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tFor the problem of re�e
ting an update on a database view to the main s
hema, the
onstant-
omplement strategies are pre
isely those whi
h avoid all update anomalies, andso de�ne the gold standard for well-behaved solutions to the problem. However, thefamilies of view updates whi
h are supported under su
h strategies are limited, so it issometimes ne
essary to go beyond them, albeit in a systemati
 fashion. In this work, aninvestigation of su
h extended strategies is initiated for relational s
hemata. The approa
his to 
hara
terize the information 
ontent of a database instan
e, and then require that theoptimal re�e
tion of a view update to the main s
hema embody the least possible 
hangeof information. The key property is identi�ed to be strong monotoni
ity of the view,meaning that view insertions may always be re�e
ted as insertions to the main s
hema,and likewise for deletions. In that 
ontext it is shown that for insertions and deletions,an optimal update, entailing the least 
hange of information, exists and is unique up toisomorphism for wide 
lasses of 
onstraints.1 Introdu
tion1.1 The limitations of 
onstant 
omplement The problem of re�e
ting view updatesto the main s
hema of a database system is a di�
ult one whose solution invariably involves
ompromise. The 
onstant-
omplement approa
h [BS81℄ avoids all so-
alled update anomalies[Heg04℄, and so is the gold standard for well-behaved strategies. On the other hand, it isalso quite 
onservative regarding the updates whi
h it admits. A short example will help toillustrate the s
ope of this approa
h. Let E0 be the relational s
hema 
onsisting of the singlerelation symbol R[ABC], 
onstrained by the join dependen
y 1 [AB,BC], and let ΠE0

AB bethe view whose single relation symbol is RAB[AB] and whose morphism πE0

AB is the proje
tionof R[ABC] onto AB. In the 
onstant-
omplement strategy, all updates to ΠE0

AB must hold aso-
alled 
omplementary view �xed. The natural 
omplement to ΠE0

AB is the view ΠE0

BC , de�nedby the proje
tion of R[ABC] onto RBC [BC]. It is easy to see that the updates to ΠE0

AB whi
hhold ΠE0

BC �xed are pre
isely those whi
h hold the proje
tion onto B �xed. Thus, for example, ifReport: 
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{R(a0, b0, c0), R(a1, b1, c1)} is the 
urrent instan
e of E0, so that the instan
e of the view s
hemais {RAB(a0, b0), RAB(a1, b1)}, then insertion of RAB(a2, b1) is realized by inserting R(a2, b1, c1)into the instan
e of the main s
hema. Unfortunately, even so simple an update as inserting
RAB(a2, b2) into ΠE0

AB is not supported, sin
e the proje
tion onto B 
annot be held �xed undersu
h an update.Of 
ourse, there is a reason for this limitation. In order to insert RAB(a2, b2) into theview, it is ne
essary to insert some tuple of the form R(a2, b2, cx) into the main s
hema, withinformation about cx not visible within the view. Su
h an insertion would violate the prin
iplethat views be en
apsulated with respe
t to the updates whi
h are allowed, in the sense thatthe e�e
t of all su
h updates be 
ontained entirely within the view itself. It is pre
isely the
onstant-
omplement strategy whi
h guarantees this sort of en
apsulation [Heg04, Se
. 1.2℄.Nevertheless, there are 
ertainly situations in whi
h it is desirable, if not ne
essary, to lift thislimitation in a 
ontrolled manner. The goal of this paper is to develop an extension to the
onstant-
omplement strategy whi
h admits a wider 
lass of view updates while preserving asmany of the desirable properties of the original strategy. In parti
ular, the following threeproperties are regarded as un
ompromisable.Invarian
e of admissibility : The admissibility of a view update must depend only upon the
urrent view instan
e, and not upon the instan
e of the main s
hema whi
h gave rise to it.Canoni
ity of re�e
tions: All allowable re�e
tions of a view update to the main s
hema mustbe equivalent up to some natural notion of isomorphism.Re�e
tion of monotoni
ity : If the view mapping is monotoni
, then every insertion (resp.deletion) on the view must be re�e
ted as an insertion (resp. deletion) on the main s
hema.These 
onditions are all natural extensions of that whi
h is expe
ted from a 
onstant 
omple-ment strategy. Invarian
e of admissibility is always satis�ed by a 
onstant-
omplement strategy;see (

:1) of [Heg04, Se
. 1.2℄. While the re�e
tion de�ned by a 
onstant-
omplement strategymay in prin
iple depend upon the 
hoi
e of 
omplement, it has been shown that it is in fa
tindependent of that 
hoi
e when the view morphism is monotoni
 [Heg04, Thm. 4.3℄ [Heg08
,Cor. 4.24℄. Re�e
tion of monotoni
ity is similarly guaranteed in wide variety of 
ir
umstan
es;see [Heg04, Def. 3.1 (upt:6)℄ and [Heg08
℄.Mu
h of the existing work on this problem, su
h as [DB82℄, [Kel85℄, [Lan90℄, [BL97℄, and[BL98℄, fo
uses upon translation of view updates via the relational algebra. As su
h, while theyprovide useful insight into 
ommonly o

urring problem instan
es, and all support the simpleupdate problem of inserting RAB(a2, b2) sket
hed above, they do not provide a uni�ed theoryof how and under whi
h 
ir
umstan
es view updates 
ould be re�e
ted. While su
h a detailed
omparison is a very interesting topi
, it must be left to a di�erent paper.1.2 Database repairs, distan
e measures, and information 
ontent More 
losely re-lated to the approa
h developed here is one whi
h has been developed in the logi
-programming
ommunity � database repair. Roughly, in the repair problem, a database M is given whi
his in
onsistent with respe
t to a set Ψ of 
onstraints, the task being to �repair� M to a
onsistent version M ′ whi
h obeys the 
onstraints in Ψ. It is straightforward to re
ast aview-update problem in this 
ontext, at least in prin
iple. Extending the example of 1.1,Report: 
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let E
′
0 be the s
hema whi
h augments E0 with the relation symbol RAB[AB] together withits de�ning 
onstraint (∀x)(∀y)(RAB(x, y) ⇔ (∃z)(R(x, y, z))). Thus, the 
urrent instan
e ofthis s
hema is Mold = {R(a0, b0, c0), R(a1, b1, c1), RAB(a0, b0), RAB(a1, b1)}. The �defe
tive�new instan
e whi
h in
ludes the inserted view tuple RAB(a2, b2) but not the 
orrespondingupdate to the main s
hema is M ′def = Mold ∪ {RAB(a2, b2)}. The task is to repair M ′defto be a legal instan
e, i.e., one whi
h satis�es the integrity 
onstraints of E0, subje
t tothe 
ondition that the instan
e of RAB is held 
onstant. A ranking fun
tion measures thequality of the of various solutions. For any two sets S1 and S2, let SymDiff〈S1, S2〉 de-note their symmetri
 di�eren
e (S1 \ S2) ∪ (S2 \ S1), and let Card(Si) denote the 
ardinal-ity of Si. Two prin
ipal measures are subset ranking in whi
h Mnew is preferred to M ′new if

SymDiff〈Mold,Mnew〉 ⊆ SymDiff〈Mold,M ′new〉 and the 
ount ranking in whi
h Mnew is preferredto M ′new if Card(SymDiff〈Mold,Mnew〉) ≤ Card(SymDiff〈Mold,M ′new〉). Under either of thesemeasures, the optimal solutions are pre
isely those of the form Insert〈R(a2, b2, v)〉, with v anyallowable value for the domain C. See [ADNB06℄ for further details, as well as a 
omprehensivelist of other papers whi
h employ related approa
hes.A drawba
k of both of these measures is that tuple similarity is an all-or-nothing a�air � alltuples whi
h are not identi
al are equally di�erent from one another. Consequently, R(a0, b0, c1)is just as di�erent from R(a0, b0, c0) as is R(a1, b1, c1). Re
ently, more sophisti
ated distan
emeasures have been proposed [ADB07℄, some of whi
h are based upon (pseudo-)distan
e mea-sures of individual tuples, su
h as those proposed in [Hut97℄ or [NC97℄. These tuple-basedmeasures may then be extended to sets of tuples via measures su
h as that of Eiter and Man-nila [EM97℄, whi
h de�nes the distan
e between database instan
es M1 and M2 in terms of thedistan
es between tuples to be
Dist〈M1,M2〉 =

1

2
·

(

∑

t1∈M1

min
t2∈M2

Dist〈t1, t2〉+
∑

t2∈M2

min
t1∈M1

Dist〈t1, t2〉

)

.Using a model of distan
e between tuples su
h as that of [NC97℄, whi
h de�nes su
h dis-tan
e in terms of how mu
h ea
h term of one tuple di�ers from the 
orresponding term in theother, and assuming that distin
t terms have positive distan
e from one another, it follows that
Dist〈R(a2, b2, c1), R(a1, b1, c1)〉 < Dist〈R(a2, b2, c2), R(a1, b1, c1)〉 and so Insert〈R(a2, b2, c1)〉 ispreferred to Insert〈R(a2, b2, c2)〉 in support of the view update request Insert〈RAB(a2, b2)〉.Similarly, Insert〈R(a2, b2, c0)〉 is preferred to Insert〈R(a2, b2, c2)〉, while Insert〈R(a2, b2, c0)〉 and
Insert〈R(a2, b2, c1)〉 are of equal preferen
e.Despite the obvious attra
tiveness of su
h tuple-based metri
s from both a mathemati
al andan aestheti
 point of view, in this paper it is argued that quite a di�erent type of metri
 is moreappropriate � one whi
h in fa
t prefers Insert〈R(a2, b2, c2)〉 to both Insert〈R(a2, b2, c1)〉 and
Insert〈R(a2, b2, c0)〉� pre
isely the opposite of that whi
h the above tuple-based metri
 advises.The idea is to measure the information 
ontent of database instan
es relative to a set of sen-ten
es, and to prefer updates whi
h involve less 
hange of information. More pre
isely, relativeto a set Φ of senten
es, the information 
ontent Info〈M,Φ〉 of the database instan
eM is the setof all senten
es in Φ whi
h are satis�ed by M . The information distan
e relative to Φ betweendatabase instan
es M1 and M2 is then ∆〈(M1,M2),Φ〉 = SymDiff〈Info〈M1,Φ〉, Info〈M2,Φ〉〉.The information distan
e between M1 and M2 is thus not a number but rather the set of for-mulas of Φ on whi
hM1 andM2 di�er. Preferen
e of repairs is then de�ned in the obvious way,with 
hanging M1 to M2 preferred to 
hanging M1 to M3 if ∆〈(M1,M2),Φ〉 ⊆ ∆〈(M1,M3),Φ〉.Report: 
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The utility of this approa
h depends, of 
ourse, upon a suitable 
hoi
e for Φ. If Φ 
hosen tobe the set of all atoms for the s
hema, then information distan
e redu
es to subset ranking asde�ned above. The most suitable 
hoi
e in many situations is to let Φ be the set of all senten
esin the language of the s
hema whi
h are existential (no universal quanti�
ation), positive (nonegation of any kind), and 
onjun
tive (no disjun
tion), and whi
h employ at most the 
onstantsymbols whi
h o

ur in the formulation of the update itself � those whi
h o

ur in the 
urrentinstan
es of the main s
hema and the view as well as those whi
h o

ur in the proposed newinstan
e of the view. In the 
ontext of repairs, if the proposed update is an insertion, thenthis amounts to just the 
onstant symbols whi
h o

ur in the database to be repaired. Onthe other hand, if deletion of tuples is also allowed, then the 
onstant symbols in tuples to bedeleted must also be in
luded. Updates will be formalized in detail in the 
ore of this paper;for now, it su�
es to write ConstSym(u) for the set of all 
onstant symbols whi
h o

ur inthe update request u. Then, using the notation to be introdu
ed in the next se
tion, thesenten
es of importan
e are WFS(D , ∃∧+,ConstSym(u)), with D the database s
hema under
onsideration.Returning to the example based upon E
′
0, whi
h augments E0 with the relation symbol

RAB[AB] together with its de�ning 
onstraint, insertion of RAB(a2, b2) into the view requiresthat the senten
e (∃z)(R(a2, b2, z)) be true in the main s
hema. This may be satis�ed bybinding z to any available 
onstant and adding the 
orresponding tuple. However, if it is boundto a 
onstant in ConstSym(Mdef′) = {a0, a1, a2, b0, b1, b2, c0, c1}, then additional senten
es willappear in the information 
ontent of the new instan
e. For example, if z is bound to c1, thenthe senten
e RAB(a2, b2, c1) will also be in the information 
ontent of the new instan
e, as wouldthe senten
e (∃z)(R(a1, b1, z)∧R(a2, b2, z)). Neither would be true were R(a2, b2, c2) insertedinstead. Thus, to add the least possible information relative to senten
es whi
h only involve
onstants whi
h are already used, z must be bound to a 
onstant whi
h does not o

ur in
ConstSym(Mdef′). Intuitively, this 
orresponds to binding it to a generi
 
onstant, and not onewhi
h also plays some other r�le in the database.By itself, this information-based approa
h does not ensure tuple minimality. The insertionof both R(a2, b2, c2) and R(a2, b2, c3) into Mold produ
es exa
tly the same added informationas does the insertion of either alone, sin
e ea
h tuple adds pre
isely (∃z)(R(a2, b2, z)) to theinformation 
ontent. To remedy this, tuple minimality (i.e., minimality with respe
t to subsetranking) is also required. Thus, an optimal repair, whenever it exists, must be tuple minimalas well as minimal with respe
t to information 
hange.1.3 Further example To illustrate the ideas of information-based optimization of updatesmore 
ompletely, a slightly more 
omplex example is presented. Let E1 be the relationals
hema with relations R[ABC] and S[CD], 
onstrained by the in
lusion dependen
y R[C] ⊑
S[C]. Regard a database as a set of ground atoms over the asso
iated logi
. For example,
M00 = {R(a0, b0, c0), R(a1, b1, c1), S(c0, d0), S(c1, d1)} is su
h a database. Now, let K be a setof 
onstants in the underlying logi
al language, regarded as domain elements for this s
hema.For information 
ontent, the base set Φ of senten
es is WFS(E1, ∃∧+, K), the set of all positive(i.e., no negation, expli
it or impli
it), existential, and 
onjun
tive senten
es in the languageof the s
hema E1 whi
h involve at most the 
onstant symbols in K. Relative to this set, theinformation 
ontent of M is the set of all senten
es in WFS(E1, ∃∧+, K) whi
h are implied by
M . The 
entral step is to 
hoose K properly. Using the notation to be introdu
ed in 3.2, thisReport: 
orre
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information 
ontent is denoted Info〈M,WFS(E1, ∃∧+, K)〉.A 
over for this information 
ontent is a subset Ψ ⊆ Info〈M,WFS(E1, ∃∧+, K)〉 su
h that Ψand Info〈M,WFS(E1, ∃∧+, K)〉 are logi
ally equivalent. For K00 = {a0, a1, b0, b1, c0, c1, d0, d1},the set of all 
onstant symbols of M00, the set M00 itself is 
learly a 
over for
Info〈M00,WFS(E3, ∃∧+, K00)〉. On the other hand, withK ′

00 = {a0, a1, b0, b1, c0, d0}, a 
over for
Info〈M00,WFS(E1, ∃∧+, K

′
00)〉 is {R(a0, b0, c0), S(c0, d0), (∃x)(∃y)(R(a1, b1, x)∧S(x, y))}. Notethat the 
onstants in K00 \K

′
00 have been repla
ed by existentially quanti�ed variables.To see how this idea is useful in the 
ontext of view updates, let ΠE1

RAB [AB]

= (RAB[AB], πE1

R[AB]) be the view of E1 whi
h proje
ts R[ABC] onto RAB[AB] and whi
hdrops the relation S entirely. Consider M00 to be the initial instan
e of s
hema E1; its imageinstan
e in the view is then N00 = {RAB(a0, b0), RAB(a1, b1)}. Now, suppose that the viewupdate Insert〈RAB(a2, b2)〉 is requested, so that N01 = N00 ∪ {RAB(a2, b2)} is the desired newview instan
e, and 
onsiderM01 =M00∪{R(a2, b2, c2), S(c2, d2)} as a proposed re�e
tion to themain s
hema E1. Relative to its entire set K01 = {a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2} of 
on-stant symbols, a 
over for Info〈M01,WFS(E1, ∃∧+, K01)〉 is justM01 itself. Similarly, forM02 =
M00 ∪ {R(a2, b2, c3), S(c3, d3)} with K02 = {a0, a1, a2, b0, b1, b2, c0, c1, c3, d0, d1, d3} a 
over for
Info〈M02,WFS(E1, ∃∧+, K02)〉 is just M02 itself. However, relative to K00, whi
h 
onsists of the
onstant symbols found in elements of M00, Info〈M01,WFS(E1, ∃∧+, K00)〉 =
Info〈M02,WFS(E1, ∃∧+, K00)〉 = M00 ∪ {(∃x)(∃y)(R(a2, b2, x)∧S(x, y))}. Denote this set ofsenten
es by I1. This re
aptures formally that the proposed updates M01 and M02 are identi
alup to a renaming of the new 
onstants. The utility of information measure is that it providesa means to re
apture this idea formally.Now, 
onsider the alternative solution M03 = M00 ∪ {R(a2, b2, c3), S(c3, d1)} to this view-update problem. A 
over for Info〈M03,WFS(E1, ∃∧+, K00)〉 is I3 = M00 ∪
{(∃x)(R(a2, b2, x)∧S(x, d1))}, whi
h is stri
tly stronger than I1, i.e., I2 |= I1, sin
e
(∃x)(R(a2, b2, x)∧S(x, d1)) |= (∃x)(∃y)(R(a2, b2, x)∧S(x, y))), but not 
onversely. Thus, rela-tive to the information measure de�ned by K00, M03 adds more information to M00 than does
M01 or M02. Similarly, M04 = M00 ∪ {R(a2, b2, c0))} adds more information than does M01 or
M02, sin
e a 
over for its information 
ontent is just M04 itself, whi
h is stronger than I1, sin
e
R(a2, b2, c0)∧S(c0, d0) |= (∃x)(∃y)(R(a2, b2, x)∧S(x, y))), but not 
onversely.The �rst and primary measure of quality of a re�e
ted update is the 
hange of information
ontent whi
h it indu
es. Under this measure, M01 and M02 are equivalent, and both are supe-rior to either of M03 or M04. However, this measure alone is not quite adequate. Rather, thereis an additional measure of quality whi
h must be taken into a

ount. To illustrate, 
onsiderthe proposed solutionM05 =M01∪M02 =M00∪{R(a2, b2, c2), R(a2, b2, c3), S(c2, d2), S(c3, d3)}to this update problem. It has the same information 
ontent, I1, relative to K00, as do M01and M02. The information measure 
annot distinguish the insertion of two new tuples with
ompletely new 
onstants from the insertion of just one. However, it is 
lear that M05 shouldbe 
onsidered inferior to both M01 and M02 as a solution to the given update problem, sin
e itis a proper superset of ea
h. Therefore, a se
ond 
riterion of quality is invoked; namely thatno solution whose set of 
hanges is a proper superset of those of another 
an be 
onsidered tobe superior. In the terminology introdu
ed earlier in this se
tion, the update must be minimalunder subset ranking, and not just under 
ount ranking. For example, 
onsider again the pro-posed solution M04. From a stri
t 
ounting point of view, M04 involves fewer 
hanges than do
M01 or M02. However, neither M01 nor M02 is a superset of M04. Thus, the superiority of M01Report: 
orre
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and M02 is not 
ontradi
ted. In other words, only solutions whi
h are tuple minimal, in thesense that no proper subset of the 
hanges is also an admissible solution, are permitted.The main modelling premise of this paper is that the quality of a view update 
an bemeasured by the amount of 
hange in information 
ontent whi
h it indu
es, and so an optimalre�e
tion of a view update request is one whi
h is both tuple minimal and whi
h indu
esthe least amount of 
hange of information 
ontent. Under this premise, both M01 and M02 aresuperior to ea
h ofM03,M04, andM05. Furthermore, sin
eM01 andM02 indu
e the same 
hangein information 
ontent, they are equivalent. In Se
tion 3, it is established that, under suitable
onditions, all su
h optimal solutions are equivalent, up to a renaming of the 
onstant symbols.In Se
tion 4, it is established, again under suitable 
onditions, that for insertions, a minimalsolution (in terms of 
hange of information 
ontent) must be optimal. These 
onditions in
ludein parti
ular s
hemata 
onstrained by a very wide 
lass of dependen
ies 
alled generalized Horndependen
ies.In summary, there are two 
onditions whi
h must be met for optimality of a proposedupdate re�e
tion u. First, it must be tuple minimal, in that there 
an be no other solutionwhose set of 
hanges is a proper subset of those of u. Se
ond, it must indu
e a least 
hange ofinformation relative to a spe
i�
 set of senten
es. This approa
h applies also to deletions andupdates whi
h involve both insertion and deletion, and this generality is in
orporated into theformalism whi
h is presented.1.4 Further issues Despite the 
onne
tion to database repair just presented, the primaryfo
us of this paper is not to present yet another measure for su
h repairs, but rather to presenta uni�ed approa
h to the support of updates on traditional relational s
hemata whi
h paysparti
ular attention to the requirements of invarian
e of admissibility, 
anoni
ity of re�e
tions,and re�e
tion of monotoni
ity. Su
h an approa
h requires that 
areful 
hoi
es be made re-garding the 
lass of s
hemata and views whi
h are supported. Foremost, s
hemata or viewmappings whi
h allow disjun
tion pre
lude 
anoni
ity of re�e
tions in most 
ases. For ex-ample, let E2 have the three unary relation symbols R[A], S[A], and T [A], subje
t to the
onstraint (∀x)(T (x) ⇔ (R(x)∨S(x))), and let ΩT be the view whi
h 
ontains only T [A]. Itis easy to see that 
anoni
ity of re�e
tions 
an never be satis�ed. Consider the database
Mold = {R(a0), S(a0), T (a0)}, with the insertion request Insert〈T (a1)〉. A minimal solutionwould insert either {R(a1), T (a1)} or else {(S(a1), T (a1)}; to insert {R(a1), S(a1), T (a1)} wouldnot be minimal. For this reason, attention in this work is restri
ted to relational s
hematawhi
h are restri
ted by Horn 
onstraints, su
h as the XEIDs of Fagin [Fag82℄.Unfortunately, even within 
ontexts whi
h involve at most fun
tional dependen
ies (FDs)and proje
tions, two sorts of problems may o

ur for insertions. First of all, an attemptedre�e
tion to the main s
hema of a view update may introdu
e new tuples in the main s
hema,
alled orphan tuples, whose images are visible in the view. This phenomenon is illustrated viaa 
on
rete example in 4.8. Se
ondly, an insertion to a given view instan
e may be possiblefor some instan
es of the main s
hema whi
h map to it, but not others. This phenomenon isillustrated via a 
on
rete example in 4.12. It is shown that these anomalies may be remedied byrequiring that the view be strongly monotoni
 � that is, that every deletion to the view maybe re�e
ted as a deletion to the main s
hema, and every insertion to the view may be re�e
tedas an insertion to the main s
hema. Simple 
onditions whi
h guarantee strong monotoni
ityfor proje
tions of relations 
onstrained by FDs and in
lusion dependen
ies are developed.Report: 
orre
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At �rst thought, it might appear that the management of deletions would be simpler thanthat of insertions, sin
e generi
 values need not be 
reated. However, there is a quite dif-ferent type of 
ompli
ation whi
h arises. Spe
i�
ally, Horn-style dependen
ies of the form
A1∧A2∧ . . . ∧An ⇒ B are disjun
tion free with respe
t to insertions, but not deletions. Roughly,to delete B minimally, it is ne
essary to delete one of the Ai, but generally not all. One mighttherefore be lead to propose weak optimal realizations, as illustrated in the example of 6.4 andde�ned formally in 6.5, in whi
h all of the 
ontributing Ai's are deleted. Unfortunately, asillustrated in 6.9, it is not even possible in general to delete them all and obtain a 
orre
tsolution. Therefore, attention is fo
used upon s
hemata whose tuple-generating dependen
iesare of the form A⇒ B, with just one assertion in the head of the rule. Fortunately, even withsu
h a restri
tion, many 
ommon situations, parti
ularly s
hemata 
onstrained by fun
tionaland in
lusion dependen
ies, and views de�ned by proje
tion, are supported.The most di�
ult 
ases surround updates whi
h involve both insertions and deletions. Ingeneral, the information-based approa
h forwarded here does not provide optimal solutions tosu
h requests, and so that topi
 must remain a subje
t for future work.This arti
le is a based upon [Heg08a℄, but has been 
ompletely reworked to address someshort
omings in that preliminary version.2 The Relational ModelThe results of this paper are formulated within the relational model, and familiarity withits standard notions, as presented in referen
es su
h as [PDGV89℄ and [AHV95℄, is assumed.Nevertheless, there are aspe
ts whi
h must be formulated with parti
ular 
are. Most importantare the need to take all relational s
hemata over the same domain, with the same 
onstantsymbols, and the need to express databases themselves as sets of ground atoms. For thisreason, the 
entral ideas whi
h are spe
ial to this formulation are presented in this se
tion.2.1 Relational 
ontexts and 
onstant interpretations A relational 
ontext 
ontainsthe logi
al information whi
h is shared amongst the s
hemata and database mappings. For-mally, a relational 
ontext D 
onsists of a �nite nonempty set AD of attribute names, a 
ount-able set Vars(D) of variables, and for ea
h A ∈ AD, a 
ountable set ConstD(A) of 
onstantsymbols, with Const(D) =

⋃

{ConstD(A) | A ∈ AD}. The variables in Vars(D) are furtherpartitioned into two disjoint sets; a 
ountable set GenVars(D) = {x0, x1, x2, . . .} of general vari-ables, and spe
ial AD-indexed set AttrVars(D) = {xA | A ∈ AD} of attribute variables. Thelatter is used in the de�nition of interpretation mappings; see 2.6 for details. Lower
ase lettersat the end of the alphabet, su
h as v, w, x, y, and z, as well as subs
ripted instan
es usingthese names, will also be used as general variables.Databases are represented as ground atoms, as elaborated in 2.2 below. Therefore, it isne
essary that ea
h domain element, in the sense of a logi
al stru
ture for a �rst-order language,[Mon76, Def. 11.1℄, be bound to a unique 
onstant symbol. Formally, a 
onstant interpretationfor the relational 
ontext D is a pair I = (DomI , IntFnI) in whi
h DomI is a 
ountably in�niteset, 
alled the domain of I, and IntFnI : Const(D) → DomI is a bije
tive fun
tion, 
alled theinterpretation fun
tion of I. This e�e
tively stipulates the following two well-known 
onditions[GN87, p. 120℄:Report: 
orre
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Domain 
losure: (∀x ∈ Vars(D))(
∨

a∈Const(D) x = a) (DCA(D))Unique naming: (¬(a = b)) for distin
t a, b ∈ Const(D) (UNA(D))Sin
e there are 
ountably many 
onstant symbols, the domain-
losure axiom is not a �nitedisjun
tion. This is not a problem however, sin
e it is never used in a 
ontext in whi
h a �rst-order 
onstraint is ne
essary. Rather, the assignment of a 
onstant to ea
h variable is taken tobe part of the 
ontext in whi
h this work is 
arried out.As a notational 
onvention, from this point on, unless stated otherwise, �x a relational
ontext D and a 
onstant interpretation I = (DomI, IntFnI) for it.2.2 Tuples and databases An un
onstrained relational s
hema over (D, I) is a pair D =
(Rels(D),ArD) in whi
h Rels(D) is a �nite set of relational symbols and ArD : Rels(D) → 2

ADa fun
tion whi
h assigns an arity, a set of distin
t attributes from AD, to ea
h R ∈ Rels(D).An R-atom is a fun
tion t : ArD(R) → Const(D) ∪ Vars(D) with the property that t[A] ∈
ConstD(A) ∪ GenVars(D) ∪ {xA}; in other words, all terms, 
onstant and variable, are of theappropriate type. A ground R-atom has the additional property that it 
ontains no variables;i.e., t[A] ∈ ConstD(A). The set of all R-atoms (resp. ground R-atoms) is denoted Atoms(R,D)(resp. GrAtoms(R,D)).A D-atom is an R-atom for some R ∈ Rels(D); the set of all su
h atoms is denoted
Atoms(D). A ground atom is de�ned to be a ground R-atom for some R ∈ Rels(D), withthe set of all su
h atoms denoted GrAtoms(D). An atom database for D is a �nite subset of
GrAtoms(D), with the set of all atom databases for D denoted DB(D). In this work, groundatoms are also 
alled tuples.It is 
onvenient to be able to re
over the asso
iated relation name from a tuple, and sotagging is employed, in whi
h tuples are marked with the relation name. Formally, this isa

omplished by introdu
ing a new attribute RName 6∈ AD, and then regarding an R-atom notas a fun
tion t just on ArD(R), but rather as one on {RName} ∪ ArD(R) with the propertythat t[RName] = R. Tagging of R-atoms will be used from this point on throughout the paper.Nevertheless, in writing su
h atoms, the more 
onventional notation R(a1, a2, . . . , an) will beused in lieu of the te
hni
ally more 
orre
t (R, a1, a2, . . . , an), although tags will be used informal 
onstru
tions. To be 
ompletely pedanti
, this entails introdu
ing a new attribute name
RNames ∈ AD with ConstD(RNames) = Rels(D), and these 
onstant values used only for theattribute RNames. Furthermore, in any atom, the value for the RNames attribute must be a
onstant, never a variable. Sin
e this is a logi
ally inessential ta
ti
 whose full formal treatmentis tedious but routine, the details will not be elaborated further.There is a third type of atom whi
h will be of use in de�ning 
onstraints, the equalityatom. Formally, an equality atom is of one of the forms (xi = xj), (xi = aj), or (ai = aj),for xi, xj ∈ GenVars(D) and ai, aj ∈ Const(D). The set of all equality D-atoms is denoted
EqAtoms(D). Equality atoms whi
h equate two 
onstants; e.g., (ai = aj) are 
alled groundequality atoms; note that the truth value of su
h atoms is predetermined by the unique namingassumption. All other equality atoms; e.g., those of the forms (xi = xj) or (xi = aj), are 
alledvariable equality atoms. The set of all variable equality atoms is denoted VarEqAtoms(D). Notethat the de�nitions of equality atoms depend only upon the relational 
ontext D, and not uponthe spe
i�
 s
hema D.Report: 
orre
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2.3 Formulas and 
onstraint 
lasses The �rst-order language asso
iated with the rela-tional s
hema D is de�ned in the natural way; however, it is useful to introdu
e some notationwhi
h identi�es parti
ular sets of formulas. De�ne WFF(D) to be the set of all well-formed�rst-order formulas with equality in the language whose set of relational symbols is Rels(D),whose set of 
onstant symbols is Const(D), and whi
h 
ontains no non-nullary fun
tion sym-bols. The variables are those of D; these formulas are typed to the extent that for A ∈ AD , aterm in a position of type A must lie in GenVars(D) ∪ {xA} ∪ ConstD(A).A 
onstraint 
lass C identi�es a subset of WFF(D), denoted WFF(D,C). For this paper,the two most important 
onstraint 
lasses are ∃∧+ and GrAtoms, de�ned as follows.
• WFF(D, ∃∧+) is the subset of WFF(D) in whi
h in whi
h only existential quanti�
ation isallowed, and the only logi
al 
onne
tive whi
h is allowed is 
onjun
tion (∧). These formulasde�ne the so-
alled 
onjun
tive queries [CGT90, Se
. 4.2℄. It is not ne
essary to allow theequality predi
ate in su
h formulas, sin
e equality 
an always be expressed by simply usingthe same name for the two atoms whi
h are equated.
• WFF(D,GrAtoms) is just GrAtoms(D).

WFF(D,C) may be trimmed further by limiting the 
onstant symbols whi
h may o

ur init. Spe
i�
ally, if S ⊆ Const(D), then WFF(D,C, S) denotes the formulas in WFF(D) whi
hinvolve only 
onstant symbols from S.Ea
h of these 
lasses may be limited to senten
es; i.e., formulas without free variables.
WFS(D)(resp. WFS(D,C), resp. WFS(D,C, S)) denotes the subset of WFF(D) (resp. WFF(D,C), resp.
WFF(D,C, S)) 
onsisting of senten
es.Let Φ ⊆ Ψ ⊆ WFS(D). The 
losure of Φ in Ψ, denoted Closure〈Φ,Ψ〉, is {ϕ ∈ Ψ | Φ |= ϕ}.A 
over for Φ relative to Ψ is a subset Φ′ ⊆ Φ with Closure〈Φ′,Ψ〉 = Closure〈Φ,Ψ〉. A minimal
over Ψ′ has the property that none of its proper subsets is itself a 
over.Finally, the symbol ⊥ will be used to denote the senten
e whi
h is always false.2.4 Atomi
 models Even though databases are represented as sets of ground atoms, andnot as interpretations in the usual logi
al sense, it is still essential to have an appropriatenotion of model for a given senten
e. This is relatively straightforward; a model for a senten
e
ϕ is a database whi
h is 
onsistent with both ϕ and the unique-naming axioms. There isone 
ompli
ation, however. In representing a database as a set of D-atoms, the 
losed-worldassumption is impli
it. On the other hand, to express what it means for su
h a representationto satisfy an arbitrary senten
e in WFS(D), it is ne
essary to state expli
itly whi
h atoms arenot true as well. Formally, for M ∈ DB(D), de�ne the diagram of M to be Diagram

D
(M) =

M ∪ {¬t | t ∈ GrAtoms(D) \ M}. Now, say that M ∈ DB(D) is an atomi
 I-model of
ϕ ∈ WFS(D) if Diagram

D
(M) ∪ {ϕ} ∪ UNA(D) is 
onsistent. AtModI(ϕ) denotes the set ofall atomi
 I-models of ϕ, with AtModI(Φ) =

⋂

{AtModI(ϕ) | ϕ ∈ Φ} for Φ ⊆ WFS(D). Sin
eonly atomi
 I-models will be 
onsidered in this paper, the simple term model will be used as asynonym for atomi
 I-model.2.5 S
hemata with 
onstraints and 
onstrained databases To obtain full relationals
hemata, 
onstraints are added to the un
onstrained s
hemata of 2.2. Formally, a relationalReport: 
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ted 20110218 AMAI2009 page 9



s
hema over (D, I) is a triple D = (Rels(D),ArD,Constr(D)) in whi
h (Rels(D),ArD) is anun
onstrained relational s
hema over (D, I) and Constr(D) ⊆ WFS(D) is the set of dependen
iesor 
onstraints of D.De�ne the legal (or 
onstrained) databases LDB(D) of D to be AtModI(Constr(D)).Although Constr(D) is allowed to be an in�nite set, it will always be assumed that Constr(D)is 
onstant �nite; that is, that all of the senten
es in Constr(D) together 
ontain only a �nitenumber of distin
t 
onstant symbols.2.6 Database morphisms and views Let D1 and D2 be relational s
hemata over (D, I).There are two fundamental ways to represent a database morphism f : D1 → D2 in therelational 
ontext. On the one hand, su
h a morphism may be represented as a fun
tion
f : DB(D1) → DB(D2), using expressions from the relational algebra. On the other hand,by providing an interpretation formula fR ∈ WFF(D1) for ea
h R ∈ Rels(D2), the morphismmay be represented using the relational 
al
ulus [JAK82℄. The equivalen
e of these two repre-sentations is one of the 
lassi
al results of relational database theory [PDGV89, Se
. 2.4-2.6℄.The interpretation formulation is taken as the base de�nition for views in this work. Formally,given R ∈ Rels(D2), an interpretation for R into D1 is a ϕ ∈ WFF(D1) in whi
h pre
iselythe variables {xA | A ∈ ArD(R)} are free, and in whi
h xA is used to mark the positionin the formula whi
h is bound to attribute A. Sin
e ea
h position in the view relation isasso
iated with a distin
t attribute, one variable per attribute su�
es. The set of all interpre-tations of R into D1 is denoted Interp(R,D1). A synta
ti
 morphism f : D1 → D2 is a family
f = {fR | R ∈ Rels(D2) and fR ∈ Interp(R,D1)}. The morphism f is said to be of 
lass ∃∧+if fR ∈ WFF(D, ∃∧+) for ea
h R ∈ Rels(D2).Let t ∈ Atoms(R,D2). The substitution of t into f , denoted Substf〈f, t〉, is the formula in
WFF(D1) obtained by substituting, into fR, t[A] for xA, for ea
h A ∈ ArD(R). Note that if tis a ground atom, then Substf〈f, t〉 ∈ WFS(D1).For M ∈ DB(D1), de�ne f(M) = {t ∈ GrAtoms(D2) | M ∈ AtModI(Substf〈f, t〉)}. fis 
alled an LDB-morphism if it maps legal databases to legal databases; formally, an LDB-morphism has the property that f(M) ∈ LDB(D2) for ea
h M ∈ LDB(D1). When no quali�-
ation is given, database morphism will always mean LDB-morphism.Let D be a relational s
hema over (D, I). A (relational) view of D is a pair Γ = (V, γ)in whi
h V is a relational s
hema over (D, I) and γ : D → V is an LDB-morphism whi
h isfurthermore LDB-surje
tive in the sense that for every N ∈ LDB(V), there is an M ∈ LDB(D)with γ(M) = N . Surje
tivity is required be
ause the instan
e of the view must always bedetermined by the instan
e of the main s
hema D. The view Γ = (V, γ) is said to be of 
lass
∃∧+ pre
isely in the 
ase that γ has that property.In order to illustrate these ideas, a simple example is in order. Consider again the s
hema
E0 and the view ΠE0

AB of 1.1. The view mapping πE0

AB is expressed as an interpretation via theformula (πE0

AB)
RAB = (∃z)(R(xA, xB, z)). Note in parti
ular how xA and xB are used to markthe appropriate attributes. For t = RAB(a0, b0), Substf〈πE0

AB, t〉 = (∃z)(R(a0, b0, z)), while for
t = RAB(x0, x1), Substf〈πE0

AB, t〉 = (∃z)(R(x0, x1, z)).O

asionally, it will be useful to separate the quanti�ers from the rest of the formula of aninterpretation γR. To this end, de�ne γR to be that whi
h is left when the quanti�er pre�x isremoved from γR. For example, in the above, (πE0

AB )
RAB = (R(xA, xB, z)).Report: 
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2.7 Notation � extra
ting 
onstant symbols and variables For X an entity (forexample, an atom, a formula, a database, et
.), or a set of entities, ConstSym(X) denotes the setof all a ∈ Const(D) whi
h o

ur inX . Furthermore, forD a database s
hema, ConstSymD(X) =
ConstSym(X ∪ Constr(D)), and for Γ = (V, γ) a view of D, ConstSymΓ(X) = ConstSym(X ∪
Constr(D) ∪ Constr(V)) ∪ ConstSym(γ), where ConstSym(γ) is the set of all 
onstant symbolswhi
h o

ur in the de�ning interpretation formulas asso
iated with γ.Similarly, Vars(X) denotes the set of all variables whi
h o

ur in X . This will not beformalized further, but the meaning should always be unambiguous.2.8 Notation for in
lusion dependen
ies It is assumed that the reader is familiar withthe relational model and the standard dependen
ies whi
h have been studied in that 
ontext.Here only some notation and terminology is 
lari�ed. First, R[X ] ⊑ S[Y ] (note the squaredsubset symbol) will be used to denote the in
lusion dependen
y (IND) whi
h states that theproje
tion onto attributes X of relation R is a subset of the proje
tion onto attributes Y ofrelation S. Se
ond, a unary in
lusion dependen
y, abbreviated UIND, is one in whi
h ea
h of
X and Y 
onsist of a single attribute.3 Information and Canoni
al ModelsThe theory of support for view updates whi
h is forwarded in this paper is based upon aduality between a set of senten
es de�ning information 
ontent and 
anoni
al models for su
hinformation. In this se
tion, that duality is developed in detail.3.1 Notational 
onvention Throughout the rest of this paper, unless stated spe
i�
allyto the 
ontrary, take D to be a relational s
hema over (D, I). The notation Υ will be used as anabbreviation for WFS(D, ∃∧+), and ΥK will be used as an abbreviation for WFS(D, ∃∧+, K).Furthermore, in the 
ontext of a set of the form WFS(D, ∃∧+, K), if no further information isgiven, K will be taken to be an arbitrary subset of Const(D).3.2 Information 
ontent and Φ-equivalen
e Let Φ ⊆ WFS(D) and let M ∈ DB(D).The information 
ontent of M relative to Φ is the set of all senten
es in Φ whi
h are true for
M . More pre
isely, Info〈M,Φ〉 = {ϕ ∈ Φ | M ∈ AtModI(ϕ)}. For ϕ ∈ WFS(D), Info〈M,ϕ〉denotes Info〈M, {ϕ}〉. M1 and M2 are Φ-equivalent if they have the same information 
ontentrelative to Φ; i.e., Info〈M1,Φ〉 = Info〈M2,Φ〉.The semanti
s of 
onventional databases are based upon the 
losed-world assumption �all assertions whi
h 
annot be established to be true are taken to be false. Thus, intuitively,information 
ontent should be monotone; that is, for any M1,M2 ∈ DB(D) if M1 ⊆ M2, then
Info〈M1,Φ〉 ⊆ Info〈M2,Φ〉. However, this is manifestly false for most 
hoi
es of Φ. Indeed, if ϕholds in M2 but not M1, then ¬ϕ holds in M1 but not M2. Thus, if there is some ϕ ∈ Φ forwhi
h ¬ϕ ∈ Φ as well, Φ 
annot be information monotone.Formally, it is best to begin by de�ning monotoni
ity for individual senten
es. To bepre
ise, the senten
e ϕ ∈ WFS(D) is information monotone if for any M1,M2 ∈ DB(D) if
M1 ⊆M2, then Info〈M1, ϕ〉 ⊆ Info〈M2, ϕ〉. The set Φ ⊆ WFS(D) is then said to be informationmonotone if ea
h ϕ ∈ Φ has this property. It is easy to see that any ϕ ∈ WFS(D) whi
hReport: 
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does not involve negation, when expressed entirely in terms of the 
onne
tives ∧, ∨, and ¬, isinformation monotone. Conne
tives su
h as ⇒ involve negation impli
itly, and so senten
eswhi
h involve impli
ation need not be (and usually are not) information monotone.In this work, there are two families of information-monotone senten
es whi
h are of 
entralimportan
e. The �rst is WFS(D,GrAtoms). It is easy to see that Info〈M,WFS(D,GrAtoms)〉 =
M for any M ∈ DB(D), so that the information 
ontent of a database relative to
WFS(D,GrAtoms) is just that database itself. Although trivial in its 
hara
terization, this 
aseis nonetheless important. The se
ond important family of information monotone senten
es is
WFS(D, ∃∧+, K) for a given K ⊆ Const(D), and is far less trivial in its 
hara
terization.3.3 Tuple-minimal models Let Φ ⊆ WFS(D). and let M ∈ AtModI(Φ). M is a tuple-minimal model of Φ if for anyM ′ ∈ AtModI(Φ) withM ′ ⊆M , it must be thatM ′ =M . The setof all tuple-minimal models of Φ is denoted MinAtModI(Φ). For ϕ ∈ WFS(D), MinAtModI(ϕ)is shorthand for MinAtModI({ϕ}).For Φ ⊆ WFS(D) and ϕ ∈ WFS(D), say that Φ minimally entails ϕ, written Φ |=min ϕ, if
MinAtModI(Φ) ⊆ AtModI(ϕ). In other words, Φ minimally entails ϕ if every tuple-minimalmodel of Φ is also a model (not ne
essarily minimal) of ϕ.3.4 Fully Redu
ed ∃∧+-families The 
on
ept of a minimal 
over for a set Φ of senten
esis well known and has already been re
alled in 2.3. In the 
ontext of senten
es in Υ, there is astronger notion whi
h is 
entral to the development of the ideas presented here. To motivatethis idea, let Ξ = {R(a1, a2), R(a2, a3), (∃x1)(∃x2)(∃x3)(R(x1, x2)∧R(x2, a3)∧R(a3, x3))}. It iseasy to see that Ξ is a minimal 
over of itself, in that none of its proper subsets is equivalentto it. However, it is also 
lear that ξ0 = (∃x1)(∃x2)(∃x3)(R(x1, x2)∧R(x2, a3)∧R(a3, x3)) maybe repla
ed with (∃x3)(R(a3, x3)) while retaining logi
al equivalen
e. In other words, 
onjun
tsmay be removed from one of the senten
es while preserving information 
ontent.To formalize this notion, let ϕ = (∃x1) . . . (∃xm)(A1∧ . . . ∧An) ∈ Υ have at least two 
on-jun
ts, and for any i, 1 ≤ i ≤ n, de�ne Reduction〈ϕ,Ai〉 to be the senten
e obtained byremoving Ai as a 
onjun
t from ϕ, and removing any quanti�er term whi
h is no longerused as well. For example, Reduction〈ξ0, R(x1, x2)〉 = (∃x2)(∃x3)(R(x2, a3)∧R(a3, x3)) and
Reduction〈Reduction〈ξ0, R(x1, x2)〉, R(x2, a3)〉 = (∃x3)(R(a3, x3)). Call Φ ⊆ Υ 
onjun
t re-du
ed if for no ϕ ∈ Φ with at least two 
onjun
ts is there a 
onjun
t Ai of ϕ with (Φ \ ϕ) ∪
{Reduction〈ϕ,Ai〉} logi
ally equivalent to Φ. Call Φ fully redu
ed if it is both 
onjun
t redu
edand a minimal 
over of itself. In the above example, {R(a1, a2), R(a2, a3), (∃x3)(R(a3, x3))} isfully redu
ed.The goal is to establish that by substituting distin
t 
onstants for ea
h variable in a �nite,fully redu
ed family of senten
es, a 
anoni
al model of those senten
es is obtained. Thus, inthe above example, {R(a1, a2), R(a2, a3), (R(a3, b1))} would be su
h a model, with b1 a �generi
�
onstant. To render all of this formal, some additional notions are ne
essary.3.5 Armstrong models in an information-monotone 
ontext Let Ψ ⊆ WFS(D) andlet Φ ⊆ Ψ. Informally, an Armstrong model for Φ relative to Ψ is a model of Φ whi
h satis�esonly those 
onstraints of Ψ whi
h are implied by Φ. More formally, an Armstrong model for Φrelative to Ψ is an M ∈ AtModI(Φ) with the property that for any ψ ∈ Ψ, if M ∈ AtModI(ψ),Report: 
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then AtModI(Φ) ⊆ AtModI(ψ). A tuple-minimal Armstrong model for Φ relative to Ψ is anArmstrong model with the property that no proper subset is an Armstrong model for Φ relativeto Ψ. In general, a tuple-minimal Armstrong model M of Φ relative to Ψ need not be a tuple-minimal model of Φ, sin
e there may be an M ′ ( M whi
h is a non-Armstrong model of Φ.However, if Ψ is information monotone, it is easy to see that this 
annot happen, so everytuple-minimal Armstrong model must in fa
t be a minimal model. Armstrong models havebeen studied extensively for database dependen
ies; see, for example, [Fag82℄ and [FV83℄.In the 
urrent 
ontext, for a given �nite, fully redu
ed set Φ ⊆ Υ, a suitably 
onstru
tedArmstrong model for Φ relative to ΥK for a given K with ConstSym(Φ) ⊆ K will serve as a
anoni
al representation for insertions with generi
 
onstants, as sket
hed in the introdu
tion.To pro
eed further, a spe
ial representation is useful.3.6 Representation of ∃∧+-senten
es as sets of D-atoms There is an alternativesynta
ti
 representation for formulas in Υ whi
h will be used in that whi
h follows. Spe
if-i
ally, for ϕ ∈ Υ de�ne AtRep(ϕ) to be the set of all atoms whi
h o

ur as 
onjun
ts in ϕ.For example, if ϕ = (∃x1)(∃x2)(∃x3)(R(x1, a)∧R(x1, b)∧S(x2, a)∧T (x2, x3)) then AtRep(ϕ) =
{R(x1, a), R(x1, b), S(x2, a), T (x2, x3)}.This representation is dual to that used in theorem-proving 
ontexts in 
lassi
al arti�
ialintelligen
e [GN87, 4.1℄. Here the variables are existentially quanti�ed and the atoms are
onjun
ts of one another; in the AI setting the atoms are disjun
ts of one another and thevariables are universally quanti�ed.3.7 Substitutions Let V = {x1, x2, . . . , xn} ⊆ GenVars(D). A substitution for V (in D) isa fun
tion s : V → Const(D) ∪ GenVars(D). If s(xi) = τi for i ∈ {1, 2, . . . , n}, following (some-what) standard notation this substitution is {τ1/x1, τ2/x2, . . . , τn/xn} [CL73, Se
. 5.3℄ and willbe used here, although the reader is 
autioned that some authors write {x1/τ1, x2/τ2, . . . , xn/τn}instead [GN87, 4.2℄.Let ϕ ∈ Υ with Vars(ϕ) ⊆ V . Call s 
orre
tly typed for ϕ if for ea
h t ∈ AtRep(ϕ) andea
h A ∈ ArD(t[RName]), if t[A] ∈ Vars(D) then s(t[A]) ∈ ConstD(A) ∪ GenVars(D). De�ne
Subst(ϕ, s) to be the set of atoms obtained by substituting s(xi) for xi in AtRep(ϕ). For ex-ample, with s = {a1/x1, a2/x2, a3/x3} and AtRep(ϕ) = {R(x1, a), R(x1, b), S(x2, a), T (x2, x3)},
Subst(ϕ, s) = {R(a1, a), R(a1, b), S(a2, a), T (a2, a3)}.If s(xi) ∈ Const(D) for ea
h xi ∈ V , s is 
alled a 
onstant substitution. In this 
ase,
Subst(ϕ, s) is a set of ground atoms.Now let Φ ⊆ Υ be a �nite set. A 
onstant substitution set for Φ is a Φ-indexed set
S = {sϕ | ϕ ∈ Φ} of substitutions, with sϕ a 
onstant substitution for Vars(ϕ). For K a �niteset with ConstSym(Φ) ⊆ K ⊆ Const(D), S is free for 〈Φ, K〉 if ea
h sϕ is 
orre
tly typed for ϕ,inje
tive, sϕ(xi) 6∈ K for any ϕ ∈ Φ and xi ∈ V , and, furthermore, for any distin
t ϕ1, ϕ2 ∈ Φ,
sϕ1

(Vars(ϕ1)) ∩ sϕ2
(Vars(ϕ2)) = ∅.With S free for 〈Φ, K〉, the Armstrong model de�ned by 〈Φ, K, S〉 is obtained by applying thesubstitution sϕ to ϕ for ea
h ϕ ∈ Φ. Formally, ArmMod〈Φ, K, S〉 =

⋃

{Subst(ϕ, sϕ) | ϕ ∈ Φ}.Of 
ourse, this terminology is a bit presumptuous, as it has not yet been established that
ArmMod〈Φ, K, S〉 is in fa
t an Armstrong model of anything; this will be re
ti�ed in 3.9 below.Report: 
orre
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3.8 Constant endomorphisms Informally, an endomorphism on D is a fun
tion whi
hrenames 
onstants. More formally, an endomorphism on D is a fun
tion h : Const(D) →
Const(D) whi
h preserves attribute types, in the pre
ise sense that for ea
h A ∈ AD andea
h a ∈ ConstD(A), h(a) ∈ ConstD(A). If h is additionally a bije
tion, then it is 
alled anautomorphism of D. For K ⊆ Const(D), 
all h K-invariant if h(a) = a for all a ∈ K.Given a database s
hema D, an endomorphism on D indu
es a mapping from GrAtoms(D)to itself given by sending t ∈ GrAtoms(D) to the tuple t′ with t′[RName] = t[RName] and
t′[A] = t[h(A)] for all A ∈ Art[RName] . This mapping on atoms will also be represented by h, aswill the indu
ed mapping from DB(D) to itself given by M 7→ {h(t) | t ∈ M}.The following theorem establishes that ArmMod〈Φ, K, S〉 is a weak sort of initial model for
Φ, in the sense that for any other database M whi
h satis�es Φ, there is an endomorphism
h : ArmMod〈Φ, K, S〉 → M whi
h holds K 
onstant. On the other hand, it is not an initialmodel for Φ in the traditional 
ategori
al sense [HS73, �7℄, sin
e h need not be unique.3.9 Theorem � Chara
terization of tuple-minimal Armstrong models Let Φ ⊆
Υ be �nite and fully redu
ed, let K be a �nite set with ConstSym(Φ) ⊆ K ⊆ Const(D), and let
S be a 
onstant substitution set whi
h is free for Φ. Then the following hold.(a) For any M ∈ DB(D) ∩ AtModI(Φ), there is a K-invariant endomorphism h on D with

h(ArmMod〈Φ, K, S〉) ⊆M .(b) ArmMod〈Φ, K, S〉 is a tuple-minimal Armstrong model for Φ relative to ΥK.(
) If M ∈ DB(D) is any other tuple-minimal Armstrong model for Φ relative to ΥK, thenthere is a ConstSym(Φ)-invariant automorphism h on D with h(ArmMod〈Φ, K, S〉) =M .Proof: To establish (a), let M ∈ ModI(Φ), and for ea
h ϕ ∈ Φ, let Mϕ be a minimal subsetof M with Mϕ ∈ ModI(ϕ). Let Vϕ denote the set of variables of sϕ ∈ S. It is easy to see thatthere must be a 
onstant substitution s′′ with Vars(s′′) = Vϕ and Subst(ϕ, s′′) = Mϕ. Indeed,there is trivially a 
onstant substitution with Subst(ϕ, s′′) ⊆ Mϕ, but if the subset in
lusionwere proper, Mϕ would not be tuple minimal.Now de�ne h : sϕ(Vϕ) → s′′(Vϕ) by a 7→ s′′(s−1
ϕ (a)). Sin
e sϕ is inje
tive, h is well de�ned.Sin
e sϕ1

(Vars(ϕ1)) ∩ sϕ2
(Vars(ϕ2)) = ∅ for distin
t ϕ1, ϕ2 ∈ Φ, there are no 
on�i
ts in thisde�nition of h. Finally, extend h to be the identity on all a ∈ Const(D) whi
h are not 
overed bythe above de�nition. The result is a endomorphism on D whi
h satis�es h(ArmMod〈Φ, K, S〉) ⊆

M . For (b), �rst observe that ArmMod〈Φ, K, S〉 is a model of Φ just by 
onstru
tion. It isfurthermore easy to see that sin
e Φ is fully redu
ed, it is tuple minimal. Indeed, if any tuple
t ∈ ArmMod〈Φ, K, S〉 
ould be removed, then the 
orresponding 
onjun
t 
ould be removedfrom the ϕ ∈ Φ asso
iated with t, 
ontradi
ting the fa
t that Φ is fully redu
ed. To show that
ArmMod〈Φ, K, S〉 is an Armstrong model, let ψ ∈ Υ with ArmMod〈Φ, K, S〉 ∈ ModI(ψ), and let
M ∈ ModI(Φ). In view of (a), there is an endomorphism h on D with h(ArmMod〈Φ, K, S〉) ⊆
M . In view of Lyndon's theorem [Mon76, Thm. 25.22℄, whi
h states that satisfa
tion of sen-ten
es not involving negation is 
losed under endomorphi
 images, it follows thatM ∈ ModI(ψ)also. Hen
e, Φ |= ψ, and so ArmMod〈Φ, K, S〉 is an Armstrong model of Φ.To show (
), let M be any other tuple-minimal Armstrong model for Φ relative to ΥK . Inthe above 
onstru
tion for the proof of (a), the resulting h must be surje
tive (else M wouldReport: 
orre
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not be tuple minimal), and it must be inje
tive (sin
e there must also be an endomorphism inthe opposite dire
tion, and both ArmMod〈Φ, K, S〉 and M are �nite, by assumption). Hen
e,
h is an automorphism. 2It is easy to see that the endomorphism h need not be unique. For example, if D has thesingle unary relation symbol R[A], and Φ = {(∃x)(R(x))}, then M1 = {R(a)} is a minimalArmstrong model, while M2{R(b), R(c)} is an Armstrong model whi
h is not tuple minimal.There are two endomorphisms from M1 to M2, h1 : a 7→ b and h2 : a 7→ c.In some ways, the 
onstru
tion given above is similar to the 
onstru
tion of the universalsolutions of [FKMP05, Def. 2.4℄, in that both are based upon similar notions of endomorphism(there termed homomorphism). However, those universal solutions are not required to be tupleminimal. On the other hand, they are not limited to positive senten
es, but rather apply tothe more general 
lass of XEIDs [Fag82℄.The existen
e of a (�nite) Armstrong model for a set of Φ is guaranteed under fairly simple
ir
umstan
es; all that is ne
essary is that Φ have a �nite 
over.3.10 Lemma Let Φ ⊆ ΥK. Then Φ admits a tuple-minimal Armstrong model with respe
tto ΥK i� Φ admits a �nite 
over relative to ΥK .Proof: If Φ admits a �nite 
over, then Φ admits a tuple-minimal Armstrong model withrespe
t to ΥK by 3.9(b). Conversely, if Φ is not �nite and has no �nite 
over, then for anypositive integer n, there is a ϕ ∈ Φ whi
h 
ontains at least n distin
t 
onjun
ts and whi
h is notequivalent to any �nite subset of ΥK , ea
h of whose elements 
ontains fewer than n 
onjun
ts.An Armstrong model must thus 
ontain at least n tuples. Sin
e n may be 
hosen arbitrarilylarge, it follows that no su
h �nite model 
an exist. 23.11 Canoni
al models Let K be a �nite subset of Const(D). In (a)-(
) and (e) below,take Φ ⊆ ΥK as well.(a) Φ is D-
onsistent if AtModI(Φ) ∪ LDB(D) 6= ∅.Thus, Φ is D-
onsistent if there is some legal database whi
h satis�es Φ. Su
h a database mustalso satisfy the senten
es in Constr(D); the total set of senten
es whi
h it must satisfy is theextended information, expressed formally as follows.(b) De�ne the extended information of Φ with respe
t to ΥK to be XInfoD〈Φ,ΥK〉 = {ϕ ∈

ΥK | Φ ∪ Constr(D) |= ϕ}.Note that if Φ is not D-
onsistent, then XInfoD〈Φ,ΥK〉 = ΥK . Also note that, equivalently,
XInfoD〈Φ,ΥK〉 = {ϕ ∈ ΥK | (∀M ∈ LDB(D))((M ∈ AtModI(Φ)) ⇒ (M ∈ AtModI(ϕ)))}whenever Φ is D-
onsistent. In other words, XInfoD〈Φ,ΥK〉 is the set of all senten
es in ΥKwhi
h are true in every M ∈ LDB(D) ∩ AtModI(Φ).Sin
e the databases of this paper are �nite, 
onsisten
y is not enough. Rather, Φ togetherwith Constr(D) must admit a �nite model. In view of 3.10, this property is equivalent to Φhaving a �nite 
over. Formally, this is re
aptured as follows.(
) Φ extends �nitely to D with respe
t to ΥK if XInfoD〈Φ,ΥK〉 has a �nite 
over with respe
tto ΥK .Report: 
orre
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(d) The s
hema D admits �nite extensions with respe
t to ΥK if every �nite and D-
onsistent
Φ ⊆ ΥK extends �nitely to D with respe
t to ΥK .(e) A 
anoni
al database for Φ in D with respe
t to ΥK is a tuple-minimal Armstrong model
M for XInfoD〈Φ,ΥK〉 with respe
t to ΥK .Observe that, in view of 3.9(
), 
anoni
al databases are unique up to automorphism. D admits
anoni
al databases 
onditionally if there is a 
anoni
al model whenever the extended infor-mation is �nite, with un
onditional extension requiring further that this �niteness 
onditionalways be satis�ed.(f) The s
hema D admits 
anoni
al models 
onditionally with respe
t to ΥK if for every
Φ ⊆ ΥK whi
h extends �nitely to D with respe
t to ΥK , every 
anoni
al database withrespe
t to ΥK is in LDB(D).(g) The s
hema D admits 
anoni
al models un
onditionally ifD admits �nite extensions withrespe
t to ΥK and every 
anoni
al database with respe
t to ΥK is in LDB(D).These existen
e 
onditions are 
hara
terized pre
isely in the following lemma.3.12 Lemma Continue with the notation of 3.11 above.(a) D admits 
anoni
al models 
onditionally with respe
t to ΥK i� for every D-
onsistent
Φ ⊆ ΥK, XInfoD〈Φ,ΥK〉 |=min ϕ for every ϕ ∈ Constr(D),(b) D admits 
anoni
al models un
onditionally with respe
t to ΥK i� it admits 
anoni
almodels 
onditionally and XInfoD〈Φ,ΥK〉 has a �nite 
over relative to ΥK .Proof: Both parts follow immediately from 3.10. 23.13 Example � Canoni
al models 
onditionally but not un
onditionally It isnot the 
ase that every s
hema whi
h admits 
anoni
al models 
onditionally admits themun
onditionally. For example, let the s
hema E2 have three relational symbols R1[A], R2[AB],and R3[AB], with the in
lusion dependen
ies R1[A] ⊆ R2[A], R2[A] ⊆ R3[A], and R3[B] ⊆

R2[B]. Let M1 = {R1(a0), R2(a0, b0), R3(a0, b0), R1(a1)}, let K = {a0, a1, b0}, and note that
M1 ⊆ WFS(E3, ∃∧+, K), sin
e databases are taken to be sets of ground atoms.In XInfoE3

〈M1,WFS(E3, ∃∧+, K)〉, a tuple of the form R2(a1, b1) must be present, whi
himplies that one of the form R3(a2, b1) must be present as well, whi
h in turn implies thatone of the form R2(a2, b2) must be present, and so forth. If the 
onstant symbols whi
hare introdu
ed to satisfy the dependen
ies, are always new ones whi
h have not been usedpreviously, then this 
onstru
tion pro
eeds inde�nitely. In terms of the 
onstru
tion of theextended information XInfoD〈M1,WFS(E3, ∃∧+, K)〉, it is not di�
ult to see that an in�-nite in
reasing sequen
e 〈ϕ0, ϕ1, ϕ2, . . . , ϕi, . . .〉 of senten
es arises, as shown in Fig. 1, with
ϕi+1 stri
tly longer than ϕi and furthermore not a 
onsequen
e of {ϕ0, ϕ1, . . . , ϕi}. Thus,
XInfoE3

〈M1,WFS(E3, ∃∧+, K)〉 
annot have a �nite 
over. If the sequen
e is terminated, by
hoosing, say, b2 = b1, then an additional senten
e beyond those in
XInfoE2

〈M1,WFS(E2, ∃∧+, K)〉 is in
luded, and so the resulting database is not Armstrongwith respe
t to WFS(E3, ∃∧+, K). On the other hand, the database M2 = {R1(a0), R2(a0, b0),
R3(a0, b0)} already satis�es every 
onstraint in XInfoE3

〈M2,WFS(E2, ∃∧+, K)〉, and so is aReport: 
orre
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(∃x1)(R2(a1, x1))

(∃x1)(∃x2)(R2(a1, x1)∧R3(x1, x2))

(∃x1)(∃x2)(∃x3)(R2(a1, x1)∧R3(x1, x2)∧R2(x3, x2))

(∃x1)(∃x2)(∃x3)(∃x4)(R2(a1, x1)∧R3(x1, x2)∧R2(x3, x2)∧R3(x3, x4))...Figure 1: A stri
tly in
reasing sequen
e of information senten
estuple-minimal Armstrong model of itself. Thus, the terminology 
onditionally is justi�ed; E2admits 
anoni
al models for some sets of senten
es, but not for others. In 3.22, 
onditionsunder whi
h 
anoni
al models are always admitted un
onditionally are identi�ed.3.14 Example � Canoni
al models and positive disjun
tion While the de�nitionsof 3.11 apply to any relational database s
hema, further restri
tions must be imposed to renderthem meaningful. Consider again the s
hema E2 of Se
tion 1, with the three unary relationsymbols R[A], S[A], and T [A], subje
t to the 
onstraint (∀x)(R(x) ⇔ (S(x)∨T (x))). For
M1 = {R(a0)} and K = {a0}, XInfoE2

〈M1,WFS(E2, ∃∧+, K)〉 = M1, yet M1 6∈ LDB(E2). Theproblem is that the �full� extended information, relative to WFS(E2) is {R(a0), S(a0)∨T (a0)},but the disjun
tion S(a0)∨T (a0) does not lie inWFS(E2, ∃∧+). Hen
e the 
anoni
al database for
M1 with respe
t to WFS(E2, ∃∧+) is not in LDB(E2). It is 
lear that the notion of a 
anoni
aldatabase is not really meaningful in the presen
e of su
h disjun
tions. Rather, attention must berestri
ted to Horn dependen
ies, whi
h avoid su
h positive disjun
tion and whi
h are des
ribedbelow.3.15 Generalized Horn dependen
ies The vast majority of relational database depen-den
ies whi
h have been 
onsidered over the years belong to a general 
lass of logi
al formulas
alled Horn 
lauses. Originally presented as a 
hara
terization of formulas whi
h are true underdire
t produ
ts [Hor51℄, they are more generally 
entral to the modelling 
anoni
al instan
esin 
omputer s
ien
e [Mak87℄. In the 
ontext of database dependen
ies, the following form isused, with ea
h Ai and ea
h Bi an atom.

(∀x1)(∀x2) . . . (∀xm)((A1∧A2∧ . . . ∧An) ⇒ (∃y1)(∃y2) . . . (∃yr)(B1∧B2∧ . . . ∧Bs))(GHD)In this work, su
h dependen
ies will be allowed in their most general form, whi
h will be 
alledgeneralized Horn dependen
ies, or GHDs. The only restri
tions are the following.(ghd-1) Ea
h GHD is in fa
t a senten
e, so that ea
h variable lies within the s
ope of aquanti�er.(ghd-2) {x1, x2, . . . , xm} ∩ {y1, y2, . . . , yr} = ∅.(ghd-3) Ea
h xi o

urs in some Aj ; no universally quanti�ed variable o

urs only in a Bj .(ghd-4) Ai ∈ Atoms(D) for ea
h i.(ghd-5) If s > 0, then either ea
h Bi ∈ Atoms(D), in whi
h the senten
e is tuple generating(also 
alled a TGHD), or else s = 1, r = 0, and B1 ∈ VarEqAtoms(D)∪{⊥}, in whi
h 
aseReport: 
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the senten
e is 
alled equality generating (also 
alled an EGHD). If B1 = ⊥, the senten
eis 
alled a mutual ex
lusion. (⊥ may be thought of as an equality whi
h 
an never besatis�ed, su
h as (a = b).)As a 
onvenient notation, GHD(D) will be used to denote the set of all GHDs on D, with
TGHD(D) (resp. EGHD(D)) the subset 
onsisting of the tuple-generating (resp. equality-generating) senten
es. Mutual ex
lusions will be regarded as spe
ial 
ases of EGHDs in whi
hthere is no atom on the right-hand side.The GHDs are a generalization of the XEIDs of Fagin [Fag82, Se
. 7℄, and are essentially thesour
e-to-target dependen
ies of [FKMP05, Def. 2.1℄. As su
h, the GHDs en
ompass virtuallyall 
lasses of database 
onstraints whi
h have been studied, in
luding in parti
ular fun
tionaland in
lusion dependen
ies. In 
ontrast to XEIDs, the left-hand side need be neither unirela-tional nor typed. Of 
ourse, the more stringent requirement on XEIDs is made for a reason �XEIDs enjoy the property of possessing Armstrong models [Fag82, Thm. 3.1℄ whi
h GHDs donot. Although they were used as the general 
lass of dependen
y in [Heg08a℄, it turns out thatthis property of possessing Armstrong models is only required of senten
es in WFS(D, ∃∧+)whi
h are used to 
hara
terize the information 
ontent of database, and not for more generalHorn 
lauses whi
h are used to 
hara
terize the underlying 
onstraints. Therefore, there is noneed to enfor
e the additional requirements of XEIDs.GHDs also generalize XEIDs in a less essential way � there is no requirement that n begreater than zero, although both are not allowed to be zero in the same 
lause. If n = 0, asenten
e in WFS(D, ∃∧+) is obtained; thus, WFS(D, ∃∧+) ⊆ GHD(D). As a spe
i�
 exampleof su
h a 
onstraint, 
onsider (∃y1)(∃y2)(R(y1, y2)), whi
h states that the relation instan
e for
R is always nonempty. Additionally, 
onstant symbols are allowed in a GHD. For example, a
onstraint of the form (∀x1)(∀x2)(R(x1, x2) ⇒ S(x1, x2, ν) might assert that for every tuple in
R, a similar tuple, padded with the 
onstant ν in the third position (with ν representing a nullvalue, for example), is required. Finally, an unsatis�able right-hand side is allowed. If B1 = ⊥, astatement of the form (∀x1)(∀x2) . . . (∀xm)((A1∧A2∧ . . . ∧An) ⇒ ⊥) is obtained, with ⊥ denotingthe identi
ally false assertion. As noted in (ghd-5) above, su
h as senten
e is 
alled a mutualex
lusion. An example is the antisymmetry 
onstraint (∀x1)(∀x2)((R(x1, x2)∧R(x2, x1)) ⇒ ⊥.The idea of forward 
haining on databases by applying Horn-style rules is well known [DG84℄,and forms one of the 
ornerstones of logi
 programming [Llo87℄. However, in the 
urrent 
ontext,rather than reasoning on ground atoms, it is essential to apply forward 
haining on information� that is, on senten
es in ΥK . This idea is addressed via notions of information asso
iatedwith TGHDs, as developed below.3.16 Information inferen
e for TGHDs In so-
alled forward 
haining in 
lassi
al propo-sitional logi
, given a Horn 
lause of the form A1∧A2∧ . . . ∧An ⇒ B, if all of the Ai's are knownto be true, the rule may ��re� and assert that B is also true. This idea also works for TGHDsoperating on ground atoms; a ground substitution is applied to the left-hand side, and if all ofthe resulting ground atoms are true, the senten
e obtained by applying the same substitution tothe right-hand side must be true, and further substitutions may then be applied to identify theground atoms whi
h it implies. More generally, however, when the pool of knowledge 
onsistsof senten
es in WFS(D, ∃∧+), the left-hand side and right-hand sides are 
oupled via variables.In other words, a rule �res for spe
i�
 bindings of variable 
ommon to both sides. It is thereforeReport: 
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not possible to separate the 
on
lusion (i.e., the right-hand side) from the hypotheses (i.e., theleft-hand side). The solution is a rather simple one. When a rule of the above form �res,rather than 
on
luding simply B from A1∧A2∧ . . . ∧An, the 
onjun
tion A1∧A2∧ . . . ∧An∧B isdedu
ed as a new fa
t. In this way, any binding of quanti�ed variables whi
h o

urred duringthe inferen
e pro
ess are preserved.Let ϕ be a GHD of the form (GHD) of 3.15 above, and let s be a substitution on
{x1, x2, . . . , xn}. Call s GHD-
ompatible with ϕ if s(xi) 6= yj for any indi
es i and j, andassume that s has this property. GHD 
ompatibility ensures only that a substitution does notrename a universally quanti�ed variable to 
oin
ide with one whi
h is existentially quanti�edin the original formula. The left-hand-side information of ϕ with respe
t to s is the senten
eobtained by applying s to the left-hand side of ϕ. Formally, LHSinfo〈ϕ, s〉 is the senten
e in
WFS(D, ∃∧+) obtained from (∀x1)(∀x2) . . . (∀xm)(A1∧A2∧ . . . ∧An) as follows.(lhs-i) For i ∈ {1, 2, . . . , m}, if s(xi) = v and v ∈ GenVars(D), repla
e (∀xi) with (∃v).(lhs-ii) For i ∈ {1, 2, . . . , m}, if s(xi) ∈ Const(D), delete (∀xi).(lhs-iii) For i ∈ {1, 2, . . . , n}, repla
e ea
h Ai with the sole element of Subst(Ai, s).Note in parti
ular that universally quanti�ed variables be
ome existentially quanti�ed. Theexistentially quanti�ed versions represent a single but unspe
i�ed binding on those formerlyuniversally quanti�ed positions. Now, the left-plus-right-hand-side information of ϕ with re-spe
t to s, denoted LRHSinfo〈ϕ, s〉, is the senten
e obtained from

(∀x1)(∀x2) . . . (∀xm)(∃y1)(∃y2) . . . (∃yr)(A1∧A2∧ . . . ∧An∧B1∧B2∧ . . . ∧Bs)by following the steps (i)-(iii) above and, in addition to the following step.(rhs) Repla
e ea
h Bi with Subst(Bi, s).For example, if ϕ = (∀x1)(∀x2)(R(x1, x2) ⇒ (∃y)(S(x1, x2, y))) and s = {a1/x1, x/x2} then
LHSinfo〈ϕ, s〉 = (∃x)(R(a1, x)) and LRHSinfo〈ϕ, s〉 = (∃x)(∃y)(R(a1, x)∧S(a1, x, y)).The following lemma states formally the intuition that if LHSinfo〈ϕ, s〉 is satis�ed, and therule ϕ holds, then LRHSinfo〈ϕ, s〉 holds as well. It is an immediate 
onsequen
e of the abovede�nitions.3.17 Lemma Let ϕ ∈ TGHD(D) and let M ∈ DB(D). Then M ∈ AtModI(ϕ) i� for everyGHD-
ompatible substitution s on Vars(ϕ), if LHSinfo〈ϕ, s〉 ∈ Info〈M,ΥK〉, then
LRHSinfo〈ϕ, s〉 ∈ Info〈M,ΥK〉 as well. 2The 
ase of EGHDs must be handled a bit di�erently, sin
e the result of a dedu
tion is nota new senten
e in ΥK but rather a restri
tion on existing senten
es. Therefore, the 
ru
ial ideais to 
onsider the e�e
t of redu
ing a given senten
e ψ ∈ ΥK by an EGHD ϕ, with the latterpossibly for
ing 
ertain terms of ψ to be equal.3.18 Information asso
iated with an EGHD Let ϕ be an EGHD of the form (GHD)of 3.15 above, and let ψ ∈ ΥK . Here ψ is a senten
e to whi
h the ϕ will be applied. If ψ 
anbe uni�ed with the left-hand side of ϕ, then the equality de�ned by the right-hand side of ϕmust be applied to ϕ.Report: 
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For this to work, a suitable substitution must be applied, so s be any substitution on
{x1, x2, . . . , xn}, the variables of ϕ. (In an EGHD, there are no existentially quanti�ed variablesof the form yi in (GHD).) Note further that the GHD-
ompatibility property on a substitutiondoes not apply here, sin
e every EGHD is a universal senten
e. However, the result of applying
s to the left-hand side of ϕ must mat
h ψ, so that the rule 
an �re. Formally, 
all s ϕ-
ompatiblefor ψ if AtRep(LHSinfo〈ϕ, s〉) ⊆ AtRep(ψ). Thus, s is ϕ-
ompatible if, when applied to the left-hand side of ϕ, the 
onjun
ts whi
h are obtained (after removing any quanti�ers) are a subsetof those of ψ. Let RHSinfo〈ϕ, s〉 denote the equality atom obtained by applying the substitution
s to B1, the right-hand side of ϕ. (If ϕ is a mutual ex
lusion, then RHSinfo〈ϕ, s〉 = ⊥.) Theredu
tion of ψ by RHSinfo〈ϕ, s〉, denoted Reduction〈ψ,RHSinfo〈ϕ, s〉〉 is de�ned by 
ases asfollows.(red-i) If RHSinfo〈ϕ, s〉 is of the form (ai = aj) with i 6= j, or RHSinfo〈ϕ, s〉 = ⊥, then

Reduction〈ψ,RHSinfo〈ϕ, s〉〉 = ⊥, the identi
ally false assertion.(red-ii) If RHSinfo〈ϕ, s〉 is of the form (ai = ai) or (xi = xi), then Reduction〈ψ,RHSinfo〈ϕ, s〉〉 =
ψ.(red-iii) If RHSinfo〈ϕ, s〉 is of the form (xi = aj) or (aj = xi), then Reduction〈ψ,RHSinfo〈ϕ, s〉〉is obtained by substituting aj for xi in ψ and removing the quanti�er (∃xi).(red-iv) If RHSinfo〈ϕ, s〉 is of the form (xi = xj) with i 6= j, then Reduction〈ψ,RHSinfo〈ϕ, s〉〉is obtained by substituting xi for xj in ψ and removing the quanti�er (∃xj). (Note thatthe quanti�er (∃xi) must also be present in this 
ase, and is not removed.)For example, if ϕ = (∀x1)(∀x2)(∀x3)((R(x1, x2)∧R(x1, x3)) ⇒ (x2 = x3)) and ψ =

(∃x1)(∃x2)(R(a1, x1)∧R(a1, x2)∧S(x1, x2)) then for s = {(a1/x1, x1/x2, x2/x3)}, LHSinfo〈ϕ, s〉 =
(∃x1)(∃x2)(R(a1, x1)∧R(a1, x2)) and so is ϕ-
ompatible. RHSinfo〈ϕ, s〉 = (x1 = x2), and so
Reduction〈ψ,RHSinfo〈ϕ, s〉〉 = (∃x1)(∃x2)(R(a1, x1)∧R(a1, x1)∧S(x1, x1)). On the other hand, if
ψ = (∃x1)(R(x1, a1)∧R(x1, a2) then s = {x1/x1, a1/x2, a2/x3} is ϕ-
ompatible but
RHSinfo〈ϕ, s〉 = (a1 = a2). and so Reduction〈ψ,RHSinfo〈ϕ, s〉〉 = ⊥.The following lemma is a routine 
onsequen
e of the above.3.19 Lemma Let ϕ ∈ EGHD(D), let M ∈ DB(D), and let Ψ be a 
over for Info〈M,ΥK〉with respe
t to ΥK . Then M ∈ AtModI(ϕ) i� for every ψ ∈ Ψ and every substitution s whi
his ϕ-
ompatible for ψ, Reduction〈ψ,RHSinfo〈ϕ, s〉〉 ∈ Info〈M,ΥK〉 as well. 2Finally, the main result, that s
hemata 
onstrained by GHDs always admit 
anoni
al models
onditionally, may be established.3.20 Theorem � Conditional existen
e of 
anoni
al models If Constr(D) ⊆
GHD(D), then for any �nite K ⊆ Const(D), D admits 
anoni
al models 
onditionally withrespe
t to ΥK.Proof: Let Φ ⊆ WFS(D, ∃∧+, K) have the property that it extends �nitely to D for ΥK .First, let ϕ ∈ Constr(D) be a TGHD, and let s be a GHD-
ompatible substitution for ϕ. Itfollows dire
tly from 3.17 and the de�nition of XInfo (3.11(b)) that whenever LHSinfo〈ϕ, s〉 ∈Report: 
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XInfoD〈Φ,ΥK〉, then LRHSinfo〈ϕ, s〉 ∈ XInfoD〈Φ,ΥK〉 as well. A se
ond appli
ation of 3.17 es-tablishes that M ∈ MinAtModI(ϕ) for every tuple-minimal Armstrong model M of
XInfoD〈Φ,ΥK〉 with respe
t to ΥK .The proof for ϕ ∈ Constr(D) an EGHD is similar. Choose ψ ∈ Φ and let s be a ϕ-
ompatible substitution for ψ. In view of 3.19 and the de�nition of XInfo, it must be the
ase that Reduction〈ψ,RHSinfo〈ϕ, s〉〉 ∈ XInfoD〈Φ,ΥK〉 as well. Again, a se
ond appli
ationof 3.19 establishes that M ∈ MinAtModI(ϕ) for every tuple-minimal Armstrong model M of
XInfoD〈Φ,ΥK〉 with respe
t to ΥK . 23.21 Weakly a
y
li
 TGHDs To admit 
anoni
al models un
onditionally, it is ne
essaryto ensure that in�nite in
reasing sequen
es in XInfoD〈Φ,ΥK〉, as illustrated in 3.13, do noto

ur. Su
h in�nite models are related to 
y
les in the tuple-generating dependen
ies. In[FKMP05, Def. 3.7℄, the notion of a weakly a
y
li
 set of TGDs is developed, and it is shown[FKMP05, Thm. 3.9℄ that the 
hase pro
edure always terminates when the dependen
ies arelimited to an a
y
li
 set of of TGDs together with EGDs. The TGDs and EGDs of [FKMP05℄di�er only in relatively minor ways from the TGHDs and EGHDs of this paper; in parti
ular,the result extends dire
tly to TGDs. The details will not be worked out, but the followingresult is noted for 
ompleteness.3.22 Corollary � (to 3.20) If Constr(D) is �nite and 
onsists of a weakly a
y
li
 set ofTGHDs, together with any set of EGHDs, then then for any �nite K ⊆ Const(D), D admits
anoni
al models un
onditionally with respe
t to ΥK .Proof: Combine the result of 3.20 with [FKMP05, Thm. 3.9℄. 24 Optimal Re�e
tion of InsertionsThe fo
us is now turned to the problem of 
hara
terizing optimal re�e
tions of insertions intothe view s
hema. Roughly, the idea is to re�e
t the information whi
h must be added to themain s
hema and then 
onstru
t an Armstrong model (with respe
t to ΥK for a suitable K) ofthat information together with the 
urrent instan
e of the main s
hema. There are, of 
ourse,details to be developed and pitfalls to be avoided, all of whi
h are dis
ussed in this se
tion.First of all, some basi
 de�nitions surrounding updates and information are developed.4.1 Notational 
onvention Throughout the rest of this paper, unless stated spe
i�
allyto the 
ontrary, take Γ = (V, γ) to be a relational view of D of 
lass ∃∧+.4.2 Updates and re�e
tions An update on D is a pair (M1,M2) ∈ LDB(D)× LDB(D).
M1 is the 
urrent instan
e, and M2 the new instan
e. It is an insertion if M1 ⊆ M2, and adeletion if M2 ⊆ M1.To des
ribe the situation surrounding an update request on Γ, it is su�
ient to spe
ify the
urrent instan
e M1 of the main s
hema and the desired new instan
e N2 of the view s
hema
V. The 
urrent instan
e of the view 
an be 
omputed as γ(M1); it is only the new instan
e M2of the main s
hema (subje
t to N2 = γ(M2)) whi
h must be obtained from an update strategy.Formally, an update request from Γ to D is a pair (M1, N2) in whi
h M1 ∈ LDB(D) (the oldReport: 
orre
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instan
e of the main s
hema) and N2 ∈ LDB(V) (the new instan
e of the view s
hema). If
γ(M1) ⊆ N2, it is 
alled an insertion request, and if N2 ⊆ γ(M1), it is 
alled a deletion request.Colle
tively, insertion requests and deletion requests are termed unidire
tional update requests.A realization of (M1, N2) along Γ is an update (M1,M2) on D with the property that γ(M2) =
N2. The update (M1,M2) is 
alled a re�e
tion (or translation) of the view update (γ(M1), N2).The set of all realizations of (M1, N2) along Γ is denoted UpdRealiz〈(M1, N2),Γ〉. The subset of
UpdRealiz〈(M1, N2),Γ〉 
onsisting of insertions (resp. deletions) is denoted InsRealiz〈(M1, N2),Γ〉(resp. DelRealiz〈(M1, N2),Γ〉.4.3 Update di�eren
e and optimal re�e
tions The update di�eren
e of an update
(M1,M2) on D with respe
t to a set Σ ⊆ WFS(D) is a measure of how mu
h M2 di�ers from
M1 in terms of satisfa
tion of the senten
es of Σ. Formally, the positive (∆+), negative (∆−),and total (∆) update di�eren
es of (M1,M2) with respe
t to Σ are de�ned as follows:

∆+〈(M1,M2),Σ〉 = Info〈M2,Σ〉 \ Info〈M1,Σ〉

∆−〈(M1,M2),Σ〉 = Info〈M1,Σ〉 \ Info〈M2,Σ〉

∆〈(M1,M2),Σ〉 = ∆+〈(M1,M2),Σ〉 ∪∆−〈(M1,M2),Σ〉Note that, given ϕ ∈ ∆〈(M1,M2),Σ〉, it is always possible to determine whether ϕ ∈
∆+〈(M1,M2),Σ〉 or ϕ ∈ ∆−〈(M1,M2),Σ〉 by 
he
king whether or not M1 ∈ AtModI(ϕ). Givenan update request (M1, N2), the quality of a realization (M1,M2) is measured by its updatedi�eren
e. Formally, let Σ ⊆ WFS(D), let (M1, N2) be an update request from Γ to D, let
T ⊆ UpdRealiz〈(M1, N2),Γ〉, and let (M1,M2) ∈ T .(a) (M1,M2) is minimal in T with respe
t to Σ if for any (M1,M

′
2) ∈ T , if ∆〈(M1,M

′
2),Σ〉 ⊆

∆〈(M1,M2),Σ〉, then ∆〈(M1,M
′
2),Σ〉 = ∆〈(M1,M2),Σ〉.(b) (M1,M2) is least in T with respe
t to Σ if for all (M1,M

′
2) ∈ T , ∆〈(M1,M2),Σ〉 ⊆

∆〈(M1,M
′
2),Σ〉.4.4 Update 
lassi�ers An update 
lassi�er forD is simply a set Σ of information-monotonesenten
es. In this work, the set Σ will always be taken to be either GrAtoms(D) or else

WFS(D, ∃∧+, K) = ΥK for an appropriate set K of 
onstants.Let (M1, N2) be an update request from Γ to D, let T ⊆ UpdRealiz〈(M1, N2),Γ〉, and let
(M1,M2) ∈ T .(a) (M1,M2) is 〈ΥK , T 〉-admissible if it is minimal in T with respe
t to bothΥK and GrAtoms(D).(b) (M1,M2) is 〈ΥK , T 〉-optimal if it is 〈ΥK , T 〉-admissible and least in T with respe
t to Σ.Roughly, (M1,M2) is admissible if no other realization is better, and it is optimal if it is betterthan all others, up to the equivalen
e de�ned by Σ. Observe that if some update request is
〈ΥK , T 〉-optimal, then all 〈ΥK , T 〉-admissible update requests are 〈ΥK , T 〉-optimal.As a notational shorthand, if T = InsRealiz〈(M1, N2),Γ〉 (resp. T = DelRealiz〈(M1, N2),Γ〉),that is, if T is the set of all possible insertions (resp. deletions) whi
h realize (M1, N2), then
〈ΥK , T 〉-admissible and 〈ΥK , T 〉-optimal will be abbreviated to 〈ΥK , ↑〉-admissible and 〈ΥK , ↑〉-optimal (resp. 〈ΥK , ↓〉-admissible and 〈ΥK , ↓〉-optimal).Report: 
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For Σ = GrAtoms(D), admissibility redu
es to minimality in the sense of symmetri
 di�er-en
e of sets as sket
hed in 1.2. More 
on
retely, given an update request (M1, N2), a realization
(M1,M2) is 〈GrAtoms(D), T 〉-admissible if for no other realization (M1,M

′
2) ∈ T is it the 
asethat SymDiff〈M1,M

′
2〉 ⊆ SymDiff〈M1,M2〉. Similarly, (M1,M2) is 〈GrAtoms(D), T 〉-optimal iffor every other realization (M1,M

′
2), SymDiff〈M1,M2〉 ⊆ SymDiff〈M1,M

′
2〉. Minimality withrespe
t to GrAtoms(D) is referred to as tuple minimality, in harmony with the terminologyalready introdu
ed for Armstrong models in Se
tion 3.The major theme of this paper is that tuple minimality, by itself, is not su�
ient to 
har-a
terize optimal updates. Rather, optimality with respe
t to ΥK for a suitably 
hosen set Kof 
onstants is also essential. This issue is next addressed in detail.4.5 The 
onstants asso
iated with an update request In re�e
ting an update from aview to the main s
hema, the use of new 
onstants in generi
 models is 
ru
ial. For a 
onstant tobe �new�, it is not su�
ient that it merely not appear in the 
urrent or proposed view instan
e,or the 
urrent instan
e of the main s
hema. Rather, it must not appear in any 
onstraint orde�ning formula for the main s
hema or view. For example, referring ba
k to the example of thenull-value 
onstraint (∀x1)(∀x2)(R(x1, x2) ⇒ S(x1, x2, ν) of 3.15, it would be inappropriate touse ν as a generi
 
onstant, sin
e it already has another meaning within the global 
ontext of alldatabases. Thus, the pool of generi
 
onstants must also ex
lude any whi
h o

ur in 
onstraintsor in the de�ning formulas for views. Spe
i�
ally, the following sequen
e of de�nitions leads tothe a

eptable pool of generi
 
onstants.First of all, de�ne the 
onstant symbols of the s
hema D to be those of its 
onstraints.(a) ConstSym(D) = ConstSym(Constr(D))Next, de�ne the 
onstant symbols of the view Γ = (V, γ) to be those of the main s
hema D,together with those of both the view s
hema V and the view mapping γ.(b) ConstSym(Γ) = ConstSym(Constr(D)) ∪ ConstSym(Constr(V)) ∪ ConstSym(γ)The 
onstant symbols of an update request u are those of its instan
es.(
) For u = (M1, N2) an update request from Γ to D, ConstSym(u) = ConstSym(M1) ∪

ConstSym(N2).Finally, de�ne the total 
onstant set of u, denoted Cu, to be the 
onstant symbols of u togetherwith those of Γ.(d) Cu = ConstSym(Γ) ∪ ConstSym(u).Note that ConstSym(N2) ⊆ ConstSym(M1)∪ConstSym(γ)∪ConstSym(V), so the following more
ompa
t representation is also valid.(d′) Cu = ConstSym(Γ) ∪ ConstSym(M1).Sin
e database s
hemata, even those of views, are always taken to be 
onstant �nite (see 2.5),it follows that Cu is always a �nite set. Sin
e ConstD(A) is in�nite for every A ∈ AD, it followsthat there are always in�nitely many �available� 
onstant symbols for ea
h attribute A whi
hdo not lie in Cu. The set Cu will thus be taken to be the set of 
onstant symbols whi
h maynot be used as generi
 values in 
onstru
ting Armstrong models.Report: 
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4.6 Information lifting Let N ∈ DB(V). The information lifting of N along Γ, denoted
InfoLift〈N,Γ〉, is the minimum information in WFS(D, ∃∧+) whi
h any M ∈ DB(D) with
γ(M) = N must have. Formally, this is re
aptured as follows.

InfoLift〈N,Γ〉 = {Substf〈γ, t〉 | t ∈ N}Note that InfoLift〈N,Γ〉 ⊆ ΥK with K = ConstSym(N2) ∪ ConstSym(γ).Given an insertion request u = (M1, N2) from Γ to D, and let M2 ∈ InsRealiz〈(M1, N2),Γ〉.The least information whi
h M2 must have is InfoLift〈N2,Γ〉 ∪M1, 
losed up under the 
on-straints in Constr(D). This is re
aptured formally as
LeastRefl〈u,Γ〉 = XInfoD〈M1 ∪ InfoLift〈N2,Γ〉,ΥCu

〉and is 
alled the least re�e
tion of u along Γ.In the 
ontext of the example of 1.3, with u = (M00, N01), the information lifting
InfoLift〈N01,Π

E1

R′[AB]〉 = {(∃x1)(∃x2)(∃x3)(R(a0, b0, x1)∧R(a1, b1, x2)∧R(a2, b2, x3))}, while theleast re�e
tion LeastRefl〈u,ΠE1

R′[AB]〉 =M00 ∪ {(∃x1)(∃x2)(R(a2, b2, x1)∧(S(x1, x2)))}.Using the 
onstru
tion of 3.9, a tuple-minimal Armstrong model of LeastRefl〈u,ΠE1

R′[AB]〉 isobtained by repla
ing the variables by distin
t and new 
onstants; for example M01 = M00 ∪
{R(a2, b2, c2), S(c2, d2)}.4.7 Proposition � Chara
terization of optimal insertions Assume that D admits
anoni
al models 
onditionally, and let u = (M1, N2) be an insertion request from Γ to D.Then (M1,M2) is a 〈ΥCu

, ↑〉-optimal realization of u i� the following two 
onditions hold.(i) M2 is a tuple-minimal Armstrong model of LeastRefl〈u,ΥCu
〉 with respe
t to ΥCu

.(ii) γ(M2) = N2.Proof: Certainly, if (i) and (ii) hold, then M2 is a 〈ΥCu
, ↑〉-optimal realization of u. On theother hand, ifM2 is a 〈ΥCu

, ↑〉-optimal realization of u, then (ii) holds trivially. Sin
e D admits
anoni
al models 
onditionally, if LeastRefl〈u,ΥCu
〉 admits a �nite 
over, then a tuple-minimalArmstrong model of that set is a a 〈ΥCu

, ↑〉-optimal realization of u, just by 
onstru
tion. If
LeastRefl〈u,ΥCu

〉 does not admit a �nite 
over, then, as illustrated in 3.13, it must 
ontain anin�nite in
reasing sequen
e 〈ϕ0, ϕ1, ϕ2, . . .〉 of senten
es with AtModI(
⋃

{ϕi | 0 ≤ i ≤ k}) 6⊆
AtModI(ϕk) for any k > 0, and so it 
annot have a �nite Armstrong model. Thus, any 〈ΥCu

, ↑〉-admissible realization must satisfy some senten
e not in LeastRefl〈u,ΥCu
〉, and so no 〈ΥCu

, ↑〉-optimal realization 
an exist. 24.8 Example � Orphan tuples Even in the 
ase that LeastRefl〈u,ΥCu
〉 satis�es 
ondition(i) of 4.7, it may not satisfy 
ondition (ii); that is, it may not be the 
ase that γ(M2) = N2.The problem lies with so-
alled orphan tuples, whi
h are illustrated via the following example.Let E4 be the s
hema having the single relation symbol R[AB], 
onstrained by the de-penden
y (∃x1)(∃x2)(R(x1, x2)) whi
h simply asserts that the instan
e of R is nonempty. Itis immediate that this dependen
y is a TGHD (with m = n = 0 in the pattern (GHD)of 3.15). The view ΠE4

A+B = (W4, π
E4

A+B) has two relation symbols RA[A] and RB[B], de-�ned by the obvious proje
tions πE4

A and πE4

B . The only 
onstraints on the view s
hema areReport: 
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(∃x1)(RA(x1)) and (∃x1)(RB(x1)), so Constr(W4) 
onsists of GHDs as well. Now with M1 =
{R(a0, b0), R(a1, b1)} the instan
e of E4, πE4

A+B(M1) = N1 = {RA(a0), RA(a1), RB(b0), Rb(b1)}.Let N2 be the view instan
e obtained by inserting RA(a2) into N1, and de�ne u = (M1, N2).Then LeastRefl〈u,ΥCu
〉 = M1 ∪ (∃x1)(R(a2, x1)). A 
anoni
al model M2 of this least re�e
tionis of the form M1 ∪ {R(a2, b2)}, with b2 6∈ Cu, so πE4

A+B(M2) = N2 ∪ {RB(b2)}. Here RB(b2) istermed an orphan tuple; it represents newly inserted information whi
h has made its way ba
kto the view. The tuple 
an be made to �disappear� by repla
ing b2 with an existing value forattribute B, say b1. However, in that 
ase, while the resulting instan
e M ′
2 =M1 ∪ {R(a2, b1)}does map to N2 under πE4

A+B, Info〈M2,ΥCu
〉 is a proper subset of Info〈M ′

2,ΥCu
〉, and so M ′

2 isnot 〈ΥCu
, ↑〉-optimal. Thus, (M1,M

′
2) is a 〈ΥCu

, ↑〉-admissible solution to the update request
(M1, N2), but it is not optimal. This problem 
annot be made to disappear via 
lever formula-tion; in this example, there are no optimal solutions. Fortunately, orphan tuples 
an be ruledout by requiring that Γ re�e
t deletions, as des
ribed below.4.9 Re�e
tion of deletions The view Γ = (V, γ) re�e
ts deletions if every deletion request
(M1, N2) from Γ to D admits a realization whi
h is itself a deletion.In the example of 4.8 above, ΠE4

A+B does not re�e
t deletions. There is no realization of theupdate request (M ′
1, N2) whi
h is a deletion, sin
e withM1 = {R(a0, b0), R(a1, b1)} the instan
eof the main s
hema E4, there is no way to realize the deletion of R2(b1) from the view instan
e

N1 as a deletion from M1; R(a1, b1) must be deleted, whi
h would also remove R1(a1).4.10 Lemma � Re�e
tion of deletions implies no orphan tuples Assume that Dadmits 
anoni
al models 
onditionally, and let u = (M1, N2) be an insertion request from Γto D for whi
h LeastRefl〈u,ΥCu
〉 admits a tuple-minimal Armstrong model M2 with respe
t to

ΥCu
. Then, if Γ re�e
ts deletions, γ(M2) = N2.Proof: It is 
lear that N2 ⊆ γ(M2). By the de�nition of re�e
tion of deletions, there is an

M ′
2 ∈ LDB(D) with M ′

2 ⊆ M2 and γ(M ′
2) = N2. However, sin
e M2 is already tuple minimal,it follows that M ′

2 =M2. Thus, γ(M2) \N2 = ∅, and so γ(M2) = N2, as required. 2Finally, it 
an be established that for views with re�e
t deletions, 
ondition (ii) of 4.7 issuper�uous.4.11 Proposition Assume that Γ re�e
ts deletions, that D admits 
anoni
al models 
on-ditionally, and let u = (M1, N2) be an insertion request from Γ to D. Then (M1,M2) is a
〈ΥCu

, ↑〉-optimal realization of u i� M2 is a tuple-minimal Armstrong model of LeastRefl〈u,ΥCu
〉with respe
t to ΥCu

.Proof: The proof follows immediately from 4.7 and 4.10. 24.12 Example � Dependen
e upon the instan
e of the main s
hema There isa another issue whi
h arises in applying 4.7 and 4.11; namely, that whether or not an op-timal insertion exists may depend upon M1 and not simply the view instan
e γ(M1). Toillustrate this phenomenon, 
onsider the s
hema E5 
ontaining the single relation symbol
R[ABCDE] governed by the FDs in F = {A → D,B → E,DE → C}. The view to beupdated is the proje
tion onto ABC; it 
ontains the single relation symbol RABC [ABC], andReport: 
orre
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is represented more formally as ΠE5

ABC = (W5, π
E5

ABC). It is easy to see that Constr(W5) =
{AB → C}, so that the view is 
onstrained by FDs alone. Ea
h of the two instan
es M20 =
{R(a0, b0, c0, d0, e0), R(a1, b1, c1, d1, e1)}, and M21 = {R(a0, b0, c0, d0, e0), R(a1, b1, c1, d1, e0)} of
E5 maps to the view instan
e N1 = {RABC(a0, b0, c0),
RABC(a1, b1, c1)} under πE5

ABC . Consider the view update whi
h inserts the tupleRABC(a0, b1, c2),so that the desired new view instan
e is N2 = N1 ∪ {RABC(a0, b1, c2)}. For 
onvenien
e,write u20 = (M20, N2) and u21 = (M21, N2). Then LeastRefl〈u20,ΥCu
〉 is given by M ′

20 =
M20∪R(a0, b1, c2, d0, e1), and it is easy to see that γ(M ′

20) = N2, as desired. On the other hand,
LeastRefl〈u21,ΥC

u′
〉 does not exist. Indeed, the FDs stipulate that it would need to be M ′

21 =
M21 ∪R(a0, b1, c2, d0, e0), but the presen
e of both R(a0, b0, c0, d0, e0) and R(a0, b1, c2, d0, e0) inthe same instan
e violates the FD DE → C. In the 
ase that the instan
e of E5 is M ′

1, thereis no insertion whi
h will realize the insertion of RABC(a0, b1, c2) into γ(M ′
1) = N1. To realizethis update, tuples of M ′

1 must either be deleted or else altered.This example thus shows that the prin
iples of re�e
tion of monotoni
ity and invarian
eof admissibility, as de�ned in Se
. 1, 
annot always be realized simultaneously, even when there�e
tions for 
ertain databases of the main s
hema are very well behaved. Fortunately, thisphenomenon 
an be ruled out by requiring that Γ re�e
t insertions, as des
ribed below.4.13 Re�e
tion of insertions The view Γ = (V, γ) re�e
ts insertions if every insertionrequest (M1, N2) from Γ to D whi
h admits a realization admits one whi
h is itself a insertion.In the example of 4.12 above, ΠE5

ABC does not re�e
t insertions, sin
e there is no re�e
tionof the insertion request (M ′
1, N2) whi
h is itself an insertion.4.14 Observation If Γ re�e
ts insertions, then for every insertion request u = (M1, N2)from Γ to D, LDB(D) ∩ AtModI(LeastRefl〈u,ΥCu

〉) is nonempty.Proof: Sin
e LeastRefl〈u,ΥCu
〉 is the least information whi
h any realization of u whi
h isan insertion must 
ontain, it must be 
onsistent if any insertion has that property. 24.15 Strong monotoni
ity of views In view of 4.11 and 4.14, it is 
lear that for there�e
tion of updates to be well behaved, a view should re�e
t both deletions and insertions.Be
ause of the importan
e of this property, it is given a spe
ial name. Call Γ strongly monotoni
if it re�e
ts both insertions and deletions.Finally, 
onditions whi
h guarantee the existen
e of optimal insertions may be established.4.16 Theorem If D admits 
anoni
al models un
onditionally with respe
t to ΥK and Γis strongly monotoni
, then every insertion request u from Γ to D admits a 〈ΥCu

, ↑〉-optimalrealization.Proof: The proof follows from 4.11 and 4.14. 24.17 Corollary If Constr(D) is �nite and 
onsists of a weakly a
y
li
 set of TGHDs, to-gether with any set of EGHDs, and Γ is strongly monotoni
, then every insertion request ufrom Γ to D has a 〈ΥCu
, ↑〉-optimal realization.Proof: The proof follows from 4.16 and 3.22. 2Report: 
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ted 20110218 AMAI2009 page 26



5 Chara
terization of Strongly Monotoni
 ViewsThe 
hara
terizations 4.16 and 4.17 lead to the further problem of identifying 
onditions underwhi
h a view is strongly monotoni
. In general, this does not appear to be an easy question toanswer. However, for s
hemata 
onstrained by FDs and unary in
lusion dependen
ies (UINDs),and for views de�ned by proje
tions, it is possible to identify some su�
ient 
onditions whi
hare easily veri�ed in pra
ti
e.5.1 Partial dependen
e and 
omplete sets In the example of 4.12, the problem is thatthere is a sort of weak dependen
e of A upon C via A → D;D ⊆ DE;DE → C, while theFd A→ C itself does not hold. To obtain strong monotoni
ity in the 
ontext of proje
tions ofviews 
onstrained by FDs, it is pre
isely this sort of weak dependen
e whi
h must not be presentwithout the asso
iated FD also holding. To formalize this idea for a general s
hema D whi
his 
onstrained by FDs, let R ∈ Rels(D), let FR be a set of FDs on R, and let A,B ∈ ArD(R).(a) A fun
tionally in�uen
es B, denoted A 99K B, if there is a sequen
e 〈A0, A1, A2, . . . , An〉of elements of ArD(R) with A = A0 and B = Ak, and a sequen
e X1 → A1, X2 → A2, . . . ,
Xk → Ak of FDs in the 
losure of FR with the property that Ai ∈ Xi+1 for i ∈ {0, . . . , k}.This may be visualized as follows.

A = A0 ∈ X1;X1 → A1;A1 ∈ X2;X2 → A2; . . . Ak−1 ∈ Xk;Xk → Ak = BFun
tional in�uen
e is weaker than fun
tional dependen
e. A 99K B simply means that thevalue of A 
ould in�uen
e the value of B, subje
t to information about the values of otherattributes. Put another way, if A 99K B does not hold, then the value of A 
annot in�uen
ethe value of B via the FDs whi
h hold on the s
hema.(b) Call a subset Y ⊆ ArD(R) 
omplete for FR if if whenever A,B ∈ Y with A 99K B, thenthere is a Z ⊆ Y with A ∈ Z and Z → B ∈ Closure〈FR,WFS(D, ∃∧+)〉.In other words, 
ompleteness states that if A 99K B holds in Y , then an FD whose left handside 
ontains A and whose right-hand side is B also embeds into Y .5.2 Simple proje
tive views and 
omplete views Informally, Γ = (V, γ) is a simpleproje
tive view of D if the s
hema V 
onsists of at most one proje
tion of ea
h relation symbolof D. Formally, a simple proje
tive view Γ = (V, γ) of D is de�ned by an inje
tive fun
tion
SPΓ : Rels(V) → Rels(D) with ArV(R) ⊆ ArDSPΓ(R) for ea
h R ∈ Rels(V). SPΓ(R) is therelation of whi
h R is a proje
tion. The property that SPΓ be inje
tive; that is, that ea
hrelation of V be the proje
tion of a distin
t relation in D, is 
riti
al.Now assume that Γ is a simple proje
tive view and that ea
h S ∈ Rels(D) is 
onstrainedby a set FS of FDs. Call Γ FD-
omplete if for ea
h R ∈ Rels(V), the set ArV(R) is 
ompletefor FSPΓ(R). In other words, for ea
h relation symbol of V, the proje
ted attributes must be
omplete in the relation of D from whi
h they originate.5.3 Proposition Suppose that D is 
onstrained solely by FDs, and that Γ is a simple pro-je
tive view whi
h is FD-
omplete. Then Γ is strongly monotoni
.Report: 
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Proof: Sin
e the relation symbols of D are independent of one another, it su�
es to 
onsiderthe situation in whi
h Rels(D) 
onsists of single relation symbol R[X ], 
onstrained by FDs FR,with Rels(V) 
onsisting of a single relation symbol R′[Y ] with Y ⊆ X , and γ = πD

Y de�ningthe proje
tion of R[X ] onto R′[Y ].First of all, sin
e FDs are EGDS, deletions are re�e
ted trivially. Now let u = (M1, N2) bean insertion request, and let P = N2 \ γ(M1). Ea
h tuple t′ = R′(a1, a2, . . . , am) ∈ P must belifted to a tuple t = R(a1, a2, . . . , am, b1, b2, . . . , bk) in D, with the bi's values for the attributesin X \ Y . In view of the FD-
ompleteness property of Γ, the values of the bi's 
annot bein�uen
ed by the values of the ai's. (Put another way, the 
lassi
al 
hase pro
edure [BV84℄ willnot for
e the values of the bi's to mat
h those of any existing tuples.) Thus the insertion willnot have the problems whi
h are illustrated in 4.12, and so the update may be realized as aninsertion. 25.4 Examples � FDs and strong monotoni
ity As noted above, the example of 4.12is not strongly monotoni
. However, if the set F = {A → D,B → E,DE → C} of FDs isrepla
ed by F′ = {A → D,B → E,D → C}, then A → C is in the 
losure of F′, ABC isFD-
omplete, and the asso
iated proje
tion is strongly monotoni
.5.5 Examples � UINDs and strong monotoni
ity It is possible to obtain 
onditionsunder whi
h simple proje
tive views governed by UINDs are strongly monotoni
, although some
are is ne
essary. A few examples will illustrate the 
entral issues.First of all, let E6 denote the s
hema with two binary relation symbols R1[AB] and R2[AB],governed by the IND R1[AB] ⊑ R2[AB]. R2[AB] is also governed by the FD A→ B, and thisFD is inherited by R1[AB] via the IND. The view ΠE6

R1
preserves R1[AB] but dis
ards R2[AB].Let M1 = {R2(a0, b0)} be the 
urrent instan
e of E6, so that the instan
e of the view is ∅.Consider the update request (M1, N2) with N2 = {R1(a0, b0)}. This update 
an be realized asthe insertion of {R1(a0, b0)} to R inM1. However, if the instan
e of E6 wereM ′

1 = {R2(a0, b1)}instead, this view insertion would not be realizable as an insertion to the main s
hema, sin
e theinsertion of R1(a0, b0) requires the insertion of R2(a0, b0), and {R2(a0, b0), R2(a0, b1)} togetherviolate the FD A → B on R2. Thus, any re�e
tion of (M ′
1, N2) must delete R2(a0, b1). Hen
e

ΠE6

R1
does not re�e
t insertions. In general, non-unary INDs are very problemati
 with respe
tto strong montoni
ity, and so in this paper attention will be restri
ted to UINDs. Note that ifthe IND above is 
hanged to R1[A] ⊆ R2[A], then the problem disappears.Next, let E7 denote the s
hema with the single relation symbol R[ABC], 
onstrained by

R[B] ⊑ R[C], and let ΠE7

A = (W7, π
E7

A ) be the view whi
h proje
ts R[ABC] onto R′[A]. Let
M1 = {R(a0, b0, b0)R(a1, b1, b1)}, so that πE7

A (M1) = N1 = {R′(a0), R
′(a1)}. The view instan
e

N2 = N1 \R
′(a1) = {R′(a0)} may be realized via the deletion of R(a1, b1, b1) from M1. On theother hand, for M ′

1 = {R(a0, b0, b1)R(a1, b1, b0)}, πE7

A (M ′
1) = N1 as well, yet there is no subsetof M ′

1 whi
h maps to N2 under πE7

A . Hen
e ΠE7

A does not re�e
t deletions. A similar problemo

urs if the view is taken to be the proje
tion ΠE7

AB onto AB or the proje
tion ΠE7

AC onto AC.Thus, the se
ond prin
iple to enfor
e is that for every intrarelational UIND R[A1] ⊆ R[A2], if
R is proje
ted at all to the view, then the proje
tion must 
ontain R[A1A2]. Less formally, allintrarelational UINDs must be 
ompletely visible in the proje
tion.Finally, let E8 be the s
hema with three relation symbols R1[AB], R2[AB], and R3[AB], 
on-strained by R1[A] ⊑ R2[A] and R2[B] ⊑ R3[B]. The simple proje
tive view Ω7 
ontains the pro-Report: 
orre
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je
tionsR′
1[A] andR′

3[A] ofR1 andR3, respe
tively. LetM1 = {R1(a0, b0), R2(a0, b1), R3(a0, b1),
R3(a1, b0)}, so that the view instan
e isN1 = {R′

1(a0), R
′
3(a0), R

′
3(a1)}. LetN2 = {R′

1(a0), R
′
3(a0)}.It is easy to see that the deletion request (M1, N2) is realizable by deleting R3(a1, b0) from

M1. However, for M ′
1 = {R1(a0, b0), R2(a0, b1), R3(a1, b1), R3(a0, b0)}, the deletion request

(M ′
1, N2) is not realizable as a deletion, sin
e R3(a1, b1) must be deleted, whi
h would violate

R2[B] ⊑ R3[B]. Note that parts of the �
hain� R1[A] ⊑ R2[A] ↔ R2[B] ⊑ R3[B] ↔ R3[A] arenot visible in the view, with ↔ meaning �o

urs in the same relation. The �nal 
ondition tobe enfor
ed is that all intermediate entries in su
h a 
hain must appear in the view wheneverthe end points do.The next task is to formalize all of this.5.6 UINDs and proje
tive views The set of unary proje
tions of D 
onsists of all ex-pressions of the form R[A] with R ∈ Rels(D) and A ∈ ArD(R). Thus, the unary proje
tionsare pre
isely those whi
h 
an o

ur as the left-hand or right-hand side of a UIND. Formally,
UProj(D) = {R[A] | R ∈ Rels(D) and A ∈ ArD(R)}.De�ne UIND(D) to be the set of all UINDs whi
h are implied by Constr(D). Say that R[A]parti
ipates in UIND(D) if if it appears as either the left-hand side or else the right-hand side ofsome nontrivial ϕ ∈ UIND(D). Here a nontrivial UIND is one whi
h is not true inM ∈ DB(D);i.e., one whi
h is not of the form R[A] ⊑ R[A]. For R[A1], R[A2] ∈ UProj(D) both parti
ipantsin UIND(D) and over the same relation R, write R[A1] ↔ R[A2]. Note that R[A1] ↔ R[A2]does not ne
essarily imply that one of R[A1] ⊑ R[A2] or R[A2] ⊑ R[A1] holds; R[A1] and R[A2]may well parti
ipate in distin
t UINDs of D.De�ne the UIND-graph of D, denoted UGraph(D), to be the dire
ted graph whose verti
esare the members of UProj(D), with an edge from R1[A1] to R2[A2] i� R1[A1] 6= R2[A2] and either
R1[A1] ⊑ R2[A2] ∈ UIND(D) or else R1 = R2 and R1[A1] ↔ R2[A2]. Thus, the UIND-graphre
aptures �
hains of in�uen
e for UINDs, mu
h as fun
tional in�uen
e does for FDs.Finally, assume that Γ = (V, γ) is a simple proje
tive view of D. Say that R[A] ∈ UProj(D)is visible in Γ if there is some R′ ∈ Rels(V) whi
h is a proje
tion of R under γ. Call Γ UIND-
omplete if for every dire
ted path ρ = 〈R1[A1], R2[A2], . . . , Rk[Ak]〉 in UGraph(D), if R1[A1]and Rk[Ak] are visible in Γ, so too are all intermediate elements in ρ.The following result, analogous to 5.3, may now be established.5.7 Proposition Suppose that D is 
onstrained by UINDs, and that Γ is a simple proje
tiveview whi
h is UIND-
omplete. Then Γ is strongly monotoni
.Proof: The proof is a similar to that of 5.3. The 
entral idea is to observe that all 
onne
tionsbetween values whi
h are for
ed by the UINDs are already visible in the view, in the sense thatthey are dedu
ible from the 
onstraints of the view instan
e, and so it is 
ompletely de
idablewithin the view whether or not an insertion or deletion will violate a UIND. The details areleft to the reader. 25.8 Proposition Suppose that D is 
onstrained by FDs and UINDs, and that Γ is a simpleproje
tive view whi
h is both FD-
omplete and UIND-
omplete. Then Γ is strongly monotoni
.Report: 
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Proof: The proof follows from 5.3 and 5.7, together with the 
lassi
al result that FDs andUINDs have trivial intera
tion [CKV90℄. 25.9 Theorem Suppose that D is 
onstrained by FDs and weakly a
y
li
 UINDs, and that Γis a simple proje
tive view whi
h is both FD-
omplete and UIND-
omplete. Then every insertionrequest u from Γ to D admits a 〈ΥCu
, ↑〉-optimal realization.Proof: Combine 3.22, 4.17, and 5.8. 26 Optimal Re�e
tion of DeletionsAt �rst glan
e, the information-based modelling of deletions to views would appear to be mu
hsimpler than that for insertions. Indeed, in large part, the only relevant information-monotonefamily is GrAtoms(D). Thus, the following is immediate.6.1 Observation Let u = (M1, N2) be a deletion request from Γ to D, (M1,M2) ∈

DelRealiz〈(M1, N2),Γ〉, and let K = ConstSym(u).(a) (M1,M2) is 〈ΥK , ↓〉-admissible i� for all (M1,M
′
2) ∈ DelRealiz〈(M1, N2),Γ〉 with M2 ⊆

M ′
2, it must be that M2 =M ′

2.(b) (M1,M2) is 〈ΥK , ↓〉-optimal i� for all (M1,M
′
2) ∈ DelRealiz〈(M1, N2),Γ〉, M ′

2 ⊆M2. 26.2 Admissibility and optimality for deletions As the admissibility and optimality ofdeletions do not depend upon the set of 
onstant symbols in the instan
es de�ning the update,a more 
on
ise notation may be employed. For u = (M1, N2) be a deletion request from Γ to
D and (M1,M2) ∈ DelRealiz〈(M1, N2),Γ〉, write ↓-admissible as an abbreviation for 〈ΥCu

, ↓〉-admissible, and ↓-optimal as an abbreviation for 〈ΥCu
, ↓〉-optimal.It is also worth observing that equality-generating dependen
ies and mutual-ex
lusion de-penden
ies are always preserved under deletion, so no spe
ial handling of them is required.6.3 Observation � EGHDs and mutual-ex
lusion TGHDs preserved under dele-tion Let ϕ be either an EGHD or a mutual-ex
lusion TGHD on D. If M ∈ AtModI(ϕ), then

M ′ ∈ AtModI(ϕ) for every M ′ ⊆M . 2Despite these simpli�
ations, the optimal support of deletions is far from trivial. The root ofthe problem is that while TGDs are well suited for insertions, they display inherent disjun
tionin the 
ontext of deletion. A simple example will help illustrate.6.4 Example � Strong monotoni
ity does not ensure ↓-optimal realizations Let
E9 be the relational s
hema with three relation symbols R[A], S[A], and T [A], 
onstrainedby the single TGHD (∀x)((R(x)∧S(x)) ⇒ T (x)), let G9 be the s
hema whose single relationsymbol is T ′[A], and let Ω9 = (G9, ω9) be the view of G9 with ωT ′

9 = T (xA). In words, the view
Ω9 preserves T [A] (as T ′[A]) but dis
ards R[A] and S[A] 
ompletely.Clearly Ω9 is strongly monotoni
. However, it does not always admit re�e
tions whi
h are
↓-optimal. Indeed, let M1 = {R(a0), R(a1), S(a0), T (a0)} be the 
urrent instan
e of E9, soReport: 
orre
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that N1 = {T ′(a0)} is the instan
e of G9. Let N2 = ∅. For M ′
2 = {R(a0), R(a1)} and M ′′

2 =
{S(a0), R(a1)}, ea
h of (M1,M

′
2) and (M1,M

′′
2 ) are ↓-admissible realizations of u = (M1, N2)with respe
t to WFS(E9, ∃∧+), and so neither is ↓-optimal.Observe that for M3 = M ′

2 ∩M ′′
2 = {R(a1)}, (M1,M3) ∈ DelRealiz〈(M1, N2),Ω9〉 as well,although it is not minimal. This leads to a weaker �minimax�-style of optimality, in whi
h everytuple whi
h is deleted in some ↓-admissible realization is deleted. This is formalized as follows.6.5 Weak ↓-optimality Let u = (M1, N2) be a deletion request from Γ to D.(a) De�ne WeakOpt↓〈u,Γ〉 =

⋂

{M3 | (M1,M3) ∈ DelRealiz〈(M1, N2),Γ〉 and ↓-admissible}.(b) Call (M1,M2) ∈ DelRealiz〈(M1, N2),Γ〉 weakly ↓-optimal if M2 = WeakOpt↓〈u,Γ〉.In 6.4 above, M3 is weakly ↓-optimal but not ↓-optimal in the sense of 6.2.To identify 
onditions under whi
h a weakly ↓-optimal re�e
tions are admitted, it useful tointrodu
e a new way of viewing the 
ombination of a s
hema and a view.6.6 The 
ombined s
hema indu
ed by a view Rather than regarding the main s
hema
D and the view s
hema V as distin
t, it is quite possible to 
ombine them into a single s
hema,with the view mappings regarded as additional 
onstraints. The alternative representationturns out to be very useful, sin
e all 
onstraints, both those of the s
hemata and those indu
edby the view mappings, may be 
onsidered at on
e.To formalize this idea, it is ne
essary to assume that Rels(D) ∩ Rels(V) = ∅. This is not aproblem sin
e relations may always be renamed as ne
essary.The 
ombined s
hema CombSch〈D,Γ〉 has as its relational symbols Rels(D)∪Rels(V). The
onstraints of CombSch〈D,Γ〉 are those in Constr(D), together with, for ea
h R ∈ Rels(V), thede�nitional 
onstraint

(∀xA1
)(∀xA2

) . . . (∀xAm
)((R(xA1

, xA2
, . . . , xAn

)) ⇔ γR(DefC)In the above, {xA1
, xA2

, . . . , xAm
} are pre
isely the attribute variables whi
h o

ur in the inter-pretation formula γR. It is easier to see the full nature of this 
onstraint when γR is expandedinto its full form (∃x1)(∃x2) . . . (∃xn)(γ

R(xA1
, xA2

, . . . , xAm
, x1, x2, . . . , xn)). (See 2.6 for a 
lar-i�
ation of the notation γR.) The 
omplete expansion then be
omes(DefC′) (∀xA1

)(∀xA2
) . . . (∀xAm

)((R(xA1
, xA2

, . . . , xAn
)) ⇔

(∃x1)(∃x2) . . . (∃xn)(γ
R))(xA1

, xA2
, . . . , xAm

, x1, x2, . . . , xn)))The de�nitional 
onstraint (DefC′) for R may be broken into the forward 
omponent(DefC-Fwd) (∀xA1
)(∀xA2

) . . . (∀xAm
)(∀x1)(∀x2) . . . (∀xn)

(γR(xA1
, xA2

, . . . , xAm
, x1, x2, . . . , xn) ⇒ (R(x1, x2, . . . , xn)))and the reverse 
omponent(DefC-rev) (∀xA1

)(∀xA2
) . . . (∀xAm

)((R(xA1
, xA2

, . . . , xAn
)) ⇒

(∃x1)(∃x2) . . . (∃xn)(γ
R))(xA1

, xA2
, . . . , xAm

, x1, x2, . . . , xn)))Report: 
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It is easy to see that both the forward and the reverse 
omponents are TGHDs. Thus, if
Constr(D) has a 
over 
onsisting of GHDs, so too does Constr(CombSch〈D,Γ〉).This idea has already been illustrated in 1.2 with E

′
0 the 
ombined s
hema asso
iated with

CombSch〈E0,Π
E0

AB〉. The single de�nitional 
onstraint is (∀x)(∀y)(RAB(x, y) ⇔ (∃z)(R(x, y, z))),and this de
omposes into the forward 
onstraint (∀x)(∀y)(∀z)(R(x, y, z) ⇒ RAB(x, y)) and thereverse 
onstraint (∀x)(∀y)(RAB(x, y) ⇒ (∃z)(R(x, y, z))). Note that the forward 
onstraint isalways universal.6.7 Universal pairs Call the pair 〈D,Γ〉 universal if Constr(CombSch〈D,Γ〉) 
onsists en-tirely of universal GHDs. In other words, this means that both the 
onstraints ofD and the viewinterpretation mappings 
onsist of total dependen
ies, without any existential quanti�
ation.For example, in 6.4, the pair 〈E9,Ω9〉 is universal.Under this assumption of universality, weakly ↓-optimal solutions exist whenever a solutionwhi
h is a deletion is possible.6.8 Proposition Let 〈D,Γ〉 be a universal pair. Then for every deletion request u =
(M1, N2) from Γ to D with DelRealiz〈u,Γ〉 6= ∅, WeakOpt↓〈u,Γ〉 is a weak ↓-optimal realizationof u.Proof: Let (M1,M2) ∈ DelRealiz〈(M1, N2),Γ〉 and let t ∈ N2. Sin
e 〈D,Γ〉 is a universalpair, Subst(γ, t→) must be a 
onjun
tion of ground atoms, and these ground atoms must be inevery M for whi
h t ∈ γ(M). In parti
ular, ea
h su
h 
onjun
t must be in ⋂{M3 | (M1,M3) ∈
DelRealiz〈(M1, N2),Γ〉 and ↓-admissible}. Thus γ(WeakOpt↓〈u,Γ〉) = N2.It remains to verify that WeakOpt↓〈u,Γ〉 ∈ LDB(D). However, it is a very easy exer
iseto show that all universal Horn senten
es (and hen
e all total TGDs) are preserved underinterse
tion, when
e the result. 26.9 Example � La
k of weak ↓-optimal realizations It is natural to 
onje
ture thatthe result of 6.8 extends to situations involving existential quanti�
ation. Unfortunately, thisis not the 
ase. If non-total TGDs are allowed, relatively simple examples of deletions requestsexist whi
h admit ↓-admissible realizations but no weak ↓-optimal realization.Let E10 be the s
hema with three relational symbols R[AB], S[BC], and T [BC], with thefollowing three 
onstraints.

(∀x1)(∀x2)(∀x3)((R(x1, x2)∧R(x1, x3)) ⇒ S(x2, x3))

(∀x1)(∀x2)(R(x1, x2) ⇒ T (x2, x2))

(∀x1)(T (x1, x1) ⇒ (∃y1)(R(y1, x1)))Let Ω10 = (G10, ω10) be the view whi
h retains the relations of S and T , but dis
ards R. Let
M1 = {R(a0, b0), R(a0, b1), R(a1, b0), R(a1, b1), S(b0, b0), S(b0, b1), S(b1, b0), S(b1, b1),
T (b0, b0), T (b1, b1)}. It is easy to see that M1 ∈ LDB(E10). The 
orresponding view instan
e
ω10(M1) = {S(b0, b0), S(b0, b1), S(b1, b0), S(b1, b1), T (b0, b0), T (b1, b1)}. Let the desired newview instan
e be N2 = {S(b0, b0), S(b1, b1), T (b0, b0), T (b1, b1)}. Thus, the tuples in P =
{S(b1, b0), S(b0, b1)} are to be deleted. It is easy to see that this update admits two ↓-admissible realizations, one whi
h deletes P ∪{R(a0, b0), R(a1, b1)} and the other whi
h deletesReport: 
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P ∪ {R(a0, b1), R(a1, b0)}. Thus, the two possibilities for the new instan
e of E10 are M ′
2 =

{R(a0, b1), R(a1, b0), S(b0, b0), S(b1, b1), T (b0, b0), T (b1, b1)} and M ′′
2 = {R(a0, b0), R(a1, b1),

S(b0, b0), S(b1, b1), T (b0, b0), T (b1, b1)}. However, M ′
2 ∩M

′′
2 = {S(b0, b0), S(b1, b1), T (b0, b0),

T (b1, b1)} 6∈ LDB(E10). Indeed, the existential quanti�
ation has introdu
ed an ex
lusive-orrequirement in whi
h (R(a0, b0)∧R(a1, b1))∨(R(a0, b1)∧R(a1, b0)) must hold, but both disjun
tsmust not hold simultaneously. Furthermore, it is not di�
ult to see that Ω10 re�e
ts deletions.Therefore, a general approa
h whi
h addresses the disjun
tion problem for deletions seemsimpossible.It should be noted that Constr(E10) is not typed in the sense of [Fag82, p. 955℄. For thispaper, whether su
h an example is possible with su
h typed 
onstraints is left as an openquestion. Rather, attention is turned to a more restri
tive but nevertheless useful 
lass whi
hdoes admit full ↓-optimal realizations.6.10 Unit-head TGDs, s
hemata, and views A TGHD of the form (GHD) of 3.15 is
alled a unit-head dependen
y if n = 1; that is, if there is only one atom on the left-handside of the rule. The most important example of a unit-head dependen
y is the in
lusiondependen
y. The s
hema D is 
alled unit-head if Constr(D) has a 
over 
onsisting of EGHDs,mutual-ex
lusion TGHDs, and unit-head TGHDs.This idea extends to 
ombined s
hemata as well. Call the pair 〈D,Γ〉 unit head if
CombSch〈D,Γ〉 is unit head. Clearly, CombSch〈D,Γ〉 is unit head i� D has that propertyand, for ea
h R ∈ Rels(V), the interpretation formula γR 
onsists of a single (not ne
essarilyground) atom.All INDs, are unit-head. Furthermore, views whi
h are de�ned via proje
tion and sele
tion(but not join), are also unit head. Therefore, many pra
ti
al examples are represented underthis 
lass.The following lemma identi�es a 
riti
al property of unit-head s
hemata.6.11 Lemma Let D be a unit-head s
hema, and let M,M1,M2 ∈ LDB(D) with Mi ⊆ Mfor i ∈ {1, 2}. Then M1 ∪M2 ∈ LDB(D) as well.Proof: Without loss of generality, assume that Constr(D) itself 
onsists of EGDs and unit-head TGHDs. Let ϕ ∈ Constr(D) be a TGHD and let s be a 
onstant substitution intothe universal variables of ϕ su
h that LHSinfo〈ϕ, s〉 ∈ M1 ∪ M2. Let i ∈ {1, 2} for whi
h
LHSinfo〈ϕ, s〉 ∈ Mi. There must then be a tuple t ∈ Mi whi
h satis�es RHSinfo〈ϕ, s〉, sin
e
Mi ∈ LDB(D). Thus M1 ∪ M2 ∈ AtModI(ϕ), and so M1 ∪ M2 satis�es every TGHD in
Constr(D). Sin
e M1 ∪M2 ⊆ M , it follows from 6.3 that M1 ∪ M2 ∈ AtModI(ψ) for everyEGHD and mutual-ex
lusion TGHD in Constr(D). Thus, M1 ∪M2 ∈ LDB(D). 26.12 Theorem Let 〈D,Γ〉 be a unit-head pair. Then every deletion request u = (M1, N2)from Γ to D for whi
h DelRealiz〈(M1, N2),Γ〉 6= ∅ admits a unique ↓-optimal realization.Proof: Given a deletion request u = (M ′, N2) from Γ to D, let M ′

1 and M ′
2 be ↓-admissiblerealizations of u, and let Mi =M ′

i ∪N2 ∈ LDB(CombSch〈D,Γ〉) for i ∈ {1.2}. Now just apply6.11 to establish that M1 ∪M2 ∈ LDB(D). It thus follows that M1 = M2, else one of M1 andReport: 
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M2 would not be tuple minimal. Hen
e the part of M1 whi
h 
orresponds to the relations of
D must be the ↓-optimal solution. 2In the 
ontext of the traditional dependen
ies and view 
onstru
tions of the relational model,this theorem leads to the following 
orollary.6.13 Corollary Let D be 
onstrained by FDs and INDs, and let Γ be de�ned by proje
tionsand sele
tions on the relations of D. Then, if Γ re�e
ts deletions, every deletion request from
Γ to D admits a unique ↓-optimal realization. 2Invoking 5.8 yields the following more fo
used 
hara
terization.6.14 Corollary Let D be 
onstrained by FDs and weakly a
y
li
 INDs, and let Γ be asimple-proje
tive view whi
h is strongly monotoni
. Then every unidire
tional update request(i.e., insertion request or deletion request) u from Γ to D admits a unique optimal realization(〈ΥCu

, ↑〉-optimal or ↓-optimal, as the 
ase may be). 27 Con
lusions and Further Dire
tionsA strategy for the optimal re�e
tion of view updates has been developed, based upon the 
on-
ept of least information 
hange. The property of strong monotoni
ity � that view insertionsmay always be re�e
ted as main-s
hema insertions and view deletions may always be re�e
tedas main-s
hema deletions, has been shown to be 
riti
al. Under this assumption, and in the 
on-text of generalized Horn dependen
ies, it has been shown that optimal insertions are supportedin a reasonable fashion � they are unique up to a renaming of the newly-inserted 
onstants. Ithas furthermore been shown that optimal deletions are supported under unit-head 
onditions.Nonetheless, a number of issues remain for future investigation. Among the most importantare the following.Deletion beyond the unit-head 
ontext The theory for deletions developed in Se
tion 6 is largelyrestri
ted to unit-head pairs. It would be useful to extend these results to a wider 
lass ofs
hemata. As noted at the end of 6.9, it is not known (at least to the author) whether weak
↓-optimality may be obtained for typed GHDs. This topi
 warrants further investigation.Chara
terization of strong monotoni
ity for wider 
lasses of s
hema 
onstraints The 
hara
ter-ization in Se
tion 5 of views whi
h are strongly monotoni
 is limited to simple proje
tions 
on-strained by FDs and UINDs. Sin
e strong monotoni
ity is 
entral to the support of optimalupdates, an investigation into broader 
hara
terization would 
ertainly be worthwhile.Optimization of tuple modi�
ation Although the general formulation applies to all types ofupdates, the results fo
us almost entirely upon insertions and deletions. Modi�
ation ofsingle tuples (�updates� in SQL), on the other hand, are of fundamental importan
e. Withthe standard update 
lassi�
ation pair introdu
ed in 4.4 and used throughout the paper,only very spe
ial 
ases admit optimal solutions. The di�
ulty arises from the fa
t that theframework, whi
h is based entirely upon information 
ontent, 
annot distinguish between theReport: 
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pro
ess of modifying a tuple and that of deleting it and then inserting a new one. Consequently,both appear as admissible updates, but neither is optimal relative to the other. Further workmust therefore look for a way to re
apture the distin
tion between tuple modi�
ation and adelete-insert pair.Appli
ation to database 
omponents This investigation began as an e�ort to understand bet-ter how updates are propagated between database 
omponents, as forwarded in [Heg08b, Se
.4℄, but then took on a life of its own as it was dis
overed that the 
omponent-based prob-lems were in turn dependent upon more fundamental issues. Nevertheless, it is important toreturn to the roots of this investigation � database 
omponents. This in
ludes not only thepurely autonomous 
ase, as sket
hed in [Heg08b, Se
. 4℄, but also the situation in whi
h users
ooperate to a
hieve a suitable re�e
tion, as introdu
ed in [HS07℄Relationship to work in logi
 programming As already noted in the introdu
tion, the problemof view update has also been studied extensively in the 
ontext of dedu
tive databases. The
onne
tion between update preferen
e based upon distan
e measures, as identi�ed in Se
tion1 and the 
urrent approa
h beg a rappro
hement. In addition, the 
onne
tion between the
urrent work and that of identifying algorithms for �nding all possible re�e
tions [BM04℄ is ofinterest. Furthermore, some re
ent work has introdu
ed the idea of using a
tive 
onstraintsto establish a preferen
e order on admissible updates [GSTZ03℄. Thus, rather than employinga preferen
e based upon information 
ontent, one based upon expli
it rules is employed. Therelationship between su
h approa
hes and that of this paper warrants further investigation.Also, there has been a substantial body of work on updates to disjun
tive dedu
tive databases[FGM96℄, in whi
h the extensional database itself 
onsists of a 
olle
tion of alternatives. Theapproa
h of minimizing information 
hange in the disjun
tive 
ontext deserves further atten-tion as well.A
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