to GrAtoms(D) is referred to as tuple minimality, in harmony with the terminologyalready introdued for Armstrong models in Setion 3.The major theme of this paper is that tuple minimality, by itself, is not su�ient to har-aterize optimal updates. Rather, optimality with respet to ΥK for a suitably hosen set Kof onstants is also essential. This issue is next addressed in detail.4.5 The onstants assoiated with an update request In re�eting an update from aview to the main shema, the use of new onstants in generi models is ruial. For a onstant tobe �new�, it is not su�ient that it merely not appear in the urrent or proposed view instane,or the urrent instane of the main shema. Rather, it must not appear in any onstraint orde�ning formula for the main shema or view. For example, referring bak to the example of thenull-value onstraint (∀x1)(∀x2)(R(x1, x2) ⇒ S(x1, x2, ν) of 3.15, it would be inappropriate touse ν as a generi onstant, sine it already has another meaning within the global ontext of alldatabases. Thus, the pool of generi onstants must also exlude any whih our in onstraintsor in the de�ning formulas for views. Spei�ally, the following sequene of de�nitions leads tothe aeptable pool of generi onstants.First of all, de�ne the onstant symbols of the shema D to be those of its onstraints.(a) ConstSym(D) = ConstSym(Constr(D))Next, de�ne the onstant symbols of the view Γ = (V, γ) to be those of the main shema D,together with those of both the view shema V and the view mapping γ.(b) ConstSym(Γ) = ConstSym(Constr(D)) ∪ ConstSym(Constr(V)) ∪ ConstSym(γ)The onstant symbols of an update request u are those of its instanes.() For u = (M1, N2) an update request from Γ to D, ConstSym(u) = ConstSym(M1) ∪

ConstSym(N2).Finally, de�ne the total onstant set of u, denoted Cu, to be the onstant symbols of u togetherwith those of Γ.(d) Cu = ConstSym(Γ) ∪ ConstSym(u).Note that ConstSym(N2) ⊆ ConstSym(M1)∪ConstSym(γ)∪ConstSym(V), so the following moreompat representation is also valid.(d′) Cu = ConstSym(Γ) ∪ ConstSym(M1).Sine database shemata, even those of views, are always taken to be onstant �nite (see 2.5),it follows that Cu is always a �nite set. Sine ConstD(A) is in�nite for every A ∈ AD, it followsthat there are always in�nitely many �available� onstant symbols for eah attribute A whihdo not lie in Cu. The set Cu will thus be taken to be the set of onstant symbols whih maynot be used as generi values in onstruting Armstrong models.Report: orreted 20110218 AMAI2009 page 23



4.6 Information lifting Let N ∈ DB(V). The information lifting of N along Γ, denoted
InfoLift〈N,Γ〉, is the minimum information in WFS(D, ∃∧+) whih any M ∈ DB(D) with
γ(M) = N must have. Formally, this is reaptured as follows.

InfoLift〈N,Γ〉 = {Substf〈γ, t〉 | t ∈ N}Note that InfoLift〈N,Γ〉 ⊆ ΥK with K = ConstSym(N2) ∪ ConstSym(γ).Given an insertion request u = (M1, N2) from Γ to D, and let M2 ∈ InsRealiz〈(M1, N2),Γ〉.The least information whih M2 must have is InfoLift〈N2,Γ〉 ∪M1, losed up under the on-straints in Constr(D). This is reaptured formally as
LeastRefl〈u,Γ〉 = XInfoD〈M1 ∪ InfoLift〈N2,Γ〉,ΥCu

〉and is alled the least re�etion of u along Γ.In the ontext of the example of 1.3, with u = (M00, N01), the information lifting
InfoLift〈N01,Π

E1

R′[AB]〉 = {(∃x1)(∃x2)(∃x3)(R(a0, b0, x1)∧R(a1, b1, x2)∧R(a2, b2, x3))}, while theleast re�etion LeastRefl〈u,ΠE1

R′[AB]〉 =M00 ∪ {(∃x1)(∃x2)(R(a2, b2, x1)∧(S(x1, x2)))}.Using the onstrution of 3.9, a tuple-minimal Armstrong model of LeastRefl〈u,ΠE1

R′[AB]〉 isobtained by replaing the variables by distint and new onstants; for example M01 = M00 ∪
{R(a2, b2, c2), S(c2, d2)}.4.7 Proposition � Charaterization of optimal insertions Assume that D admitsanonial models onditionally, and let u = (M1, N2) be an insertion request from Γ to D.Then (M1,M2) is a 〈ΥCu

, ↑〉-optimal realization of u i� the following two onditions hold.(i) M2 is a tuple-minimal Armstrong model of LeastRefl〈u,ΥCu
〉 with respet to ΥCu

.(ii) γ(M2) = N2.Proof: Certainly, if (i) and (ii) hold, then M2 is a 〈ΥCu
, ↑〉-optimal realization of u. On theother hand, ifM2 is a 〈ΥCu

, ↑〉-optimal realization of u, then (ii) holds trivially. Sine D admitsanonial models onditionally, if LeastRefl〈u,ΥCu
〉 admits a �nite over, then a tuple-minimalArmstrong model of that set is a a 〈ΥCu

, ↑〉-optimal realization of u, just by onstrution. If
LeastRefl〈u,ΥCu

〉 does not admit a �nite over, then, as illustrated in 3.13, it must ontain anin�nite inreasing sequene 〈ϕ0, ϕ1, ϕ2, . . .〉 of sentenes with AtModI(
⋃

{ϕi | 0 ≤ i ≤ k}) 6⊆
AtModI(ϕk) for any k > 0, and so it annot have a �nite Armstrong model. Thus, any 〈ΥCu

, ↑〉-admissible realization must satisfy some sentene not in LeastRefl〈u,ΥCu
〉, and so no 〈ΥCu

, ↑〉-optimal realization an exist. 24.8 Example � Orphan tuples Even in the ase that LeastRefl〈u,ΥCu
〉 satis�es ondition(i) of 4.7, it may not satisfy ondition (ii); that is, it may not be the ase that γ(M2) = N2.The problem lies with so-alled orphan tuples, whih are illustrated via the following example.Let E4 be the shema having the single relation symbol R[AB], onstrained by the de-pendeny (∃x1)(∃x2)(R(x1, x2)) whih simply asserts that the instane of R is nonempty. Itis immediate that this dependeny is a TGHD (with m = n = 0 in the pattern (GHD)of 3.15). The view ΠE4

A+B = (W4, π
E4

A+B) has two relation symbols RA[A] and RB[B], de-�ned by the obvious projetions πE4

A and πE4

B . The only onstraints on the view shema areReport: orreted 20110218 AMAI2009 page 24



(∃x1)(RA(x1)) and (∃x1)(RB(x1)), so Constr(W4) onsists of GHDs as well. Now with M1 =
{R(a0, b0), R(a1, b1)} the instane of E4, πE4

A+B(M1) = N1 = {RA(a0), RA(a1), RB(b0), Rb(b1)}.Let N2 be the view instane obtained by inserting RA(a2) into N1, and de�ne u = (M1, N2).Then LeastRefl〈u,ΥCu
〉 = M1 ∪ (∃x1)(R(a2, x1)). A anonial model M2 of this least re�etionis of the form M1 ∪ {R(a2, b2)}, with b2 6∈ Cu, so πE4

A+B(M2) = N2 ∪ {RB(b2)}. Here RB(b2) istermed an orphan tuple; it represents newly inserted information whih has made its way bakto the view. The tuple an be made to �disappear� by replaing b2 with an existing value forattribute B, say b1. However, in that ase, while the resulting instane M ′
2 =M1 ∪ {R(a2, b1)}does map to N2 under πE4

A+B, Info〈M2,ΥCu
〉 is a proper subset of Info〈M ′

2,ΥCu
〉, and so M ′

2 isnot 〈ΥCu
, ↑〉-optimal. Thus, (M1,M

′
2) is a 〈ΥCu

, ↑〉-admissible solution to the update request
(M1, N2), but it is not optimal. This problem annot be made to disappear via lever formula-tion; in this example, there are no optimal solutions. Fortunately, orphan tuples an be ruledout by requiring that Γ re�et deletions, as desribed below.4.9 Re�etion of deletions The view Γ = (V, γ) re�ets deletions if every deletion request
(M1, N2) from Γ to D admits a realization whih is itself a deletion.In the example of 4.8 above, ΠE4

A+B does not re�et deletions. There is no realization of theupdate request (M ′
1, N2) whih is a deletion, sine withM1 = {R(a0, b0), R(a1, b1)} the instaneof the main shema E4, there is no way to realize the deletion of R2(b1) from the view instane

N1 as a deletion from M1; R(a1, b1) must be deleted, whih would also remove R1(a1).4.10 Lemma � Re�etion of deletions implies no orphan tuples Assume that Dadmits anonial models onditionally, and let u = (M1, N2) be an insertion request from Γto D for whih LeastRefl〈u,ΥCu
〉 admits a tuple-minimal Armstrong model M2 with respet to

ΥCu
. Then, if Γ re�ets deletions, γ(M2) = N2.Proof: It is lear that N2 ⊆ γ(M2). By the de�nition of re�etion of deletions, there is an

M ′
2 ∈ LDB(D) with M ′

2 ⊆ M2 and γ(M ′
2) = N2. However, sine M2 is already tuple minimal,it follows that M ′

2 =M2. Thus, γ(M2) \N2 = ∅, and so γ(M2) = N2, as required. 2Finally, it an be established that for views with re�et deletions, ondition (ii) of 4.7 issuper�uous.4.11 Proposition Assume that Γ re�ets deletions, that D admits anonial models on-ditionally, and let u = (M1, N2) be an insertion request from Γ to D. Then (M1,M2) is a
〈ΥCu

, ↑〉-optimal realization of u i� M2 is a tuple-minimal Armstrong model of LeastRefl〈u,ΥCu
〉with respet to ΥCu

.Proof: The proof follows immediately from 4.7 and 4.10. 24.12 Example � Dependene upon the instane of the main shema There isa another issue whih arises in applying 4.7 and 4.11; namely, that whether or not an op-timal insertion exists may depend upon M1 and not simply the view instane γ(M1). Toillustrate this phenomenon, onsider the shema E5 ontaining the single relation symbol
R[ABCDE] governed by the FDs in F = {A → D,B → E,DE → C}. The view to beupdated is the projetion onto ABC; it ontains the single relation symbol RABC [ABC], andReport: orreted 20110218 AMAI2009 page 25



is represented more formally as ΠE5

ABC = (W5, π
E5

ABC). It is easy to see that Constr(W5) =
{AB → C}, so that the view is onstrained by FDs alone. Eah of the two instanes M20 =
{R(a0, b0, c0, d0, e0), R(a1, b1, c1, d1, e1)}, and M21 = {R(a0, b0, c0, d0, e0), R(a1, b1, c1, d1, e0)} of
E5 maps to the view instane N1 = {RABC(a0, b0, c0),
RABC(a1, b1, c1)} under πE5

ABC . Consider the view update whih inserts the tupleRABC(a0, b1, c2),so that the desired new view instane is N2 = N1 ∪ {RABC(a0, b1, c2)}. For onveniene,write u20 = (M20, N2) and u21 = (M21, N2). Then LeastRefl〈u20,ΥCu
〉 is given by M ′

20 =
M20∪R(a0, b1, c2, d0, e1), and it is easy to see that γ(M ′

20) = N2, as desired. On the other hand,
LeastRefl〈u21,ΥC

u′
〉 does not exist. Indeed, the FDs stipulate that it would need to be M ′

21 =
M21 ∪R(a0, b1, c2, d0, e0), but the presene of both R(a0, b0, c0, d0, e0) and R(a0, b1, c2, d0, e0) inthe same instane violates the FD DE → C. In the ase that the instane of E5 is M ′

1, thereis no insertion whih will realize the insertion of RABC(a0, b1, c2) into γ(M ′
1) = N1. To realizethis update, tuples of M ′

1 must either be deleted or else altered.This example thus shows that the priniples of re�etion of monotoniity and invarianeof admissibility, as de�ned in Se. 1, annot always be realized simultaneously, even when there�etions for ertain databases of the main shema are very well behaved. Fortunately, thisphenomenon an be ruled out by requiring that Γ re�et insertions, as desribed below.4.13 Re�etion of insertions The view Γ = (V, γ) re�ets insertions if every insertionrequest (M1, N2) from Γ to D whih admits a realization admits one whih is itself a insertion.In the example of 4.12 above, ΠE5

ABC does not re�et insertions, sine there is no re�etionof the insertion request (M ′
1, N2) whih is itself an insertion.4.14 Observation If Γ re�ets insertions, then for every insertion request u = (M1, N2)from Γ to D, LDB(D) ∩ AtModI(LeastRefl〈u,ΥCu

〉) is nonempty.Proof: Sine LeastRefl〈u,ΥCu
〉 is the least information whih any realization of u whih isan insertion must ontain, it must be onsistent if any insertion has that property. 24.15 Strong monotoniity of views In view of 4.11 and 4.14, it is lear that for there�etion of updates to be well behaved, a view should re�et both deletions and insertions.Beause of the importane of this property, it is given a speial name. Call Γ strongly monotoniif it re�ets both insertions and deletions.Finally, onditions whih guarantee the existene of optimal insertions may be established.4.16 Theorem If D admits anonial models unonditionally with respet to ΥK and Γis strongly monotoni, then every insertion request u from Γ to D admits a 〈ΥCu

, ↑〉-optimalrealization.Proof: The proof follows from 4.11 and 4.14. 24.17 Corollary If Constr(D) is �nite and onsists of a weakly ayli set of TGHDs, to-gether with any set of EGHDs, and Γ is strongly monotoni, then every insertion request ufrom Γ to D has a 〈ΥCu
, ↑〉-optimal realization.Proof: The proof follows from 4.16 and 3.22. 2Report: orreted 20110218 AMAI2009 page 26



5 Charaterization of Strongly Monotoni ViewsThe haraterizations 4.16 and 4.17 lead to the further problem of identifying onditions underwhih a view is strongly monotoni. In general, this does not appear to be an easy question toanswer. However, for shemata onstrained by FDs and unary inlusion dependenies (UINDs),and for views de�ned by projetions, it is possible to identify some su�ient onditions whihare easily veri�ed in pratie.5.1 Partial dependene and omplete sets In the example of 4.12, the problem is thatthere is a sort of weak dependene of A upon C via A → D;D ⊆ DE;DE → C, while theFd A→ C itself does not hold. To obtain strong monotoniity in the ontext of projetions ofviews onstrained by FDs, it is preisely this sort of weak dependene whih must not be presentwithout the assoiated FD also holding. To formalize this idea for a general shema D whihis onstrained by FDs, let R ∈ Rels(D), let FR be a set of FDs on R, and let A,B ∈ ArD(R).(a) A funtionally in�uenes B, denoted A 99K B, if there is a sequene 〈A0, A1, A2, . . . , An〉of elements of ArD(R) with A = A0 and B = Ak, and a sequene X1 → A1, X2 → A2, . . . ,
Xk → Ak of FDs in the losure of FR with the property that Ai ∈ Xi+1 for i ∈ {0, . . . , k}.This may be visualized as follows.

A = A0 ∈ X1;X1 → A1;A1 ∈ X2;X2 → A2; . . . Ak−1 ∈ Xk;Xk → Ak = BFuntional in�uene is weaker than funtional dependene. A 99K B simply means that thevalue of A ould in�uene the value of B, subjet to information about the values of otherattributes. Put another way, if A 99K B does not hold, then the value of A annot in�uenethe value of B via the FDs whih hold on the shema.(b) Call a subset Y ⊆ ArD(R) omplete for FR if if whenever A,B ∈ Y with A 99K B, thenthere is a Z ⊆ Y with A ∈ Z and Z → B ∈ Closure〈FR,WFS(D, ∃∧+)〉.In other words, ompleteness states that if A 99K B holds in Y , then an FD whose left handside ontains A and whose right-hand side is B also embeds into Y .5.2 Simple projetive views and omplete views Informally, Γ = (V, γ) is a simpleprojetive view of D if the shema V onsists of at most one projetion of eah relation symbolof D. Formally, a simple projetive view Γ = (V, γ) of D is de�ned by an injetive funtion
SPΓ : Rels(V) → Rels(D) with ArV(R) ⊆ ArDSPΓ(R) for eah R ∈ Rels(V). SPΓ(R) is therelation of whih R is a projetion. The property that SPΓ be injetive; that is, that eahrelation of V be the projetion of a distint relation in D, is ritial.Now assume that Γ is a simple projetive view and that eah S ∈ Rels(D) is onstrainedby a set FS of FDs. Call Γ FD-omplete if for eah R ∈ Rels(V), the set ArV(R) is ompletefor FSPΓ(R). In other words, for eah relation symbol of V, the projeted attributes must beomplete in the relation of D from whih they originate.5.3 Proposition Suppose that D is onstrained solely by FDs, and that Γ is a simple pro-jetive view whih is FD-omplete. Then Γ is strongly monotoni.Report: orreted 20110218 AMAI2009 page 27



Proof: Sine the relation symbols of D are independent of one another, it su�es to onsiderthe situation in whih Rels(D) onsists of single relation symbol R[X ], onstrained by FDs FR,with Rels(V) onsisting of a single relation symbol R′[Y ] with Y ⊆ X , and γ = πD

Y de�ningthe projetion of R[X ] onto R′[Y ].First of all, sine FDs are EGDS, deletions are re�eted trivially. Now let u = (M1, N2) bean insertion request, and let P = N2 \ γ(M1). Eah tuple t′ = R′(a1, a2, . . . , am) ∈ P must belifted to a tuple t = R(a1, a2, . . . , am, b1, b2, . . . , bk) in D, with the bi's values for the attributesin X \ Y . In view of the FD-ompleteness property of Γ, the values of the bi's annot bein�uened by the values of the ai's. (Put another way, the lassial hase proedure [BV84℄ willnot fore the values of the bi's to math those of any existing tuples.) Thus the insertion willnot have the problems whih are illustrated in 4.12, and so the update may be realized as aninsertion. 25.4 Examples � FDs and strong monotoniity As noted above, the example of 4.12is not strongly monotoni. However, if the set F = {A → D,B → E,DE → C} of FDs isreplaed by F′ = {A → D,B → E,D → C}, then A → C is in the losure of F′, ABC isFD-omplete, and the assoiated projetion is strongly monotoni.5.5 Examples � UINDs and strong monotoniity It is possible to obtain onditionsunder whih simple projetive views governed by UINDs are strongly monotoni, although someare is neessary. A few examples will illustrate the entral issues.First of all, let E6 denote the shema with two binary relation symbols R1[AB] and R2[AB],governed by the IND R1[AB] ⊑ R2[AB]. R2[AB] is also governed by the FD A→ B, and thisFD is inherited by R1[AB] via the IND. The view ΠE6

R1
preserves R1[AB] but disards R2[AB].Let M1 = {R2(a0, b0)} be the urrent instane of E6, so that the instane of the view is ∅.Consider the update request (M1, N2) with N2 = {R1(a0, b0)}. This update an be realized asthe insertion of {R1(a0, b0)} to R inM1. However, if the instane of E6 wereM ′

1 = {R2(a0, b1)}instead, this view insertion would not be realizable as an insertion to the main shema, sine theinsertion of R1(a0, b0) requires the insertion of R2(a0, b0), and {R2(a0, b0), R2(a0, b1)} togetherviolate the FD A → B on R2. Thus, any re�etion of (M ′
1, N2) must delete R2(a0, b1). Hene

ΠE6

R1
does not re�et insertions. In general, non-unary INDs are very problemati with respetto strong montoniity, and so in this paper attention will be restrited to UINDs. Note that ifthe IND above is hanged to R1[A] ⊆ R2[A], then the problem disappears.Next, let E7 denote the shema with the single relation symbol R[ABC], onstrained by

R[B] ⊑ R[C], and let ΠE7

A = (W7, π
E7

A ) be the view whih projets R[ABC] onto R′[A]. Let
M1 = {R(a0, b0, b0)R(a1, b1, b1)}, so that πE7

A (M1) = N1 = {R′(a0), R
′(a1)}. The view instane

N2 = N1 \R
′(a1) = {R′(a0)} may be realized via the deletion of R(a1, b1, b1) from M1. On theother hand, for M ′

1 = {R(a0, b0, b1)R(a1, b1, b0)}, πE7

A (M ′
1) = N1 as well, yet there is no subsetof M ′

1 whih maps to N2 under πE7

A . Hene ΠE7

A does not re�et deletions. A similar problemours if the view is taken to be the projetion ΠE7

AB onto AB or the projetion ΠE7

AC onto AC.Thus, the seond priniple to enfore is that for every intrarelational UIND R[A1] ⊆ R[A2], if
R is projeted at all to the view, then the projetion must ontain R[A1A2]. Less formally, allintrarelational UINDs must be ompletely visible in the projetion.Finally, let E8 be the shema with three relation symbols R1[AB], R2[AB], and R3[AB], on-strained by R1[A] ⊑ R2[A] and R2[B] ⊑ R3[B]. The simple projetive view Ω7 ontains the pro-Report: orreted 20110218 AMAI2009 page 28



jetionsR′
1[A] andR′

3[A] ofR1 andR3, respetively. LetM1 = {R1(a0, b0), R2(a0, b1), R3(a0, b1),
R3(a1, b0)}, so that the view instane isN1 = {R′

1(a0), R
′
3(a0), R

′
3(a1)}. LetN2 = {R′

1(a0), R
′
3(a0)}.It is easy to see that the deletion request (M1, N2) is realizable by deleting R3(a1, b0) from

M1. However, for M ′
1 = {R1(a0, b0), R2(a0, b1), R3(a1, b1), R3(a0, b0)}, the deletion request

(M ′
1, N2) is not realizable as a deletion, sine R3(a1, b1) must be deleted, whih would violate

R2[B] ⊑ R3[B]. Note that parts of the �hain� R1[A] ⊑ R2[A] ↔ R2[B] ⊑ R3[B] ↔ R3[A] arenot visible in the view, with ↔ meaning �ours in the same relation. The �nal ondition tobe enfored is that all intermediate entries in suh a hain must appear in the view wheneverthe end points do.The next task is to formalize all of this.5.6 UINDs and projetive views The set of unary projetions of D onsists of all ex-pressions of the form R[A] with R ∈ Rels(D) and A ∈ ArD(R). Thus, the unary projetionsare preisely those whih an our as the left-hand or right-hand side of a UIND. Formally,
UProj(D) = {R[A] | R ∈ Rels(D) and A ∈ ArD(R)}.De�ne UIND(D) to be the set of all UINDs whih are implied by Constr(D). Say that R[A]partiipates in UIND(D) if if it appears as either the left-hand side or else the right-hand side ofsome nontrivial ϕ ∈ UIND(D). Here a nontrivial UIND is one whih is not true inM ∈ DB(D);i.e., one whih is not of the form R[A] ⊑ R[A]. For R[A1], R[A2] ∈ UProj(D) both partiipantsin UIND(D) and over the same relation R, write R[A1] ↔ R[A2]. Note that R[A1] ↔ R[A2]does not neessarily imply that one of R[A1] ⊑ R[A2] or R[A2] ⊑ R[A1] holds; R[A1] and R[A2]may well partiipate in distint UINDs of D.De�ne the UIND-graph of D, denoted UGraph(D), to be the direted graph whose vertiesare the members of UProj(D), with an edge from R1[A1] to R2[A2] i� R1[A1] 6= R2[A2] and either
R1[A1] ⊑ R2[A2] ∈ UIND(D) or else R1 = R2 and R1[A1] ↔ R2[A2]. Thus, the UIND-graphreaptures �hains of in�uene for UINDs, muh as funtional in�uene does for FDs.Finally, assume that Γ = (V, γ) is a simple projetive view of D. Say that R[A] ∈ UProj(D)is visible in Γ if there is some R′ ∈ Rels(V) whih is a projetion of R under γ. Call Γ UIND-omplete if for every direted path ρ = 〈R1[A1], R2[A2], . . . , Rk[Ak]〉 in UGraph(D), if R1[A1]and Rk[Ak] are visible in Γ, so too are all intermediate elements in ρ.The following result, analogous to 5.3, may now be established.5.7 Proposition Suppose that D is onstrained by UINDs, and that Γ is a simple projetiveview whih is UIND-omplete. Then Γ is strongly monotoni.Proof: The proof is a similar to that of 5.3. The entral idea is to observe that all onnetionsbetween values whih are fored by the UINDs are already visible in the view, in the sense thatthey are deduible from the onstraints of the view instane, and so it is ompletely deidablewithin the view whether or not an insertion or deletion will violate a UIND. The details areleft to the reader. 25.8 Proposition Suppose that D is onstrained by FDs and UINDs, and that Γ is a simpleprojetive view whih is both FD-omplete and UIND-omplete. Then Γ is strongly monotoni.Report: orreted 20110218 AMAI2009 page 29



Proof: The proof follows from 5.3 and 5.7, together with the lassial result that FDs andUINDs have trivial interation [CKV90℄. 25.9 Theorem Suppose that D is onstrained by FDs and weakly ayli UINDs, and that Γis a simple projetive view whih is both FD-omplete and UIND-omplete. Then every insertionrequest u from Γ to D admits a 〈ΥCu
, ↑〉-optimal realization.Proof: Combine 3.22, 4.17, and 5.8. 26 Optimal Re�etion of DeletionsAt �rst glane, the information-based modelling of deletions to views would appear to be muhsimpler than that for insertions. Indeed, in large part, the only relevant information-monotonefamily is GrAtoms(D). Thus, the following is immediate.6.1 Observation Let u = (M1, N2) be a deletion request from Γ to D, (M1,M2) ∈

DelRealiz〈(M1, N2),Γ〉, and let K = ConstSym(u).(a) (M1,M2) is 〈ΥK , ↓〉-admissible i� for all (M1,M
′
2) ∈ DelRealiz〈(M1, N2),Γ〉 with M2 ⊆

M ′
2, it must be that M2 =M ′

2.(b) (M1,M2) is 〈ΥK , ↓〉-optimal i� for all (M1,M
′
2) ∈ DelRealiz〈(M1, N2),Γ〉, M ′

2 ⊆M2. 26.2 Admissibility and optimality for deletions As the admissibility and optimality ofdeletions do not depend upon the set of onstant symbols in the instanes de�ning the update,a more onise notation may be employed. For u = (M1, N2) be a deletion request from Γ to
D and (M1,M2) ∈ DelRealiz〈(M1, N2),Γ〉, write ↓-admissible as an abbreviation for 〈ΥCu

, ↓〉-admissible, and ↓-optimal as an abbreviation for 〈ΥCu
, ↓〉-optimal.It is also worth observing that equality-generating dependenies and mutual-exlusion de-pendenies are always preserved under deletion, so no speial handling of them is required.6.3 Observation � EGHDs and mutual-exlusion TGHDs preserved under dele-tion Let ϕ be either an EGHD or a mutual-exlusion TGHD on D. If M ∈ AtModI(ϕ), then

M ′ ∈ AtModI(ϕ) for every M ′ ⊆M . 2Despite these simpli�ations, the optimal support of deletions is far from trivial. The root ofthe problem is that while TGDs are well suited for insertions, they display inherent disjuntionin the ontext of deletion. A simple example will help illustrate.6.4 Example � Strong monotoniity does not ensure ↓-optimal realizations Let
E9 be the relational shema with three relation symbols R[A], S[A], and T [A], onstrainedby the single TGHD (∀x)((R(x)∧S(x)) ⇒ T (x)), let G9 be the shema whose single relationsymbol is T ′[A], and let Ω9 = (G9, ω9) be the view of G9 with ωT ′

9 = T (xA). In words, the view
Ω9 preserves T [A] (as T ′[A]) but disards R[A] and S[A] ompletely.Clearly Ω9 is strongly monotoni. However, it does not always admit re�etions whih are
↓-optimal. Indeed, let M1 = {R(a0), R(a1), S(a0), T (a0)} be the urrent instane of E9, soReport: orreted 20110218 AMAI2009 page 30



that N1 = {T ′(a0)} is the instane of G9. Let N2 = ∅. For M ′
2 = {R(a0), R(a1)} and M ′′

2 =
{S(a0), R(a1)}, eah of (M1,M

′
2) and (M1,M

′′
2 ) are ↓-admissible realizations of u = (M1, N2)with respet to WFS(E9, ∃∧+), and so neither is ↓-optimal.Observe that for M3 = M ′

2 ∩M ′′
2 = {R(a1)}, (M1,M3) ∈ DelRealiz〈(M1, N2),Ω9〉 as well,although it is not minimal. This leads to a weaker �minimax�-style of optimality, in whih everytuple whih is deleted in some ↓-admissible realization is deleted. This is formalized as follows.6.5 Weak ↓-optimality Let u = (M1, N2) be a deletion request from Γ to D.(a) De�ne WeakOpt↓〈u,Γ〉 =

⋂

{M3 | (M1,M3) ∈ DelRealiz〈(M1, N2),Γ〉 and ↓-admissible}.(b) Call (M1,M2) ∈ DelRealiz〈(M1, N2),Γ〉 weakly ↓-optimal if M2 = WeakOpt↓〈u,Γ〉.In 6.4 above, M3 is weakly ↓-optimal but not ↓-optimal in the sense of 6.2.To identify onditions under whih a weakly ↓-optimal re�etions are admitted, it useful tointrodue a new way of viewing the ombination of a shema and a view.6.6 The ombined shema indued by a view Rather than regarding the main shema
D and the view shema V as distint, it is quite possible to ombine them into a single shema,with the view mappings regarded as additional onstraints. The alternative representationturns out to be very useful, sine all onstraints, both those of the shemata and those induedby the view mappings, may be onsidered at one.To formalize this idea, it is neessary to assume that Rels(D) ∩ Rels(V) = ∅. This is not aproblem sine relations may always be renamed as neessary.The ombined shema CombSch〈D,Γ〉 has as its relational symbols Rels(D)∪Rels(V). Theonstraints of CombSch〈D,Γ〉 are those in Constr(D), together with, for eah R ∈ Rels(V), thede�nitional onstraint

(∀xA1
)(∀xA2

) . . . (∀xAm
)((R(xA1

, xA2
, . . . , xAn

)) ⇔ γR(DefC)In the above, {xA1
, xA2

, . . . , xAm
} are preisely the attribute variables whih our in the inter-pretation formula γR. It is easier to see the full nature of this onstraint when γR is expandedinto its full form (∃x1)(∃x2) . . . (∃xn)(γ

R(xA1
, xA2

, . . . , xAm
, x1, x2, . . . , xn)). (See 2.6 for a lar-i�ation of the notation γR.) The omplete expansion then beomes(DefC′) (∀xA1

)(∀xA2
) . . . (∀xAm

)((R(xA1
, xA2

, . . . , xAn
)) ⇔

(∃x1)(∃x2) . . . (∃xn)(γ
R))(xA1

, xA2
, . . . , xAm

, x1, x2, . . . , xn)))The de�nitional onstraint (DefC′) for R may be broken into the forward omponent(DefC-Fwd) (∀xA1
)(∀xA2

) . . . (∀xAm
)(∀x1)(∀x2) . . . (∀xn)

(γR(xA1
, xA2

, . . . , xAm
, x1, x2, . . . , xn) ⇒ (R(x1, x2, . . . , xn)))and the reverse omponent(DefC-rev) (∀xA1

)(∀xA2
) . . . (∀xAm

)((R(xA1
, xA2

, . . . , xAn
)) ⇒

(∃x1)(∃x2) . . . (∃xn)(γ
R))(xA1

, xA2
, . . . , xAm

, x1, x2, . . . , xn)))Report: orreted 20110218 AMAI2009 page 31



It is easy to see that both the forward and the reverse omponents are TGHDs. Thus, if
Constr(D) has a over onsisting of GHDs, so too does Constr(CombSch〈D,Γ〉).This idea has already been illustrated in 1.2 with E

′
0 the ombined shema assoiated with

CombSch〈E0,Π
E0

AB〉. The single de�nitional onstraint is (∀x)(∀y)(RAB(x, y) ⇔ (∃z)(R(x, y, z))),and this deomposes into the forward onstraint (∀x)(∀y)(∀z)(R(x, y, z) ⇒ RAB(x, y)) and thereverse onstraint (∀x)(∀y)(RAB(x, y) ⇒ (∃z)(R(x, y, z))). Note that the forward onstraint isalways universal.6.7 Universal pairs Call the pair 〈D,Γ〉 universal if Constr(CombSch〈D,Γ〉) onsists en-tirely of universal GHDs. In other words, this means that both the onstraints ofD and the viewinterpretation mappings onsist of total dependenies, without any existential quanti�ation.For example, in 6.4, the pair 〈E9,Ω9〉 is universal.Under this assumption of universality, weakly ↓-optimal solutions exist whenever a solutionwhih is a deletion is possible.6.8 Proposition Let 〈D,Γ〉 be a universal pair. Then for every deletion request u =
(M1, N2) from Γ to D with DelRealiz〈u,Γ〉 6= ∅, WeakOpt↓〈u,Γ〉 is a weak ↓-optimal realizationof u.Proof: Let (M1,M2) ∈ DelRealiz〈(M1, N2),Γ〉 and let t ∈ N2. Sine 〈D,Γ〉 is a universalpair, Subst(γ, t→) must be a onjuntion of ground atoms, and these ground atoms must be inevery M for whih t ∈ γ(M). In partiular, eah suh onjunt must be in ⋂{M3 | (M1,M3) ∈
DelRealiz〈(M1, N2),Γ〉 and ↓-admissible}. Thus γ(WeakOpt↓〈u,Γ〉) = N2.It remains to verify that WeakOpt↓〈u,Γ〉 ∈ LDB(D). However, it is a very easy exeriseto show that all universal Horn sentenes (and hene all total TGDs) are preserved underintersetion, whene the result. 26.9 Example � Lak of weak ↓-optimal realizations It is natural to onjeture thatthe result of 6.8 extends to situations involving existential quanti�ation. Unfortunately, thisis not the ase. If non-total TGDs are allowed, relatively simple examples of deletions requestsexist whih admit ↓-admissible realizations but no weak ↓-optimal realization.Let E10 be the shema with three relational symbols R[AB], S[BC], and T [BC], with thefollowing three onstraints.

(∀x1)(∀x2)(∀x3)((R(x1, x2)∧R(x1, x3)) ⇒ S(x2, x3))

(∀x1)(∀x2)(R(x1, x2) ⇒ T (x2, x2))

(∀x1)(T (x1, x1) ⇒ (∃y1)(R(y1, x1)))Let Ω10 = (G10, ω10) be the view whih retains the relations of S and T , but disards R. Let
M1 = {R(a0, b0), R(a0, b1), R(a1, b0), R(a1, b1), S(b0, b0), S(b0, b1), S(b1, b0), S(b1, b1),
T (b0, b0), T (b1, b1)}. It is easy to see that M1 ∈ LDB(E10). The orresponding view instane
ω10(M1) = {S(b0, b0), S(b0, b1), S(b1, b0), S(b1, b1), T (b0, b0), T (b1, b1)}. Let the desired newview instane be N2 = {S(b0, b0), S(b1, b1), T (b0, b0), T (b1, b1)}. Thus, the tuples in P =
{S(b1, b0), S(b0, b1)} are to be deleted. It is easy to see that this update admits two ↓-admissible realizations, one whih deletes P ∪{R(a0, b0), R(a1, b1)} and the other whih deletesReport: orreted 20110218 AMAI2009 page 32



P ∪ {R(a0, b1), R(a1, b0)}. Thus, the two possibilities for the new instane of E10 are M ′
2 =

{R(a0, b1), R(a1, b0), S(b0, b0), S(b1, b1), T (b0, b0), T (b1, b1)} and M ′′
2 = {R(a0, b0), R(a1, b1),

S(b0, b0), S(b1, b1), T (b0, b0), T (b1, b1)}. However, M ′
2 ∩M

′′
2 = {S(b0, b0), S(b1, b1), T (b0, b0),

T (b1, b1)} 6∈ LDB(E10). Indeed, the existential quanti�ation has introdued an exlusive-orrequirement in whih (R(a0, b0)∧R(a1, b1))∨(R(a0, b1)∧R(a1, b0)) must hold, but both disjuntsmust not hold simultaneously. Furthermore, it is not di�ult to see that Ω10 re�ets deletions.Therefore, a general approah whih addresses the disjuntion problem for deletions seemsimpossible.It should be noted that Constr(E10) is not typed in the sense of [Fag82, p. 955℄. For thispaper, whether suh an example is possible with suh typed onstraints is left as an openquestion. Rather, attention is turned to a more restritive but nevertheless useful lass whihdoes admit full ↓-optimal realizations.6.10 Unit-head TGDs, shemata, and views A TGHD of the form (GHD) of 3.15 isalled a unit-head dependeny if n = 1; that is, if there is only one atom on the left-handside of the rule. The most important example of a unit-head dependeny is the inlusiondependeny. The shema D is alled unit-head if Constr(D) has a over onsisting of EGHDs,mutual-exlusion TGHDs, and unit-head TGHDs.This idea extends to ombined shemata as well. Call the pair 〈D,Γ〉 unit head if
CombSch〈D,Γ〉 is unit head. Clearly, CombSch〈D,Γ〉 is unit head i� D has that propertyand, for eah R ∈ Rels(V), the interpretation formula γR onsists of a single (not neessarilyground) atom.All INDs, are unit-head. Furthermore, views whih are de�ned via projetion and seletion(but not join), are also unit head. Therefore, many pratial examples are represented underthis lass.The following lemma identi�es a ritial property of unit-head shemata.6.11 Lemma Let D be a unit-head shema, and let M,M1,M2 ∈ LDB(D) with Mi ⊆ Mfor i ∈ {1, 2}. Then M1 ∪M2 ∈ LDB(D) as well.Proof: Without loss of generality, assume that Constr(D) itself onsists of EGDs and unit-head TGHDs. Let ϕ ∈ Constr(D) be a TGHD and let s be a onstant substitution intothe universal variables of ϕ suh that LHSinfo〈ϕ, s〉 ∈ M1 ∪ M2. Let i ∈ {1, 2} for whih
LHSinfo〈ϕ, s〉 ∈ Mi. There must then be a tuple t ∈ Mi whih satis�es RHSinfo〈ϕ, s〉, sine
Mi ∈ LDB(D). Thus M1 ∪ M2 ∈ AtModI(ϕ), and so M1 ∪ M2 satis�es every TGHD in
Constr(D). Sine M1 ∪M2 ⊆ M , it follows from 6.3 that M1 ∪ M2 ∈ AtModI(ψ) for everyEGHD and mutual-exlusion TGHD in Constr(D). Thus, M1 ∪M2 ∈ LDB(D). 26.12 Theorem Let 〈D,Γ〉 be a unit-head pair. Then every deletion request u = (M1, N2)from Γ to D for whih DelRealiz〈(M1, N2),Γ〉 6= ∅ admits a unique ↓-optimal realization.Proof: Given a deletion request u = (M ′, N2) from Γ to D, let M ′

1 and M ′
2 be ↓-admissiblerealizations of u, and let Mi =M ′

i ∪N2 ∈ LDB(CombSch〈D,Γ〉) for i ∈ {1.2}. Now just apply6.11 to establish that M1 ∪M2 ∈ LDB(D). It thus follows that M1 = M2, else one of M1 andReport: orreted 20110218 AMAI2009 page 33



M2 would not be tuple minimal. Hene the part of M1 whih orresponds to the relations of
D must be the ↓-optimal solution. 2In the ontext of the traditional dependenies and view onstrutions of the relational model,this theorem leads to the following orollary.6.13 Corollary Let D be onstrained by FDs and INDs, and let Γ be de�ned by projetionsand seletions on the relations of D. Then, if Γ re�ets deletions, every deletion request from
Γ to D admits a unique ↓-optimal realization. 2Invoking 5.8 yields the following more foused haraterization.6.14 Corollary Let D be onstrained by FDs and weakly ayli INDs, and let Γ be asimple-projetive view whih is strongly monotoni. Then every unidiretional update request(i.e., insertion request or deletion request) u from Γ to D admits a unique optimal realization(〈ΥCu

, ↑〉-optimal or ↓-optimal, as the ase may be). 27 Conlusions and Further DiretionsA strategy for the optimal re�etion of view updates has been developed, based upon the on-ept of least information hange. The property of strong monotoniity � that view insertionsmay always be re�eted as main-shema insertions and view deletions may always be re�etedas main-shema deletions, has been shown to be ritial. Under this assumption, and in the on-text of generalized Horn dependenies, it has been shown that optimal insertions are supportedin a reasonable fashion � they are unique up to a renaming of the newly-inserted onstants. Ithas furthermore been shown that optimal deletions are supported under unit-head onditions.Nonetheless, a number of issues remain for future investigation. Among the most importantare the following.Deletion beyond the unit-head ontext The theory for deletions developed in Setion 6 is largelyrestrited to unit-head pairs. It would be useful to extend these results to a wider lass ofshemata. As noted at the end of 6.9, it is not known (at least to the author) whether weak
↓-optimality may be obtained for typed GHDs. This topi warrants further investigation.Charaterization of strong monotoniity for wider lasses of shema onstraints The harater-ization in Setion 5 of views whih are strongly monotoni is limited to simple projetions on-strained by FDs and UINDs. Sine strong monotoniity is entral to the support of optimalupdates, an investigation into broader haraterization would ertainly be worthwhile.Optimization of tuple modi�ation Although the general formulation applies to all types ofupdates, the results fous almost entirely upon insertions and deletions. Modi�ation ofsingle tuples (�updates� in SQL), on the other hand, are of fundamental importane. Withthe standard update lassi�ation pair introdued in 4.4 and used throughout the paper,only very speial ases admit optimal solutions. The di�ulty arises from the fat that theframework, whih is based entirely upon information ontent, annot distinguish between theReport: orreted 20110218 AMAI2009 page 34



proess of modifying a tuple and that of deleting it and then inserting a new one. Consequently,both appear as admissible updates, but neither is optimal relative to the other. Further workmust therefore look for a way to reapture the distintion between tuple modi�ation and adelete-insert pair.Appliation to database omponents This investigation began as an e�ort to understand bet-ter how updates are propagated between database omponents, as forwarded in [Heg08b, Se.4℄, but then took on a life of its own as it was disovered that the omponent-based prob-lems were in turn dependent upon more fundamental issues. Nevertheless, it is important toreturn to the roots of this investigation � database omponents. This inludes not only thepurely autonomous ase, as skethed in [Heg08b, Se. 4℄, but also the situation in whih usersooperate to ahieve a suitable re�etion, as introdued in [HS07℄Relationship to work in logi programming As already noted in the introdution, the problemof view update has also been studied extensively in the ontext of dedutive databases. Theonnetion between update preferene based upon distane measures, as identi�ed in Setion1 and the urrent approah beg a rapprohement. In addition, the onnetion between theurrent work and that of identifying algorithms for �nding all possible re�etions [BM04℄ is ofinterest. Furthermore, some reent work has introdued the idea of using ative onstraintsto establish a preferene order on admissible updates [GSTZ03℄. Thus, rather than employinga preferene based upon information ontent, one based upon expliit rules is employed. Therelationship between suh approahes and that of this paper warrants further investigation.Also, there has been a substantial body of work on updates to disjuntive dedutive databases[FGM96℄, in whih the extensional database itself onsists of a olletion of alternatives. Theapproah of minimizing information hange in the disjuntive ontext deserves further atten-tion as well.Aknowledgment Muh of this researh was arried out while the author was a visitor at theInformation Systems Engineering Group at the University of Kiel. He is indebted to BernhardThalheim and the members of the group for the invitation and for the many disussions whihled to this work. Also, the anonymous reviewers made numerous suggestions whih (hopefully)have led to a more readable presentation. Thanks are also due to Peggy Shmidt who read themanusript and made many valuable suggestions.Referenes[AHV95℄ Serge Abiteboul, Rihard Hull, and Vitor Vianu, Foundations of Databases,Addison-Wesley, 1995.[ADB07℄ Ofer Arieli, Mar Deneker, and Maurie Bruynooghe, �Distane semantis fordatabase repair,� Ann. Math. Artif. Intell., 50(2007), pp. 389�415.[ADNB06℄ Ofer Arieli, Mar Deneker, Bert Van Nu�elen, and Maurie Bruynooghe, �Com-putational methods for database repair by signed formulae,� Ann. Math. Artif.Intell., 46(2006), pp. 4�37.Report: orreted 20110218 AMAI2009 page 35
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