
Plan Realization for Complex Command Interaction
in the UNIX Help Domain

Stephen J. Hegner
Ume̊a University
Department of Computing Science
S-901 87 Ume̊a
Sweden
Internet: hegner@cs.umu.se

Abstract. Yucca-* is a consultation system which is designed to provide the UNIX
user, through a friendly interface, with detailed expert advice on the use of the UNIX
command language. One of the principal design goals of this system is the ability to
provide correct responses to technically complex queries whose solution may involve
the interconnection of several commands, each with multiple options. The realization
of such a goal requires two things. First, representation of dynamic knowledge about
command behavior at a sufficient level of detail to support solution of the query is
needed. Second, a planning mechanism capable of interconnecting such knowledge
into a cohesive solution must be provided. This paper first develops the command
dynamics representation techniques employed in Yucca-*. It then examines in detail
the plan generation mechanism which is used to solve complex dynamic queries.
Particular emphasis is placed upon those aspects of the problem which are unique
to this particular domain.

Key words: Operating system, Consultation system, Planning

1. Introduction

1.1. Overall goals

Like the other systems described in this collection, Yucca-* is an intel-
ligent help system for the UNIX1 operating system. However, not all
operating system consultants have identical goals; there are many points
of emphasis upon which effort may be focused. Therefore, it appropri-
ate to begin our description of Yucca-* with a statement of just what
it is intended to do, before paying any attention to how.

The user community The targeted users of Yucca-* are those per-
sons who possess some familiarity with computer systems, but who lack
the detailed knowledge necessary to accomplish a desired task. There
are at least two common (overlapping) categories of such users.

1. The first category consists of users who are migrating from anoth-
er system. That system may be another shared system, such as

1 UNIX is a trademark of X/Open, Inc.

2 Stephen J. Hegner

TOPS-202 or VM/CMS3, or it may be an operating system for
dedicated microcomputers, such as MS-DOS4. Such users will be
aware, for example, that most operating systems have a command
to print the contents of a file, but may be unaware that lpr is the
specific command for accomplishing that task in UNIX, or that a
combination of the lpr command and the cat command is neces-
sary to print a file with lines numbered.

2. The second category contains occasional but not näıve users. These
persons may use UNIX from time to time in the course of their
work, but are not intense users, and thus find it easy to forget the
details and intricacies of command syntax and semantics.

Key characteristic of this user community

1. Type of information sought Perhaps the most succinct character-
ization of the members of this user community is that they pos-
sess the conceptual knowledge necessary to identify the information
which they want, but lack the implementation knowledge of those
concepts within the extant domain. They do not need to be told
that information is stored in files, or that text editors are used
to change the contents of files, but they may not understand the
subtle but important differences between UNIX files and TOPS-20
files, nor may they know which editors are available under UNIX,
and what their relative features are.

2. Complexity of knowledge Because the targeted class of users is
more sophisticated than true computing novices, so too will be
their queries. Rather than simply wanting to know how to print a
file, such a user may want to know how to print a file on the laser
printer with pagination and with page headers.

Form of the utility Yucca-* is designed to be an external utility,
rather than an integral system component such as are Cousin (Hayes,
1982b), (Hayes, 1982a), (Hayes and Szekely, 1983), SARA (Fenschel
and Estrin, 1982), and CONSUL (Mark et al., 1980). This means that
it must run as a separate program on the existing system, to be invoked
only when needed. Its installation will not alter the standard user inter-
face in any way.

2 TOPS-20 is a trademark of Digital Equipment Corporation.
3 VM/CMS is a trademark of IBM Corporation.
4 MS-DOS is a trademark of Microsoft Corporation.

plan.tex; 27/06/2001; 19:25; no v.; p.2

Plan Realization for Complex Command Interaction 3

Historical influence on design goals Yucca-* is the outgrowth of
three earlier efforts, UCC (Douglass and Hegner, 1982), Yucca (Heg-
ner and Douglass, 1984), each developed in Franz Lisp, and Yucca-II
(Hegner, 1988), a proposal which never reached fruition. Each of these
earlier systems featured a natural-language interface to the user. It
was our feeling in designing those systems that the user interface must
mimic the human consultant insofar as possible, particularly requiring
little or no learning on the part of the user, and that natural language
was the best way to realize this end. While this may still represent the
ideal, experience has lead us to the more pragmatic conclusion that
a pure natural-language interface may not be optimal. The number
of queries which could not be understood, or which were understood
incorrectly, was too high to be acceptable in a working system. Due
to the highly structured nature of knowledge about operating system
behavior, it seems that, at least in some cases, alternate approaches to
user interfaces, such as intelligent menus, may form a viable and even
superior alternative, not only in functionality, but in terms of reduced
design and implementation effort as well. It is clear that further work
on the form of the user interface needs to be done.

Regardless of the form of the user interface, once the general class
of information which the system must provide has been identified, the
knowledge about UNIX which is necessary may be firmly identified.
Yucca-* is in fact a design of a knowledge base about UNIX, to which
a user interface must be attached. In this paper, we focus on design of
that knowledge base, emphasizing in particular planning issues.

1.2. System overview

Unlike most domains of knowledge to which artificial intelligence is
applied, the behavior of an operating system command language is for-
mally specified and completely understood. In the terminology of Hart
(Hart, 1982), the source code of the UNIX operating system, together
with an understanding of its semantics, forms a deep model of that
system. Our main thesis, and the cornerstone of the design of Yucca-*,
is that this formality and depth of available domain knowledge should
be retained as a distinguishing feature of the knowledge representation
scheme within an operating system consultation system, rather than
discarded in favor of more general but less formal techniques. Nonethe-
less, while observing that knowledge about the behavior of UNIX lends
itself well to formality, we readily acknowledge that understanding a
user’s query is not a completely formal process; the inherent impreci-
sion of the man-machine interface must be addressed in any design. To
achieve this end, Yucca-* is designed to be consistent with an under-

plan.tex; 27/06/2001; 19:25; no v.; p.3

4 Stephen J. Hegner

lying philosophy that it is possible and indeed desirable to separate
understanding of a user’s query from solving it. As a manifestation of
this philosophy, the overall architecture of Yucca-* is sharply divided
into two components, identified in Figure 1.

Understander

Formal
Knowledge Base

and
Query Solver

User’s
Query

-

User-oriented
Response

¾

Formal
Query

--

Formal
Response

¾¾

Figure 1. Overall architecture of Yucca-*.

The understanding phase The function of the understander is to
interface to the user and generate a precise formulation of his ques-
tions into formal queries in a specially designed formal query language
termed OSquel, and to translate solutions of such queries into user-
understandable responses. As noted previously, the exact nature of this
module is not specified in the top-level design of Yucca-*, but is open to
a variety of alternatives, including natural language. However, in any
realization, this part of the system contains knowledge relevant to the
understanding of queries, but not for solution. For example, posed a
query asking how to print a file with pageheaders on the laser printer,
the understander knows about printing, laser printers, and pagehead-
ers. However, it does not know that the UNIX command pr is the one
to use to put pageheaders on a file, that the lpr command, with the
appropriate option, is the means to enqueue a file for printing on the
laser printer, nor that the two should be interconnected with a UNIX
pipe to accomplish the task. In short, it knows how to communicate
with the user regarding conceptualizations of operating system con-
cepts and express them as formal conceptualizations in OSquel, but it
knows nothing of their implementation.

The solving phase The function of the formal knowledge base and
query solver is to find solutions to the formal queries posed by the
understander. It does know about the semantics of pr and lpr, as well
as how they can be interconnected via a pipe. On the other hand, it has
no special knowledge about communicating with the user, such as user
misconceptions and beliefs, or defaults implied by natural language. In
short, it knows nothing of formulating conceptualization of command

plan.tex; 27/06/2001; 19:25; no v.; p.4

Plan Realization for Complex Command Interaction 5

language, but everything about translating formal conceptualizations
into implementations. Essentially, this module is a formal database
of knowledge about the UNIX command language; everything about
knowledge representation and inference in this component is completely
formal. Thus, it is in this component that we exploit completely the
formal aspects of domain knowledge about UNIX.

Coupling of the two components Despite this separation of under-
standing and solving into two separate components, it is clear that the
two modules must share enough information so that each is capable
of understanding and expressing knowledge in the formal query lan-
guage OSquel. To this end, the formal static knowledge base is acces-
sible by both components. This knowledge base contains information
about objects and their attributes in the extant domain, but not infor-
mation about how commands alter their attributes. This information is
sufficient to formulate and understand queries, but not to solve them.

Major thesis It is a major thesis of this work that a division of the
consultation system into two components, as described above, is not
only possible but practical and advantageous. Specifically, we propose
that detailed procedural domain knowledge can be effectively separat-
ed from that knowledge necessary to interface with and understand
the user. In particular, we propose that a single “back-end” knowledge
base about UNIX can be be used to support a variety of user inter-
faces of varying form and sophistication. We note that this philosophy
is completely opposite to that employed in the UC natural-language
consultation system (Wilensky et al., 1988), in which linguistic knowl-
edge and domain knowledge about UNIX are contained in a common
knowledge base.

Comparison to friendly interfaces to database systems It is diffi-
cult to avoid noticing the similarity between the architecture of Yucca-*
and that of natural-language front ends to database systems, such as
PLANES (Waltz, 1978), TEAM (Grosz, 1983), and IRUS (Bates et al.,
1986), and other “user-friendly” interfaces, such as QBE (Zloof, 1977),
and BAROQUE (Motro, 1986). However, these systems all deal with
the problem of attaching a front end to an existing database system,
while Yucca-* involves the design and implementation of both compo-
nents of the system from scratch. In addition, traditional database sys-
tems deal only with static knowledge, and so queries involving dynamics
need not be supported. However, it is the conceptualization of actions
which is the central component of the understander. We do note, how-
ever, that Salveter (Salveter, 1984) has examined the problem of devel-
oping a natural-language front end to database systems which deal with

plan.tex; 27/06/2001; 19:25; no v.; p.5

6 Stephen J. Hegner

updates as well as queries, and so must support concepts closely related
to dynamic queries.

1.3. Overview of plan realization issues

Forms of assistance It is important to distinguish our use of plans
and planning from that of other help facilities. There are at least two
distinct ways in which assistance may rendered by an operating sys-
tem help facility. Yucca-* is a consultation system, meaning that it
provides immediate real-time help to users regarding specific queries.
Genereseth’s MACSYMA Advisor (Genesereth, 1979) is perhaps the
prototypical example of such a utility. In this regard Yucca-* is similar
to the UC UNIX consultation system (Wilensky et al., 1984), (Wilen-
sky et al., 1988). Because such facilities typically provide help only
when it is explicitly requested, they are sometimes termed passive assis-
tants. Plan realization is the major planning-related activity of such
systems, since the system takes a specification of a desired result and
attempts to assemble a plan (qua command sequence) which realizes
that result. This is in marked contrast to critiquing systems, which
take a user’s attempt at a problem and attempt to suggest corrections
and/or improvements. This approach has been strongly promoted in
the domain of providing expert medical advice (Miller, 1984). Howev-
er it is also central to several operating system help systems, including
Wizard (Finin, 1983) and AQUA (Quilici et al., 1988). In such systems,
a user’s attempt at solving a simple problem (such as deleting a group
of files) is observed, and a “better” approach is suggested by the sys-
tem. Plan recognition and correction is the key plan-related activity in
this sort of system. Since such consultants often operate as observers of
the user’s actual attempts at problem solution, they are often termed
active assistants. The current design of Yucca-* does not provide such
help. We note that some operating system help facilities, such as SC
(Hecking et al., 1988) and USCSH (Neelkandan et al., 1987), incorpo-
rate both active and passive assistants.

Types of queries There are two major flavors of queries which users
will pose, and which a consultation system should be prepared to ser-
vice.

1. Process queries The terminology process query is borrowed from
(Scragg, 1975), and refers to queries which deal with the dynamics
of UNIX. The most important class of such queries is characterized
by the required command being unknown, such as asking how to
print a file with pageheaders on the laser printer, although their

plan.tex; 27/06/2001; 19:25; no v.; p.6

Plan Realization for Complex Command Interaction 7

are other possibilities, such as asking who can read a certain class
of files, in which the actor is unknown.

2. Conceptual queries Occasionally, users will need clarification of
the static structure of the underlying system, as characterized by
the queries asking for the definition of a UNIX pipe, or for infor-
mation on how directories are organized in UNIX.

Planning and unknown action queries Although Yucca-* has
the capability of answering a wide variety of queries, its strength lies
in its ability to answer detailed process queries in which the action
is unknown. Consider, as a specific example, the query asking how to
print a file with pageheaders and lines numbered on the laser print-
er. Even once this query is understood, its solution is quite nontrivial.
Indeed, the natural solution, which is represented by the command
cat -n filename | pr | lpr -Plaser, requires the interconnection
of three basic commands, two of which contain explicitly identified
options. While it would perhaps be possible to retain explicitly the
solution for many such queries, such a knowledge base would at best
be inflexible and nonrobust. Rather, Yucca-* is designed to assemble
such an interconnection from primitive components, utilizing knowl-
edge bases of basic command and interconnector descriptions. The
assembly of such an interconnection is clearly a planning process. The
query statement represents the goal, and the interconnection the plan.
The overall approach of how such planning is performed, as well as how
it is supported with appropriate knowledge bases, is the central topic
of this article.

Scope of the plan domain Even within the scope of passive consul-
tation systems, there are different directions which may be taken. The
emphasis in Yucca-* is on the solution of relatively complex domain-
specific queries which involve the interconnection of several commands
and options. Thus, our primary concern is how to view commands, com-
mand options, and command interconnectors as basic building blocks
for complex command behavior, and how to realize an interconnection
of such blocks affording a particular behavior. This involves domain
specific planning. In the UC system, on the other hand, a major goal
is to utilize the UNIX domain as a testbed for the evaluation of gen-
eral frameworks for knowledge representation and planning. As such,
UC emphasizes general planning to a much greater degree. As a result,
Yucca-* is capable of answering much more technically complex queries.
See (Chin, 1988) for a detailed discussion of the rôle of planning in UC.
The SC system (Hecking et al., 1988), like Yucca-*, employs domain-
specific knowledge representation, but its emphasis is not on plan gen-
eration, but rather upon direct representation of command behavior.

plan.tex; 27/06/2001; 19:25; no v.; p.7

8 Stephen J. Hegner

Yucca-* appears to be unique amongst UNIX consultation systems in
its emphasis upon the solution of complex technical queries via plan
generation.

2. Overview of the back end

In this section, we overview the architecture of the back end, and iden-
tify the places in this paper in which the individual components are
elaborated. The overall architecture of the back end is depicted in Fig-
ure 2. Input queries are classified as either conceptual or process; the
difference is easily determined by syntactic means. The sole rôle of the
query differentiator is to decide of which type a query is, and to route
it to the appropriate solver. This is a trivial task which is not further
elaborated in this paper. Each query solver has access to particular
knowledge bases tailored to its needs.

Query
Differentiator

Conceptual
Query Solver

Process
Query Solver

Conceptual
Descriptions
Knowledge

Base

Static
Knowledge

Base

Dynamics
Knowledge

Base

Cliché
Knowledge

Base

Item
Template
Knowledge

Base

©©©©©©*©©©©©©¼

HHHHHHjHHHHHHY

-¾

-¾

HHHHHHjHHHHHHY

©©©©©©*©©©©©©¼

©©©*©©©¼
HHHjHHHY

©©©*©©©¼

-¾
I/O

Figure 2. Overall architecture of back end.

plan.tex; 27/06/2001; 19:25; no v.; p.8

Plan Realization for Complex Command Interaction 9

2.1. Overview of query solution modules

The conceptual query solver The task of the conceptual query solver
is to solve conceptual queries. It is not discussed further in this paper.

The process query solver The process query solver actually con-
sists of two distinct units. The command synthesizer is a complex goal
identification and planning unit which is used to solve queries in which
the action to be performed is the primary unknown. The ultimate goal
of this paper is to describe the operation of this query solution unit, as
it is “the” planner of the back end. This unit is described in Section 6.
The simulator is used to solve all other dynamics queries; for reasons
of space limitations, it is not discussed further in this paper.

2.2. Overview of the knowledge bases

Although this paper is ultimately about plan realization, such a topic
cannot be considered in isolation. Rather, successful planning must
be supported by appropriate knowledge representation and inference
mechanisms. Therefore, we also provide a description of those aspects
of knowledge representation which are relevant to plan generation.

The static knowledge base The static knowledge base is central to
the back end; all other knowledge bases depend critically upon con-
cepts formulated in this unit. It consists of formal descriptions of the
objects classes present in an operating system enivronment, such as
file, directory, user, file protection, byte sequence, print queue, and the
like. These object classes are organized in both generalization (IS-A)
and aggregation (PART-OF) hierarchies. The static knowledge base
contains definitions of well over one-hundred classes, and is described
in Section 4.

The conceptual descriptions knowledge base In Yucca-*, concep-
tual queries asking for a general description of the concept of pipe or
of directory structure of UNIX are solved by providing the user with a
short textual response explaining the concept. The conceptual descrip-
tions knowledge base contains the text of those responses. Since this
knowledge base is not used in the support of plan realization, it is not
discussed further in this paper.

The dynamics knowledge base This knowledge base contains for-
mal descriptions of the syntax and semantics of several dozen UNIX
commands, as well as definitions of supporting operations such as pip-
ing, command sequencing, and redirection. It is discussed in detail in

plan.tex; 27/06/2001; 19:25; no v.; p.9

10 Stephen J. Hegner

Section 5. The complete representation of the pr command is contained
in the Appendix of this paper.

The cliché and item template knowledge bases These knowledge
bases do not contain any “new” information about the structure or
behavior of UNIX. Rather, they play a crucial supporting rôle in the
efficient realization of plans. They are described in Section 6.

3. Query formulation

All formal queries are expressed in a formal query language termed
OSquel. Although the details of query representation cannot be fully
understood until the features of the static knowledge base have been
elaborated, it is nonetheless useful to provide an overview of query
formulation at this point, since the design of the static knowledge base,
as well as the other knowledge bases and process query solvers, was
strongly motivated by the needs inherent in query formulation as well
as solution.

3.1. Process queries

Process queries are at the very heart of Yucca-*. The general syntactic
format of such a query is shown in Figure 3.5

(query:
(dynamics: (((state: P) (action: F) (state: Q)) (actor: A)))
(query-variables: <v-list>) ;; Variables to be bound in solution
(external-variables: <v-list>) ;; Input/output parameters
(local-variables: <v-list>) ;; Output only parameters
(define P <static-formula-with-variables>) ;; Precondition
(define Q <static-formula-with-variables>) ;; Postcondition
(define F <static-formula-with-variables>) ;; Action
(define A <static-formula-with-variables>) ;; Actor

)

Figure 3. Syntax of a process query.

The underlying idea is that we express dynamics axiomatically, with
formulas identifying the precondition necessary for the action to take
place, the postcondition asserted as a result of the action, the actor
performing the action, as well as the action itself. Each of these four
components is represented as a formula in SL, which is a first-order lan-
guage underlying the static knowledge base. The unknowns, or variables
to be bound, are identified in the query-variables: entry. Queries are

5 Actually, there is a slightly more general format, which is occasionally necessary,
involving a sequence of actions. Such queries are not elaborated in this report.

plan.tex; 27/06/2001; 19:25; no v.; p.10

Plan Realization for Complex Command Interaction 11

classified by identifying the location of the major unknown; there are
four such classifications.

Unknown action queries In unknown action queries, the primary
unknown is the action F. There are three levels of such queries. In the
most general case, the unknown action is a general command inter-
connection. An example would be the formalization of the request
to explain how to print a file with pageheaders on the laser print-
er, which has as a solution pr <filename> | lpr -Plaser. Unknown
action queries may also designate that the answer be a single command,
such as the query asking which single command puts pageheaders on a
file or they may designate that the answer be an option of an existing
command, such as the query asking which option on the pr command
allows specification of the pageheader value. To which of these three
classifications a given formal query belongs is determined by the type
of the unknown variable in the action slot of the query.

Unknown consequence queries In unknown consequence queries,
the major unknown is the result of performing an action, which is the
postcondition Q of the formal query. Examples include formalizations
of asking what happens if one logs out with jobs running in the back-
ground or asking what happens if one tries to delete a directory with
files in it.

Unknown precondition queries These queries ask what is necessary
to achieve a given task, and so the primary unknown is the precondition
P of the formal query. Examples include formalizations of asking what
privileges are necessary to set the system date or asking what properties
a directory needs to have so that one may delete it.

Unknown actor queries Occasionally, queries arise in which the actor
A is the primary unknown. An example is the query which asks who
can read another user’s files.

It is clear from data gathered on queries submitted to the prototype
system UCC that unknown action queries are the dominant form of
process query posed by users. Therefore, such queries are given pri-
mary emphasis in the design of the back end. This means that the
selection of features for the back end is driven by the need to solve
such queries as completely and efficiently as possible. The solution of
unknown consequence, precondition, and actor queries is given only
secondary consideration in Yucca-*, and is not discussed further in this
report.

Secondary conditions In classifying queries, we have alluded to the
“primary unknown”. However, the proper formalization of queries may

plan.tex; 27/06/2001; 19:25; no v.; p.11

12 Stephen J. Hegner

require more than one unknown. For example, in responding to the
query asking how to print a file with pageheaders on the laser printer,
while the command sequence pr <filename> | lpr -Plaser may be
the “primary” response, the success of this solution is conditional upon
the file identified by <filename> being readable by the user. Such a
condition would be bound to a variable known as a secondary precondi-
tion of the query. Secondary postconditions are also necessary in some
instances.

3.2. Example of a process query

Let us now take a look at the formalization of a specific unknown action
query. The central notion is that of a mutable object; that is, an object
whose characteristics may be changed by the execution of some action.
In formalizing mutation, all objects are assigned a version number.
Two instances of the same object, but with different version numbers,
may differ from one another in value. As the specific example, let us
formalize the query asking how to print a file with pageheaders and
lines numbered on the laser printer. An informal tabulation of how this
query is represented in OSquel is presented in Figure 4.

Several items are worthy of note. First of all, the version number of
the input file #I does not change; this means that the solution is not
permitted to change that file in any way. Second, %laser-print-queue
(which identifies the laser printer queue) does change in version due
to the action; this means that we expect its value to change. Third,
the print queue entry #PQE is a mutation of the contents of #I, with
first lines numbered and then pageheaders inserted. The decision that
pagination should occur after numbering lines is one that is made by
the front end in the process of query understanding, based upon what
is a reasonable default in the absence of further information. Fourth,
the action may be any command sequence, and is not restricted to a
single command. Again, this decision is made by the front end, and is
the default unless the user explicitly indicates that he is looking for
a single command or option. Similarly, the actor defaults to the user
asking the query; this selection is also made by default in the front end.
Finally, both the preconditions and postconditions have secondary slots
for “overflow”; we shall see how these are used when query solution is
examined in detail in Section 6.

The actual formalization of this query is shown in Figure 5. Of
course, we have not yet provided the necessary detail of information
on the static knowledge base to fully explain the syntax and meaning.
It is presented at this point to give the reader an idea of what an actual

plan.tex; 27/06/2001; 19:25; no v.; p.12

Plan Realization for Complex Command Interaction 13

Preconditions:

− Version 0 of the mutable object file #I is owned by the current user.

− The contents of this file is a visible byte sequence.

− The mutable object %laser-printer-queue currently exists in
version 0.

− The variable ?SPP is to be bound to any secondary precondition.

Action:

− The variable ?CS is to be bound to the command sequence answer-
ing the query.

Postconditions:

− The file #I does not change; it stays at version 0.

− %laser-print-queue is mutated to version 1.

− Version 1 of the mutable object #PQE identifies a new print queue
entry which is owned by the current user and which is appended
to version 0 of the queue.

− The contents of version 1 of #PQE is the same as that of version 0
of #I, save that it first has lines numbered, and then is paginated
with standard pageheaders inserted.

− The variable ?SPQ is to be bound to any secondary postcondition.

Actor:

− The actor is the current user.

Figure 4. Sketch of formalization of the query asking how to print a file with
pageheaders and lines numbered on the laser printer.

formal query looks like, as well as to provide a reference example which
will be carried throughout this paper.

plan.tex; 27/06/2001; 19:25; no v.; p.13

14 Stephen J. Hegner

(dynamics: ((((state: P) (action: F) (state: Q)) (actor: A))))
(query-variables: ?SPP ?SPQ ?CS)
(external-variables: #I)
(local-variables: #PQE)
(define: P
(AND:

(instance: (class: plain-file) ;; #I is a file.
(identification: ((name: #I) (version: 0))))

(instance: (class: visible-byte-sequence)
(identification: ;; of visible characters.

(retrieve: record-entry:
(field: contents)
(source: ((name: #I) (version: 0))))))

(instance: (class: print-queue) ;; Laser print queue state 0.
(identification: ((name: %laser-print-queue) (version: 0))))

(secondary: ?SPP))) ;; Slot for additional constraints.
(define: Q
(AND:

(instance: (class: plain-file) ;; #I doesn’t change.
(identification: ((name: #I) (version: 0))))

(instance: (class: print-queue) ;; Print queue does change.
(identification: ((name: %laser-print-queue) (version: 1))))

(instance: (class: print-queue-entry) ;; Print queue entry version 1
(identification: ((name: #PQE) (version: 1))))

(= (retrieve: entire-value: ;; #PQE is added to print queue.
(source: ((name: %laser-print-queue) (version: 1))))

(enqueue: (retrieve: entire-value:
(source: ((name: %laser-print-queue) (version: 0))))

(retrieve: entire-value:
(source: ((name: #PQE) (version: 1))))))

(= (apply-filter: (name: lines-numbered) ;; First number lines
(constraint: (value: all))
(argument:
(apply-filter: ;; Then paginate copy of #I
(name: paginated) ;; to get #PQE.
(constraint: %paginated-standard-pageheaders)
(argument: (retrieve: record-entry:

(field: contents)
(source: ((name: #I) (version: 0))))))

(retrieve: record-entry: (field: contents)
(source: ((name: #PQE) (version: 1)))))

(= (retrieve: record-entry: ;; #PQE is owned by our user.
(field: owner)
(identification: ((name: #PQE) (version: 1))))

(retrieve: entire-value:
(source: %user)))

(secondary: ?SPQ))) ;; Slot for additional consequences.
(define: F ;; An arbitrary command interconnection.

(instance: (class: command-sequence) (identification: ?CS)))
(define: A ;; The current user.

(instance: (class: user) (identification: %user))))

Figure 5. Formalization in OSquel of the query asking how to print a file with
pageheaders and lines numbered on the laser printer.

4. The static knowledge base

4.1. Overview and syntactic description

The static knowledge base is the most ubiquitous entity in the entire
Yucca-* system. Not only is every other component of the back end
dependent upon it, but the definition of the query language OSquel

plan.tex; 27/06/2001; 19:25; no v.; p.14

Plan Realization for Complex Command Interaction 15

is as well. Thus, this knowledge base is known even to the natural
language front end.

The major purpose of the static knowledge base is to provide descrip-
tions of those classes of objects which are either manipulated by com-
mands or else function as actors in the execution of commands. There
are currently definitions in the Yucca-* static knowledge base for over
one-hundred object classes, broadly partitioned into groups, as indicat-
ed below.

1. The master object classes These object classes contain descrip-
tions of the top-level components of the entire UNIX system. They
include definitions for master-system, user-table, login-table,
process-table, and directory-structure, as well as for sup-
porting concepts such as directory-tree.

2. The file object classes These object classes provide the structural
definitions for all types of files, including directories and devices. It
also includes definitions for supporting concepts such as file-node,
i-node-number, and various concepts related to file access, includ-
ing paths and protection.

3. The byte sequence objects These object classes provide defini-
tions for special byte sequences, such as visible-byte-sequence
and formatter-byte-sequence, as well as listings which represent
displays of other collections, such as collective-user-listing
and collective-process-listing.

4. The user and connection object classes These object classes pro-
vides descriptions of system users, terminal connections by these
users, and the special properties of command processors, but not
processes themselves. Represented in particular are the details and
parameters involved in a terminal connection, and the attributes
seen and defined in a session with the system.

5. The process object classes The central object class in this cate-
gory is process, which models the notion of a UNIX process.

6. The printer object classes This category contains those objects
relevant to using system printers; in particular, notions related to
print queues and their entries are included.

7. The command object classes Although the semantics of
commands are modelled in the dynamics knowledge base, there
are object classes in the static knowledge base which identify com-
mands by name. These are used principally in support of concep-
tual queries.

plan.tex; 27/06/2001; 19:25; no v.; p.15

16 Stephen J. Hegner

8. The fundamental object classes The fundamental object classes
deal with primitive notions such as time and date, bytes, charac-
ters, natural numbers and the like. They seldom are used on their
own, but are ubiquitous in the definitions of more complex objects.

9. The macro meta-object classes The macro meta-object classes are
not really object classes; rather, they are definitions of macros
which may be used to construct new classes. Their use will be
discussed in 4.5 below.

The classification of objects into these groups, while conceptually
useful, is quite informal. On the other hand, the object classes are for-
mally classified in a generalization hierarchy, in much the spirit of gen-
eralization systems such as KL-ONE (Brachman and Schmolze, 1985).
This permits us to allow an object class to inherit all of the attributes
of its parent. For example, the class directory-file inherits all of
the attributes of the class file, since it is formally declared that a
directory is a file.

With the exception of the macro meta-object classes, all object class
definitions share a common syntax, which is given in Figure 6.

(object-class: <object-name>
(hierarchy: <hierarchical-descriptor>)
[(structure: <structural-descriptor>)]
[(filters: <filter-descriptor>+)]
[(generation-structure: <generation-structure-descriptor>+)])

Figure 6. Syntax of object class definition.

Here we have used the common syntactic notation that [<foo>]
denotes at most one occurrence of a <foo>, and <foo>+ denotes the
juxtaposition of one or more <foo>’s.

The hierarchical-descriptor is a formula which classifies the
object class in the hierarchy, while the following three entries all give
information about the attributes of the object class. The structure:
entry defines the “traditional” attributes of the class, and is elaborated
in 4.3. The filters: and generation-structure: entries are used to
recapture special types of attributes which occur in the modelling of
command language behavior, and are described in 4.4 and 4.5, respec-
tively.

4.2. Object instances

Object class declarations define the structure which actual objects must
take. In Yucca-*, there are two distinct flavors of object instances.

plan.tex; 27/06/2001; 19:25; no v.; p.16

Plan Realization for Complex Command Interaction 17

Mutable objects Operating system commands manipulate instances
of object classes, which we term mutable objects. For example, In the
query illustrated in Figure 5, #I, #PQE, and %laser-print-queue, are
all names identifying mutable objects. By convention, names begin-
ning with “#” denote object instances which are defined for local use,
while names beginning with “%” denote canonical predesignated objects
which are known in any use of the consultant.

Constant objects It is often useful to have as a standard reference
a “default” value for an object class, which is known by name to all
parties using the static knowledge base. The object instance identi-
fied by %paginated-standard-pageheaders employed in the example
query of Figure 5 is one such instance; it identifies an object instance
of type pagination which defines visible byte sequence pagination in
a canonical default way.

Although many of the details of object representation depend upon
corresponding details of object class definition, and so are described
in subsequent parts of this section, it is nonetheless important that
we provide an overall idea of object representation at this point. The
syntax of declaration of an object instance is shown in Figure 7.

(instance: (class: <object-class-name>)
(identification: ((name: <object-instance-name>)

(version: <version-identifier>)))
[<value-descriptor>])

Figure 7. Syntax of object instance definition.

Several examples may be found in the query depicted in Figure 5.
The <version-identifier> may be either a natural number or the
constant identifier fixed:. When it is the latter, a constant object
instance, not subject to mutation, is declared. When it is the former, the
version number identifies a particular version of the object instance, of
which there may be several. Two object instances with the same name
but different version numbers may have different values, but identity
of both name and version number mandates identical values. Thus, in
any statement or query, version 0 of #I always denotes the same object
instance with exactly the same value, but version 1 of that same object
instance may differ in value from version 0.

The <value-descriptor> is used to declare explicitly the value of
the particular version of the instance; examples will appear later. We
now turn to elaboration upon the structure of object classes.

plan.tex; 27/06/2001; 19:25; no v.; p.17

18 Stephen J. Hegner

4.3. Simple structure

Basic notions The structure: field of an object class definition is
used to give a standard programming-language style data type to that
object class. Currently, there are eight fundamental constructors which
are used in this capacity; they are enumerated:, record:, array:,
union:, set-of:, sequence-of:, queue-of:, and stack-of:. In addi-
tion, there is the external: declaration which is used to identify struc-
tures defined externally to Yucca-*, such as the integers.

The definitions of three classes associated with print queues are given
in Figure 8.

(object-class: print-queue
(hierarchy: toplevel-static)
(structure: (queue-of: (base: print-queue-entry)))
)

(object-class: print-queue-entry
(hierarchy: toplevel-static)
(structure: (record:

(attributes:
((name: entry-id)
(value: entry-id-value))
((name: owner)
(value: user-id))
((name: contents)
(value: print-queue-entry-type))
)))

)

(object-class: print-queue-entry-type
(hierarchy: toplevel-static)
(structure: (union:

(components:
visible-byte-sequence
formatter-byte-sequence)))

)

Figure 8. Some examples of object class definitions.

Associated with the fundamental constructors are standard opera-
tors. The retrieve: operator is used to extract values from specific
instances on a variety of types. There are also type-specific operators,
such as enqueue: and remove: for type queue-of:. These operations
may be used, along with the equality predicate, to specify rather com-
plex constraints on individual states. See Figure 5 for examples.

Foreign attributes One of the more important problems in design-
ing an overall consultation system is user modelling. Even though we
expect the user to have a reasonable conceptualization of how an oper-
ating system is organized and how it operates, the user may have
misconceptions as well. To the extent that such misconceptions occur

plan.tex; 27/06/2001; 19:25; no v.; p.18

Plan Realization for Complex Command Interaction 19

because the user is migrating from another operating system which
has some similarity to UNIX in general structure but which differs
in detail, we may include attributes which are not applicable within
UNIX, but which do have meaning in the context of other operating
systems. Such attributes are termed foreign. An example illustrating
the notion of associating a password with a directory is given in Figure
9.

(object-class: directory
....
(structure: (record: (attributes:

....
((name: password)
(foreign:
((applicability: TOPS-20)
(values: password-type))))

....))))

Figure 9. Example illustrating foreign attributes.

In this figure, note that the attribute password: is designated as for-
eign, and that its applicability to another system (in this case TOPS-20)
is asserted as well. A query enquiring as to a method to set a directory
password, say, would not be rejected as not understood; rather, the
consultant would be able to respond with a statement that associat-
ing a password with a directory is not a situation found in UNIX, but
rather only in TOPS-20. It would also be possible to attach an English-
language explanation of how UNIX deals with directory access with-
out protection, although we have not incorporated this in the present
design.

The method is not without limitations, however. It seems to work
rather well for operating systems such as TOPS-20, VAX/VMS6, and
MS-DOS. These systems all conceptualize the working domain of the
command language in reasonably similar ways, although they differ
substantially in detail. On the other hand, operating systems such as
VM/CMS conceptualize the entire notion of a user’s working environ-
ment very differently than do UNIX and its relatives. At one point, we
attempted to incorporate certain aspects of VM/CMS into the Yucca
model, but found it to be almost impossible. Clearly, to address the
modelling of users migrating from systems such as VM/CMS, much
more sophisticated techniques are necessary. Currently, Yucca-* makes
no accommodation for such needs within the formal model.

6 VAX/VMS is a trademark of Digital Equipment Corporation.

plan.tex; 27/06/2001; 19:25; no v.; p.19

20 Stephen J. Hegner

4.4. Filtered attributes

It is often necessary to specify constraints on the values of objects. In
particular, mutations effected by commands will change the values of
objects in particular ways which are most easily conceptualized by a
change of constraint. Referring again to our running example query
asking how to print a file with pageheaders and lines numbered on the
laser printer, the output is to be a constrained version of the input,
the constraints being identified by the addition of pageheaders and line
numbers.

While it is in principle possible to represent such constraints by
defining logical conditions which are to hold on printable byte sequences,
such formalizations would be enormously complex, and the actual defi-
nitions themselves would be of little direct use. In modelling the notion
of pagination, for example, we are not really interested in a microscopic
definition of the conditions under which a byte sequence is paginated.
Rather, it is enough to know that it is indeed paginated, and omit the
irrelevant details.

To model this sort of constraint, we employ the notion of a filtered
attribute in Yucca-*. Figure 10 illustrates the concepts relevant to rep-
resenting pagination in this manner.

(object-class: visible-byte-sequence
(hierarchy: (ISA: ASCII-sequence

(condition: declared)))
(filters: ((name: numbered-lines)

(values: line-numbering))
....
((name: paginated)
(values: pagination))

....))

(object-class: pagination
(hierarchy: toplevel-static)
(structure:
(record: (attributes:

((name: lines-per-page) (values: natural-number))
((name: page-separator) (values: separator-type))
((name: header-size) (values: natural-number))
((name: trailer-size) (values: natural-number))
((name: start-page) (values: natural-number))
((name: stop-page) (values: natural-number))
((name: pageheader) (values: printable-sequence))))))

Figure 10. Example illustrating filtered attributes.

Syntactically, filtered attributes appear to be no different than do
ordinary attributes in a record field. However, their use is fundamen-
tally applicative rather than assertive. For example, we cannot directly
speak of the contents of a file instance #F as paginated; rather, we must

plan.tex; 27/06/2001; 19:25; no v.; p.20

Plan Realization for Complex Command Interaction 21

say that a particular version of #F is the result of applying a pagination
filter applied to another byte sequence (which might be the contents of
an earlier version of that same file).

Because of this applicative nature of filters, the order in which they
are applied is significant. Referring again to Figure 5, it is asserted
in the postcondition that the lines-numbered filter is applied to the
result of applying the paginated filter to the contents of version 0 of #I
to obtain the contents of version 1 of #PQE. It is clear that such ordering
is necessary, as first numbering lines and then inserting pageheaders is
quite different than the other way around.

Note from Figure 10 that the allowed value of a filter may be anoth-
er object class. The allowed values for the paginated filter are taken
from legal instances of objects of type pagination, which has a record
structure. In the example query, the actual instance used is the default
instance %paginated-standard-pageheaders, which will be discussed
in more detail in 4.6.

4.5. The display-object problem

One of the most complex conceptual problems encountered in modelling
the command language environment is the display-object problem. This
problem arises because of the need to distinguish between an instance
of an object and a display of that instance. For example, when posed
a query asking how to find out who is logged onto the system, the
proper response, technically speaking, is not a collection of users, but
rather a file whose contents is a listing of the identifications of those
users. Similarly, the proper response to the query asking how to find
out the names of the files in a directory is not a list of files, but rather
a file whose contents is a listing of those files. We humans make this
translation so automatically that we are usually not even aware of it.
Yet, this translation cannot be made automatically by a consultation
system. The reason is at least twofold. First, the result needs to be
displayed to the user, and we cannot display users; rather, we can only
display byte sequences. In the formal model, it makes no sense to set
the contents of standard output to a set of users. Second, such displays
typically have special attributes not shared by the objects displayed.
For example, it makes no sense to speak of placing files in columns, yet
it makes perfect sense to display the names of files in several columns.

One way to address this problem, which was that taken in the earlier
design of Yucca, is to define directly two classes of objects, one for direct
representation and one for display. However, this masks the direct and
systematic relationship between objects and their displays, and forces
a great deal of manual translation of attributes to displays. To address

plan.tex; 27/06/2001; 19:25; no v.; p.21

22 Stephen J. Hegner

this problem more systematically, in Yucca-* we employ the notion
of a macro meta-object. In most general terms, a macro meta-object
is a macro which takes as arguments one or more object classes, and
generates a new object class from it. The definition of the macro meta-
object which generates a display of the attributes of a set of objects,
together with an instantiation yielding an object class definition for the
display of a set of users, is shown in Figure 11.

(object-class-macro: display-set-attributes
(hierarchy: (ISA: visible-byte-sequence

(condition: declared)))
(external-parameters:
((name: individual-source)
(local-identifier: ?IS)
(structure-class: any:)))

(source-parameters:
((name: display-source)
(structure-class:
(set-of: (base: ?IS)))))

(generators:
(individual-attribute-inclusion:
(macro-expand:
(display-record-attributes:
((parameter: individual-source)
(binding: ?IS))))))

(special-attributes:
((name: sort-criterion)
(values: generic-sort-criteria))
((name: sort-direction)
(values: direction))
((name: display-format)
(values: generic-display-format))
((name: column-format)
(values: generic-column-format))))

(object-class: collective-user-listing
(hierarchy: (ISA:

(macro-expand: display-set-attributes
(external-parameter-bindings:
(individual-source: user)))

(condition: declared)))
(generation-structure:
(special-attributes:
((name: display-format)
(values: user-listing-display-format)))))

Figure 11. Example of a macro meta-object and an instantiation.

Every macro meta-object must have at least one source parameter.
The source-parameters: entry identifies the object class or classes
which must be supplied as parameters for the expansion. In a display
macro, it identifies that which we are to display. In the example of
Figure 11, the source parameter is a set of objects of type ?IS. The
external-parameters: defines the actual parameter types which must
be bound in order to generate the instantiation. In effect, they serve as
parameters for the source parameters. In the example, this parameter

plan.tex; 27/06/2001; 19:25; no v.; p.22

Plan Realization for Complex Command Interaction 23

is ?IS, which represents the base type of the set to be displayed. The
macro display-set-attributes places no constraints on it, but the
instantiation collective-user-listing binds it to be of type user
(since we are generating a display of users). The generators: field of
the macro identifies how the input parameter will be used to generate
the attribute structure in the expanded macro. In the example, another
macro, which generates a display for attributes of a record, is invoked.

In addition to the attributes generated in this fashion, there are two
sources of special-attributes:. First of all, the macro itself pro-
vides attributes which apply to any instantiation of it. In the exam-
ple of Figure 11, there are four such attributes, identifying criteria
for sorting the objects as well as certain display formats. Additional-
ly, the instantiation definition may define additional attributes in its
generation-structure: component. In this example, there is just one,
user-listing-display-format, which in effect decides whether it is a
“w-command-like” listing or “f-command-like” listing which is desired.

Although this syntax seems quite imposing, the actual expanded
instantiation is much more understandable. It is shown (in part) in
Figure 12.

(object-class: collective-user-listing
(hierarchy: (ISA: (macro-expand: display-set-attributes

(external-parameter-bindings:
(individual-source: user)))

(condition: declared)))
(structure: ((name: id) ;; Attributes from type user.

(values: simple-select));; Only a few are shown here.
((name: account)
(values: simple-select))
...
((name: sort-criterion);; Attributes from macro.
(values: generic-sort-criteria))
((name: sort-direction)
(values: direction))
((name: display-format)
(values: generic-display-format))
((name: column-format)
(values: generic-column-format))
((name: display-format);; Attribute from instantiation definition.
(values: user-display-listing-format))))

Figure 12. Example of a full expansion of an instantiation.

All of the attributes of the object class user are included, but the
values: field of each attribute has been changed. For example, in the
definition of object class user:, the allowable values for the field id are
in the type user-id. But in the display object, the allowable values are
in simple-select, which is just a two-valued type indicating whether
or not the value of the attribute is to be displayed. By selecting appro-

plan.tex; 27/06/2001; 19:25; no v.; p.23

24 Stephen J. Hegner

priate values for each field in this expansion, we obtain a detailed and
complete description of the format of a display of users.

4.6. Global and default instances

Global instances There are several global object instances which
retain their meaning permanently. Several of the more important such
objects are tabulated in Figure 13.

%master-system — denotes the (unique) master system.

%login-table — denotes the login table of %master-system.

%user — denotes the user id of the user presenting the query.

%terminal-connection — denotes the terminal connection of %user.

%standard-input — denotes the standard input file of %terminal-connection.

%standard-output — denotes the standard output file of %terminal-connection.

%command-processor — denotes the command processor of %terminal-connection.

Figure 13. Some major global variables.

There are also several more “local” global variables which apply to a
particular installation, but not globally to UNIX systems. The variable
%laser-print-queue used in the query of Figure 5 is one such example.

Default instances In addition to global instances, there are several
default instances which are used to express queries more succinctly. A
particular example is %paginated-standard-pageheaders, which is
used to express the pagination condition in the query of Figure 5. Its
definition is shown in Figure 14. Refer to the definition of pagination

(instance:
(class: pagination)
(identification:
((name: %default-standard-pageheaders)
(version: fixed:)
(record: (attributes:

((name: lines-per-page) (value: 66))
((name: page-separator) (value: blank-lines))
((name: header-size) (value: 5))
((name: trailer-size) (value: 5))
((name: start-page) (value: 1))
((name: stop-page) (value: nil))
((name: pageheader) (value: %standard-pr-pageheader)))))))

Figure 14. Definition of a default instance.

in Figure 10. Basically, it represents the default mode of pagination
which is understood, via the formal query language, to both the front

plan.tex; 27/06/2001; 19:25; no v.; p.24

Plan Realization for Complex Command Interaction 25

end and the back end. This instance is not absolutely necessary; rather,
it could be constructed from scratch each time that it is needed. But it
is far more efficient to define it once, and use it repeatedly. Of course,
this default may be modified if so needed. For example, if the formal
query called for 60 lines per page, the syntactic modification shown in
Figure 15 within the query would accomplish that task. This approach

...
(constraint: (modified: %paginated-standard-pageheaders

((field: lines-per-page) (value: 60))))
...

Figure 15. Syntactic modification to locally alter a default instance.

is most appropriate if a large instance has only a few differences from
a default instance.

Note that embedded within the definition is another default instance,
%standard-pr-pageheader.

5. The dynamic knowledge base

5.1. Principles of command semantics representation

If the static knowledge base is considered to be the foundation of
the back end, the dynamic knowledge base is the heart. It is in this
knowledge base that the semantics of the UNIX command language is
embodied. The basic philosophy is very simple. The essence of com-
mand language behavior is represented by a relatively small collection
of primitive descriptions, together with an interconnection calculus for
combining these primitives into more complex ones.

Primitive components The syntax of a primitive component (also
called a simple dynamic-object class or simple module) is not unlike that
of a formal query (although it will generally be much less complex),
save that primitive components do not contain free variables. Figure
16 provides a more formal description.

Each of the four components is shown to be optional. This is just an
indication that they may default to certain values when not specified;
this will be elaborated upon in 5.2. For the time being, assume that all
components are present.

Interconnection calculus At present, only serial interconnection is
supported. The basic idea is as follows. Let D1 = 〈P1, F1, Q1, A1〉 and

plan.tex; 27/06/2001; 19:25; no v.; p.25

26 Stephen J. Hegner

(dynamic-object-class: <object-class-name>
(hierarchy: <hierarchical-description>)
[(preconditions: <static-formula>)]
[(postconditions: <static-formula>)]
[(action: <static-formula>)]
[(actor: <static-formula>)])

Figure 16. Syntax of dynamic object class definition.

D2 = 〈P2, F2, Q2, A2〉 be simple components, with Pi denoting the pre-
condition, Fi the action, Qi the postcondition, and Ai the actor of Di.
Let Diσ denote the module resulting from the application of the uni-
fier σ to each component of the dynamic description.7 Then we may
interconnect D1 to D2 sequentially with unifier σ1 applied to D1 and
σ2 applied to D2 if and only if Q1σ1 |= P2σ2. In other words, we require
that the postcondition of the first module be strong enough to imply the
precondition of the second. A simple component interconnection may
thus be viewed as a sequential composition, as illustrated in Figure 17.

F1 F2 F3 Fk
- - - - ... - -P1σ1

Q1σ1

P2σ2

Q2σ2

P3σ3

Q3σ3

Pkσk

Qkσk

D1σ1 D2σ2 D3σ3 Dkσk

Figure 17. Serial interconnection of dynamic modules.

Adequacy of the interconnection calculus The utility of this inter-
connection scheme arises from the fact that not only are simple com-
mands represented by such modules, but so too are their options. Thus,
to realize the UNIX command “pr -h myheader -l60 foo”, we use
the interconnection depicted in Figure 18 below.

The module pr-command-main contains the main definition of the
semantics of the optionless pr command, while the modules
pr-change-pageheaders and pr-change-pagelength contain the def-
initions for the “-t” and “-l” options respectively. The other three
modules are for command support, and will be discussed in 5.2. The

7 We assume a basic familiarity with the rôle of unifiers in logical formulation.
See, e.g., (Genesereth and Nilsson, 1987) for details.

plan.tex; 27/06/2001; 19:25; no v.; p.26

Plan Realization for Complex Command Interaction 27

pr-
starter

pr-
input-

definition

pr-

command-
main

pr-
change-

pageheader

pr-
change-

pagelength

pr-
finisher

- - - - - - -

6 6 6
foo myheader 60

Figure 18. Realization of the command “pr -t myheader -l60 foo”.

important point here is that the semantics of a command may be real-
ized with the use of three types of simple modules.

1. A main module describing the behavior of the basic command. This
module is included in any interconnection realizing the associated
command.

2. A collection of modules, one for each option, describing the behav-
ior of that option. A given module from this class is included in
the interconnection only if the associated option is selected.

3. A fixed set of “support” modules which are always included in any
realization of the given command.

In addition to modules defining the behavior of individual com-
mands, there are also modules defining the action of the command
interconnectors pipe “|” and sequence “;”, command grouping via the
brackets “(..)”, and redirection of input and output. Thus, not only
can individual commands be realized within this framework, but inter-
connections of more than one command can be also.

Limitations of the interconnection calculus At this point, we are
modelling only the serial interconnection of commands via sequenc-
ing and piping, and redirection of input and output. More sophisticat-
ed shell programming constructs, such as conditionals and loops, are
not supported. This decision has been made largely in the interests
of practicality. To support arbitrary programming language style con-
structs would move Yucca-* out of the domain of a simple command
language consultation system and into the domain of a sophisticated
programming aid, such as the Programmer’s Apprentice (Rich, 1981;
Waters, 1985a; Waters, 1985b). Such an extension would add enor-
mously to the complexity of the project.

plan.tex; 27/06/2001; 19:25; no v.; p.27

28 Stephen J. Hegner

5.2. Command managers

The problem with a flat organization It is quite possible to regard
the dynamics database as a flat collection of simple modules, in much
the same way that one would regard a logic database as a flat collec-
tion of clauses. Indeed, this was precisely the approach taken in the
earlier Yucca system. However, we found that this leads to at least
two difficulties. First, it becomes necessary to incorporate into the def-
inition of each command support and option module specific logical
“interconnection” preconditions and postconditions which permit the
use of those support modules only with the associated command, and
only in the proper sequence. It must be remembered that this inter-
connection scheme is only logical; we cannot realize each simple mod-
ule separately. For example, since it is physically impossible to realize
the pr command with an option from the cat command, the formal
representation must prohibit this as well. The incorporation of these
interconnection constraints contributes markedly to the complexity of
the precondition and postcondition representations. Second, it fails to
make use of critical information which can aid in the efficient search
for a proper plan of action; namely, that it is possible, on purely syn-
tactic grounds, to eliminate almost all possible interconnections simply
because they associated options or support from one command with
those of another.

Organization by command In Yucca-*, we have addressed the prob-
lem indicated in the previous paragraph by organizing the simple mod-
ules associated with each command into a single unit known as a com-
mand manager. In addition, there are separate command managers
for the redirection, command grouping, and sequential interconnection
operators. Each command manager contains three distinct components,
as identified in the syntactic description of Figure 19.

(define-command-manager <name>
(define-interconnection-categories: <ic-description>)
(define-interconnection-syntax: <is-description>)
(define-object-classes: <oc-description>))

Figure 19. Overall syntax of a command manager.

There are three main types of information embodied in a command
manager.

plan.tex; 27/06/2001; 19:25; no v.; p.28

Plan Realization for Complex Command Interaction 29

1. The object classes entry contains the semantic description of each
simple module associated with that command. This includes the
main module, the option modules, and the auxiliary modules.

2. The interconnection syntax embodies two main entities:

− Direct rules for interconnecting the simple modules, without
need to resort to the checking of formal logical interconnection
rules.

− The information necessary to associate module interconnec-
tions with command-line syntax, including user-supplied param-
eters.

3. The interconnection categories define the information necessary to
interconnect one entire command to another. In effect, they define
the “port” characteristics of the command. They are discussed fur-
ther in 5.3.

We now illustrate the concept by examining in detail the command
manager for the pr command. The overall composition of this manager
is depicted in Figure 20 below. Due to its length, the complete formal
definition of the command manager is contained in the Appendix.

There are several points which should be emphasized relative to this
formalism.

1. The semantic description of each individual simple module does
not contain any formal constraints on the interconnection. Indeed,
examination of the formal definitions in the Appendix reveals that
many of the dynamic object classes have no preconditions and/or
postconditions. Since the interconnection syntax defines precise-
ly the way in which these modules may be interconnected, such
conditions are unnecessary.

2. The modules may contain common variable names which do not
represent the same thing. This is not possible in a flat organiza-
tion, since accidental variable name collision might then lead to
erroneous conclusions.

3. The action component is not given for any of the modules. This
information is obtained entirely from the interconnection syntax.

4. The actor is listed only in the pr-starter and pr-command-main
modules. The actor is assumed to be the same for all components
of a local interconnection within a command manager, and hence
need not be specified repeatedly.

plan.tex; 27/06/2001; 19:25; no v.; p.29

30 Stephen J. Hegner

(define-command-manager: pr-command-manager

(define-interconnection-categories:

(stream-input: <conditions for interconnection to accept stream of input>
<criteria to identify input port>)

(file-input: <conditions for interconnection to use a file as input >

<criteria to identify input port>)
(stream-output: <output as stream is mandatory>

<criteria to identify output port>))

(define-interconnection-syntax:

(sequence:

;; Modules used must be interconnected in this order.
;; Formal interconnection constraints may thus be omitted.
<syntax for pr-starter> ; mandatory
<syntax for pr-input-definition> ; mandatory + optional argument
<syntax for pr-command-main> ; mandatory
<syntax for pr-change-pageheaders> ; optional + mandatory argument
<syntax for pr-drop-header-trailer> ; optional
<syntax for pr-change-pagelength> ; optional + mandatory argument
<syntax for pr-change-startpage> ; optional + mandatory argument
<syntax for pr-change-page-separator> ; optional
<syntax for pr-finisher> ; mandatory))

(define-object-classes:

;; Order is not important here.
<axiomatic semantics for pr-command-main>
<axiomatic semantics for pr-starter>
<axiomatic semantics for pr-finisher>
<axiomatic semantics for pr-input-definition>
<axiomatic semantics for pr-drop-header-trailer>
<axiomatic semantics for pr-change-pageheader>
<axiomatic semantics for pr-change-pagelength>
<axiomatic semantics for pr-change-page-separator>
<axiomatic semantics for pr-change-startpage>)

)

Figure 20. Structure of the command manager for the pr command.

Now let us examine the interconnection depicted in Figure 18 in
more detail.

1. The rôle of the pr-starter module is twofold. First, it sets up
the initial conditions for execution of a pr command. In particular,
it establishes the definition of the default pagination conditions of
the command via the pagination object #P. Second, it identifies
the actor associated with the action. This latter value defaults to
%terminal-connection, as identified in the interconnection syntax
specification, but may be changed by altering the input parameter
$actor. As indicated in the interconnection syntax, inclusion of
this module is mandatory in any realization of pr.

2. The rôle of the pr-input-definition module is to identify the
source of input to the command. As indicated in the interconnec-

plan.tex; 27/06/2001; 19:25; no v.; p.30

Plan Realization for Complex Command Interaction 31

tion syntax, this value defaults to %standard-input if not supplied
via the parameter $user-supplied-input-file. This module is
also mandatory.

3. The rôle of the pr-command-main module is to represent the core
of the command. In this case, it asserts in its preconditions the
existence of the mutable objects associated with its input and out-
put, and asserts that both must be readable. In its postconditions
it asserts that the contents of the input is copied to the output.
Note that no pagination or the like has been applied at this point,
although the actual conditions are carried through unchanged.

4. The rôle of the pr-change-pageheader module is to change the
pageheader to the user supplied value, delivered via the variable
$user-supplied-header. It is specified via an updated: operation
on the current instance of the pagination object #P to yield a new
version. It is an optional module, and may be included or excluded
in any interconnection.

5. The rôle of the pr-change-pagelength serves a similar function
in changing the pagelength.

6. The module pr-finisher must terminate any realization of pr. It
actually applies the filter which was assembled by pr-starter and
modified by the option filters to obtain the final output object.

It is important to observe that conditions which are not affected by
a given filter progress through the interconnection. For example, since
the option filters do not affect any of the objects except for #P, these
other objects are not altered by the option filters.

5.3. Interconnection categories

Each command manager contains the information necessary to describe
the assembly of its associated command. However, many query solu-
tions will require the interconnection of several commands. To facilitate
the characterization of command interconnection, each command mod-
ule characterizes the results that it produces in terms of interconnection
categories. Presently, there are eleven interconnection categories in the
Yucca-* formalism. Six categorize input and five output. They are tab-
ulated in Figure 21.

The idea is that only commands which match up may be intercon-
nected. For example, to interconnect via a pipe, the first command must
be of type stream output and the second of type stream input. This

plan.tex; 27/06/2001; 19:25; no v.; p.31

32 Stephen J. Hegner

stream-input — The input to the command is from default standard input.

file-input — The input to the command is a regular file.

file-sequence input — The input to the command is a sequence of files.

no-input — The command takes no input.

other-input — The input convention is none of the above.

stream-output — The output from the command is to default standard output.

file-output — The output from the command is to a regular file.

queue-input — The command requires a queue as input.

queue-output — The command generates a queue value as output.

enqueue-output — The command enqueues its output.

other-output — The output from the command is none of the above.

Figure 21. Interconnection categories.

feature is utilized extensively in the realization of solutions to unknown
action queries, as described in the next section.

6. Solution of unknown action queries

6.1. The overall architecture

As noted earlier, the process of solving an unknown action query may
be regarded as one of plan generation. We are given an initial state (the
precondition identified in the formal query), a final state (the postcon-
dition), and a set of possible actions (the dynamics knowledge base),
and we must find a plan (i.e., an interconnection of simple modules)
which realizes the goal. In recent years, there has been a great deal of
progress in the general area of planning, as may be found in the recent
anthologies (Brown, 1987) and (Georgeff and Lansky, 1986). However,
we believe that it is still the case that special techniques which take
advantage of the particular application at hand will yield far more effi-
cient solutions than will the application of general tools. To this end,
we have developed a highly specialized architecture, the command syn-
thesizer, customized to the goal of solving unknown action queries in
the UNIX domain. Shown in Figure 22 is its architecture.

There are three main steps in the solution process.

1. Selection In this step, the main commands and options which
are candidates for participation in the final solution are selected,
without particular regard for the way in which they will be inter-
connected. This function is executed by the item-template matcher,
with the support of the item-template database, and is elaborated
in 6.2.

plan.tex; 27/06/2001; 19:25; no v.; p.32

Plan Realization for Complex Command Interaction 33

Item
Templates

Dynamic
Knowledge

Base

Cliché
Library

Item
Template
Matcher

Structural
Synthesizer

Formal
Finisher

- - - -

-¾

6

?

6

?

PPPPPPPPPPqPPPPPPPPPPi

input

query

query

solution

Figure 22. Architecture of the command synthesizer.

2. Interconnection In this step, a plan for interconnection of the
components selected in step 1 is assembled. This function is exe-
cuted by the structural synthesizer, with the support of the cliché
library, and is elaborated in 6.3.

3. Refinement and binding In this step, the interconnections assem-
bled in step 2 are used to identify the actual variable bindings
necessary to solve the query. In addition, the solution of necessary
secondary subgoals is addressed at this step. All of this is executed
by the formal finisher, and is elaborated in 6.4

6.2. Item templates and the item template matcher

Consider once again the example query asking how to print a file with
pageheaders and lines numbered on the laser printer, and its formal-
ization of Figure 5. We know, as UNIX experts, that

cat -n filename | pr | lpr -Plaser

is a solution to this query, assuming that our laser printer is designated
by the system name “laser”. In effect, the above solution is a “plan”
which the consultant must assemble. In the first step in assembling this
plan, we take advantage of a significant feature of the command lan-
guage domain. Namely, by examining the postconditions of the plan to
be constructed, we can determine immediately a “core” set of partici-
pating commands. For the example query, the selections are as follows.

plan.tex; 27/06/2001; 19:25; no v.; p.33

34 Stephen J. Hegner

1. Because a new print queue entry is being generated, any plan
must include the UNIX command which enqueues entries into print
queues; namely, the lpr command.

2. Because the particular queue involved is the laser printer queue,
the option on lpr used to specify a particular queue (the “-P”
option) must be involved also.

3. Because the new print queue entry must have its lines numbered,
the command which accomplishes this task (the “-n” option of the
cat command) must be involved in the solution.

4. Because the new print queue entry must be paginated, the com-
mand which accomplishes pagination (the pr command) must be
a participant in the solution.

Of course, there are other participants in the final solution, such as
the two pipes. Other queries might require redirection or command
grouping as well. However, the “core” commands of the solution have
been identified.

The item templates To implement effectively a process which
selects commands and options as outlined above, a method of efficiently
identifying those simple modules which effect a particular mutation is
needed. This function is provided by the item templates. Basically, the
item templates form an index from attributes of static object classes to
those simple dynamic object classes which alter and/or observe their
values. The overall syntax of an item template is shown in Figure 23.

((name <attribute-name>)
(alter-value: <list-of-dynamic-object-classes>)
[(observe-value: <list-of-dynamic-object-classes>)]
[(alter-default-value: <list-of-dynamic-object-classes>)]
[(observe-default-value: <list-of-dynamic-object-classes>)])

Figure 23. Syntax of an item template.

For a given attribute, the only entry which is mandatory is that
used for altering its value. Figure 24 provides the definition of the item
template for the pagination object class.

Notice that the association between attributes and simple modules is
neither injective nor surjective. For example, the
pr-drop-header-trailer module, an option of the pr command, is
associated with both the header-size and trailer-size attributes
of the pagination object. This is because this module is the (only) way

plan.tex; 27/06/2001; 19:25; no v.; p.34

Plan Realization for Complex Command Interaction 35

(define-item-template:
(class: pagination)
(structure:
((name: lines-per-page) (alter-value: (pr-change-pagelength)))
((name: page-separator) (alter-value: (pr-change-page-separator)))
((name: header-size) (alter-value: (pr-drop-header-trailer)))
((name: trailer-size) (alter-value: (pr-drop-header-trailer)))
((name: start-page) (alter-value: (pr-change-startpage)))
((name: stop-page) (alter-value: nil))
((name: pageheader) (alter-value: (pr-change-pageheader)))))

Figure 24. Example of an item template.

to alter the sizes of the margins in a pagination; they must be modi-
fied simultaneously. On the other hand, there is no way to define the
page at which printing stops, so no command is associated with the
stop-page attribute.

The item template matcher The item template matcher is basically
a peruser of formal queries. Its primary function is to examine the
formal query and identify the mutations which are mandated to take
place, and then to select the appropriate simple dynamic modules which
are necessary to effect such a mutation. It does so in two passes.

1. In the first pass, it sets up a table which identifies explicitly all
declared objects occurring in either the precondition or postcondi-
tion of the query. It also flags them as fixed or potentially mutated.

2. In the second pass, it examines the prescribed mutations of those
objects which are potentially altered. This examination will iden-
tify simple attributes of those objects whose values are changed,
or filters to be applied to those objects. For each of these simple
attributes and filters, the appropriate commands are selected, with
the aid of the item templates.

The collection of simple dynamic modules so selected, together with
bindings to the specific clauses in the formal query to which they apply,
is the output of the item template matcher. It is important to emphasize
that no interconnection or ordering of these modules is performed at
this step. In the terminology of Sacerdoti (Sacerdoti, 1977), this first
stage of planning is totally nonlinear. For the example query, the set
of modules returned, together with their query bindings, is shown in
Figure 25.

For simplicity, we have shown only a fragment of the formal query
associated with the command, while the actual algorithm returns the
entire query with pointers into it from the simple modules selected.

plan.tex; 27/06/2001; 19:25; no v.; p.35

36 Stephen J. Hegner

Simple Module Binding Within Query

lpr-command-main (instance: .. #I .. print-queue)

lpr-option-select-printer %laser-print-queue

cat-command-number-all-lines (apply-filter: .. numbered-lines) ..

pr-command-main (apply-filter: .. paginated) ..

Figure 25. Synopsis of output of the item template matcher for example query.

Universality of this approach It is central to the success of this
approach that all unknown action queries be representable by muta-
tions on objects. From our empirical investigations, this does seem
to be the case, even when at first thought a query might appear to
be of a different form. For example, the query asking simply how
to delete a file might appear to be one of deleting an object rather
than altering an attribute. However, upon further consideration, it
becomes clear that deleting a file is equivalent to altering the direc-
tory in which it resides. Thus, in this query, the mutated object is not
the file to be deleted, but rather its parent directory. Viewed in this
fashion, our approach works well. The item template for the entries
attribute of the object class directory points to the simple dynam-
ic module rm-command-main (as well as several simple modules, such
as mv-command-main and cp-command-main, which is exactly what we
want).

Other entries in item templates In Figure 23, observe that there
are four possible entries for an individual item template, rather than
just one, with the latter three optional. These optional forms are car-
ryovers from the earlier Yucca system, but still may be used in alter-
native query formulations. For example, consider the query asking how
to obtain a directory listing. The “preferred” formalization in Yucca-*
would call for the delivery of a byte sequence on the user’s standard
output which is a display of the directory contents. However, in the ear-
lier Yucca system, this could have been formalized as a delivery of the
directory contents, with a display filter applied. Since there is no direct
display object identified in this case, no alter-value: field is applica-
ble. However, the observe-value: field of the attribute entries of a
directory points to the simple module ls-command-main, which is the
key participant in any solution. We are retaining these alternate fields
at this point because Yucca-* is a highly experimental system, and the
possibility that query formalization and solution along this alternate
path may be a better ultimate choice remains.

plan.tex; 27/06/2001; 19:25; no v.; p.36

Plan Realization for Complex Command Interaction 37

6.3. Clichés and the structural synthesizer

The item template matcher delivers the identities of several simple
dynamic modules, together with associations to clauses in the formal
query, to the structural synthesizer. The task of the structural syn-
thesizer is to interconnect these simple dynamic modules in a fashion
suitable for ultimate query solution. The actual process consists of two
steps, individual command assembly and cliché selection and intercon-
nection assembly. We now elaborate upon these steps.

Individual command assembly The item template matcher delivers
to this unit a collection of individual simple dynamic modules, togeth-
er with query clause attachments. The first step is to take these iso-
lated modules and assemble complete interconnections for individual
commands. As all of the information necessary to assemble a complete
command is contained in the associated command manager, this is usu-
ally a completely straightforward process. However, there are two cases
in which complications may occur.

1. It may be the case that multiple instances of the same command
are necessary. There are two ways in which this may occur. First,
different command options may be associated with the alteration
of distinct objects. This occurs very rarely, but it is possible. A
rather contrived example is the formalization of the query asking
how to concatenate two files with the lines of the first numbered
and the control characters made visible in the second. A solution
using two distinct instances of cat is

(cat -n file1 ; cat -v file2) > result.

No solution using only one instance is possible. Second, it may be
necessary to interlace filters. This also occurs rarely, but is possible.
For example, consider the formalization of the query asking how
to process a file so as to paginate it, number lines, use formfeeds
to separate pages, and make those formfeeds visible. A solution is

cat -n filename | pr -f | cat -v > result

which requires two distinct instances of the cat command. Because
the pagination must be done after the insertion of line numbers but
before the marking of the visible characters, no solution with only
one instance of cat is possible.

plan.tex; 27/06/2001; 19:25; no v.; p.37

38 Stephen J. Hegner

2. It may be the case that incompatible options have been identi-
fied. For example, the pr command options “-h” (use user-supplied
pageheader) and “-t” (essentially, do not paginate) are logically
incompatible, although the command allows both to be specified
and simply ignores the pageheader. This incompatibility is known
to the pr command manager, and a request to include both in an
interconnection would result in an error. In such an occurrence,
the maximal compatible commands will be synthesized (the rep-
resentations of both “pr -h” and “pr -t” in this case), but these
results will be flagged as “incomplete”.

In any case, that which is returned is a collection of assembled com-
mands. For the example query, the three assemblies shown in Figure
26 are obtained.

(assembled-command:
(manager: cat-command-manager)
(free: ?actor ?infile)
(sequence:
((cat-starter (parameter: $actor ?actor))
(cat-input-definition (parameter: $user-supplied-input-file ?infile))
(cat-option-number-all-lines)
(cat-command-main)
(cat-finisher)))

)

(assembled-command:
(manager: pr-command-manager)
(free: ?actor ?infile)
(sequence:
((pr-starter (parameter: $actor ?actor))
(pr-input-definition (parameter: $user-supplied-input-file ?infile))
(pr-command-main)
(pr-finisher)))

)

(assembled-command:
(manager: lpr-command-manager)
(free: ?actor ?infile ?pname)
(sequence:
((lpr-starter (parameter: $actor ?actor))
(lpr-input-definition (parameter: $user-supplied-input-file ?infile))
(lpr-option-select-printer (parameter: $user-supplied-printer-name ?pname))
(lpr-command-main)
(lpr-finisher)))

)

Figure 26. Examples of assembled commands.

Cliché selection and interconnection assembly Once the individu-
al commands which may participate in the solution are selected, the
next step is to interconnect them properly. There are four low-level
interconnection operations.

1. Piping This is the standard UNIX output-to-input connection.

plan.tex; 27/06/2001; 19:25; no v.; p.38

Plan Realization for Complex Command Interaction 39

2. Sequencing This is simply sequential execution of commands, as
in

cat -n file ; pr.

3. Grouping This forces commands to be assembled in blocks, and is
represented syntactically in UNIX with parentheses. An example,
given earlier in this section, is

(cat -n file1 ; cat -v file2) > result.

4. Redirection The current model includes input redirection “<”, as
well as the three forms of output redirection, “>”, “>>”, and “>!”.

It must be remembered that the applicable interconnection opera-
tors are usually not identified by the item template matcher. Therefore,
before the identified commands can actually be interconnected, it is nec-
essary to select the appropriate connectives from the above list. While
this could be done by directly examining the formal query and the way
in which the commands are bound to its clauses, this would prove to be
rather inefficient. Rather, we take advantage of the fact that command
interconnections almost always occur in ways based upon a small num-
ber of simple patterns, known as clichés. Our use of clichés was inspired
by a similar technique utilized in the Programmer’s Apprentice system
(Rich, 1981), (Waters, 1985a), (Waters, 1985b). In that system, clichés
are used to model common control patterns used by programmers. Our
clichés are much simpler, representing only sequential interconnection.
A few of the more common clichés employed in Yucca-* are given in
the table of Figure 27.

Apply a filter and redirect the output to a file.
Use a file for filter input.
Redirect both the input and the output of a filter.
Filter a file and print the result.
Compose two filters.
Roff or TEX a source file.

Figure 27. Some common clichés.

Clichés have slots, which must be filled with objects of the appro-
priate interconnection category. As concrete examples, the two clichés

plan.tex; 27/06/2001; 19:25; no v.; p.39

40 Stephen J. Hegner

to be used in the solution of our example query are given in Figure 28
below.

(define-cliche:
(name: file->out-filter<->print-queue)
(result-type: (AND: stream-input queue-input enqueue-output))
(nondefault-components:
(name: initial-filter

(categories: (AND: file-input stream-output)))
(name: print-module

(categories: (AND: stream-input queue-input enqueue-output))))
(interconnection-constraint:
(pipe-couple: (arguments:(output-line: initial-filter)

(input-line: print-module)))))

(define-cliche:
(name: file->out-filter<->in-out-filter)
(result-type: (AND: file-input stream-output))
(nondefault-components:
(name: first-filter

(categories: (AND: file-input stream-output)))
(name: second-filter

(categories: (AND: stream-input stream-output))))
(interconnection-constraint:
(pipe-couple: (arguments:(output-line: first-filter)

(input-line: second-filter)))))

Figure 28. Definitions of some common clichés.

The actual process of cliché selection and command interconnection
proceeds by the following algorithm.

1. Determine temporal order The formal query, together with the
bindings of assembled commands to clauses, is examined to determine
a temporal partial order on the fully composed commands. C1 < C2

means that execution of command C1 is to take place prior to the
execution of C2. This order is determined by several factors, includ-
ing nesting in apply: and append:8 operators. The ordering is partial
because in many cases it is not possible to determine easily at this point
the appropriate order; indeed, there are cases in which order is not rele-
vant. In the example query, the assembled cat command is determined
to precede temporally the assembled pr command, because of the order
of application of the filters. However the assembled lpr command is not
temporally comparable to either at this point. This is because the print
queue entry and result of the cat-pr filter are asserted to be equal, and
there is no implied temporal ordering on the arguments of “=”.

2. Determine equivalence The commands are associated in a quasi-
equivalence, relative to specific functions within the query. Two com-
mands will be determined to be quasi-equivalent if they were selected

8 The append: operator is used to append the contents of two byte sequences
together.

plan.tex; 27/06/2001; 19:25; no v.; p.40

Plan Realization for Complex Command Interaction 41

as “alternates” for the same purpose by the item template matcher.
For example, under certain conditions, the UNIX commands cat, pr,
head, tail, and cp can all have identical effects. Thus, it is possible
that more than one may be selected as a candidate for a particular
application. In our example, there are no quasi-equivalent commands.

3. Determine interconnection category The interconnection category
of the entire formal query is determined by examination. In the case of
the running example of printing a file on the laser printer with page-
headers and lines numberered, it is

(AND: file-input queue-input enqueue-output)

because we are taking an input file, processing it, and then placing it
into a print queue. This is easily determined because #I and linebreak
%laser-print-queue are the only objects declared in the precondition,
and %laser-print-queue is the only object to be mutated.

4. Send on simple results If a command has been selected which is not
comparable temporally to any other command, and it has an intercon-
nection category binding which matches the interconnection category
of the entire query, then that command is passed along, together with
the formal query, to the next step. In the example query, this does not
occur.

5. Select and fill clichés All clichés whose interconnection categories
match those of the query are identified. The slots of these clichés are
filled, recursively if necessary. In the example query, the only cliché
identified at this step is file->out-filter->print-queue, which is
defined in Figure 28. Its print-module slot is filled immediately with
the assembled lpr command. However, its initial-filter slot can-
not be filled immediately because there are two commands, the assem-
bled cat and pr commands, still to be utilized. Rather, a recursive
attempt to assemble these two commands in such a way as to fill the
initial-filter slot is initiated. This attempt easily finds that the
cliché file->out-filter->in-out-filter is exactly what is needed.
The two commands are used to fill the appropriate slots of this fil-
ter, and the result is used to instantiate the initial-filter of the
file->out-filter->print-queue cliché. Each such full instantiation
is sent on to the formal finisher.

6. Expand clichés The instantiated clichés are expanded. In the case
of our example, the result is given in Figure 29.

plan.tex; 27/06/2001; 19:25; no v.; p.41

42 Stephen J. Hegner

(assembled-interconnection:
(cliches: filter-input-file-and-print)
(free: ?actor ?infile ?pname)
(sequence:
(cat-starter
(parameter: $actor ?actor))
(cat-input-definition
(parameter: $user-supplied-input-file ?infile))
(cat-option-number-all-lines)
(cat-command-main)
(cat-finisher)
(pipe-interconnection-main)
(pr-starter
(parameter: $actor ?actor))
(pr-input-definition
(parameter: $user-supplied-input-file :default))
(pr-command-main)
(pr-finisher)
(pipe-interconnector-main)
(lpr-starter
(parameter: $actor ?actor))
(lpr-input-definition
(parameter: $user-supplied-input-file default:))
(lpr-command-main)
(lpr-option-select-printer
(parameter: $user-supplied-printer-name ?pname))
(lpr-finisher))
)

Figure 29. The assembled command for query solution.

6.4. The formal finisher

The interconnected commands determined by the structural synthesizer
represent potential solutions to the query. However, the actual solution,
in the form of bindings to query variables, must still be determined.
It is the rôle of the formal finisher to achieve this task. The algorithm
which it obeys is sketched as follows.

1. Expand the interconnections The interconnections, as supplied by
the structural synthesizer, are in the form of a list of simple modules
to be executed in sequence. In order to ascertain bindings to query
variables, this sequence must be expanded and then identified with a
single dynamic object, which we call the solution dynamics. The result
will look much like a formal query, but there will be no secondary
preconditions or postconditions, the command interconnection will be
bound rather than a unknown, and external variables will be replaced
by command variables. The result of this process is shown in Figure
30.

2. Bind the variables Once the potential solutions have been expand-
ed into actual dynamic formulas, it is possible to determine variable
connections. This is done in two steps.

plan.tex; 27/06/2001; 19:25; no v.; p.42

Plan Realization for Complex Command Interaction 43

(expanded-command:
(dynamics: ((((state: P) (action: F) (state: Q)) (actor: A))))
(variables: #I #PQE #Q #C)
(define: P
(AND:
(instance: (class: plain-file)

(identification: ((name: #I) (version: 0))))
(instance: (class: visible-byte-sequence)

(identification:
(retrieve: record-entry:

(field: contents)
(source: ((name: #I) (version: 0))))))

(instance: (class: print-queue)
(identification: ((name: #Q) (version: 0))))

(expand: (readable ((name: #I) (version: 0))))))
(define: Q
(AND:
(instance: (class: plain-file)

(identification: ((name: #I) (version: 0))))
(instance: (class: print-queue)

(identification: ((name: #Q) (version: 1))))
(instance: (class: print-queue-entry)

(identification: ((name: #PQE) (version: 1))))
(= (retrieve: entire-value:

(source: ((name: #Q) (version: 1))))
(enqueue: (retrieve: entire-value:

(source: ((name: #Q) (version: 0))))
(retrieve: entire-value:

(source: ((name: #PQE) (version: 1))))))
(= (apply-filter: (name: lines-numbered)

(constraint: (value: all))
(argument:
(apply-filter:
(name: paginated)
(constraint: %paginated-standard-pageheaders)
(argument:

(retrieve: record-entry:
(field: contents)
(source: ((name: #I) (version: 0)))))))

(retrieve: record-entry: (field: contents)
(source: ((name: #PQE) (version: 1)))))

(= (retrieve: record-entry:
(field: owner)
(identification: ((name: #PQE) (version: 1))))

(retrieve: entire-value:
(source: %user))))))

(define: F
(instance: (class: command-sequence) (identification: #C))
(value-descriptor: (syntax: "cat -n | pr | lpr -Plaser")))

(define: A
(instance: (class: user) (identification: %user))))

Figure 30. Full expansion of example command interconnection.

1. Unify Variables in the solution dynamics are replaced with the
corresponding ones of the formal query. In the example, the vari-
able #Q has the value %laser-print-queue substituted for it. The
command manager for lpr contains the information necessary to
make the association between printer names and print queues.

2. Bind the primary unknown The unknown command is bound to
the command found in the command interconnection dynamics.

plan.tex; 27/06/2001; 19:25; no v.; p.43

44 Stephen J. Hegner

In the example, the variable ?CS would is bound to the solution
command sequence.

3. Identify secondary conditions Any mismatches in the precondi-
tions and/or postconditions must be reconciled. This is done by
relegating the mismatched components to secondary conditions. In
the example query, the solution dynamics contains the precondition

(expand: (readable: ((name: #I) (version: 0))))

which does not match any formula in the precondition of the query.
Therefore, it is relegated to be a secondary precondition, and the
query variable ?SPP is bound to this entire formula. Since there are
no such formulas in the postcondition, the variable ?SPQ is bound
to the identically true formula.

Multiple solutions All interconnections are processed in this fash-
ion. The one which is actually returned is the one with the weakest
secondary preconditions and postconditions.

Contradictory conditions In relegating a formula to a secondary
precondition or postcondition, it is necessary to ensure that it does not
contradict any condition asserted by the formula. As long as the pre-
condition (resp. postcondition) of the solution dynamics simply make
additions to those of the formal query, no problem can arise. However,
if the formal query asserted additional conditions not matched by the
solution dynamics, care must be taken. For example, suppose that our
example query were further expanded to ask how to print an unread-
able file with pageheaders and lines numbered on the laser printer. The
condition that #I be unreadable would now be asserted as a precon-
dition of the query, in direct contradiction to the precondition of the
solution dynamics. In such a circumstance, Yucca-* regards the con-
tradictory precondition as a new subgoal, and formulates, within the
formal finisher, two new unknown action queries, one to make the file
readable, and another to restore it to its unreadable state. These two
new queries are then solved, and interconnected to the original query
to yield a final solution.

7. Conclusions and Project Status

7.1. Conclusions and Future Directions

The power of formal semantics To model details of a system cor-
rectly, one needs to employ a deep model of that system. We have pre-
sented a detailed design for a UNIX consultation system in which the

plan.tex; 27/06/2001; 19:25; no v.; p.44

Plan Realization for Complex Command Interaction 45

underlying model of UNIX employs a deep model based upon complete-
ly formal semantics. The major advantage of such a model is that it
takes full advantage of the inherent structure of the underlying domain
of command language behavior. We believe that, compared to similar
systems which embed the modelling and planning mechanism into a
general framework of knowledge representation and inference, Yucca-*
will operate a greater level of detail with a more modest commitment
of resources.

Formal specification and documentation Although Yucca-* is an
external utility which is to run on top of an existing system, important
lessons relative to integral utilities have been learned also. Specifically,
we have found many times that had the command semantics of UNIX
been formally specified in the first place, before any implementation,
not only would the design of the consultant been much simpler, but
much anomalous behavior could have been avoided, and so many of
the commands themselves would have been much more understand-
able, and the process of documentation would have been much more
systematic. This suggests that a parallel investigation directed at the
formal specfication, implementation, and documentation of UNIX com-
mands is an important direction, which we are currently initiating.

7.2. Current Status

Knowledge bases The implementation of all Yucca-* back end
knowledge bases is well along. We have completed definitions for about
150 static objects , as well as about fifteen UNIX commands and five
clichés. In the near future, we expect to have constructed models for
a total of about 25 commands and ten to fifteen clichés. Several dozen
formal queries have been hand-generated in complete detail, and we
are confident of the scope and power of OSquel.

Solvers A protoptype command synthesizer is currently under devel-
opment. Although some components have been been implemented in a
skeletal fashion, the entire unit is not yet functional. Priority at this
point is on the command synthesizer; other query solvers will be built
only after the command synthesizer is operational.

8. Recent Developments on the Yucca-* Project

Since the original version of this report was completed in November of
1989, there has been further work on implementation of the concepts
described in the previous sections. The bulk of the completed work is
reported in two M.S. theses, (Rachlin, 1993) and (Sila, 1993).

plan.tex; 27/06/2001; 19:25; no v.; p.45

46 Stephen J. Hegner

In (Rachlin, 1993), John Rachlin presents an implementation of the
planning mechanism for Yucca-*, written in Common Lisp. His imple-
mentation demonstrates rather conclusively that the original design,
based upon item templates and command managers, is an effective
one.

In (Sila, 1993), Noreen Sila presents an implementation of a graphi-
cal menu-driven front end for Yucca-*. The implementation uses C++-
based tools, including the Forms Library and the Silicon Graphics GL
Library. A key feature of such front-ends is their simplicity. Recap-
turing both static and dynamic queries, the key feature of her design
is its simplicity. While menu-driven user interfaces are not the most
sophisticated, they are quite useable for a wide range of queries. She
demonstrates that, using the proper tools, it is possible to construct a
rather effective front-end with relatively little effort.

References

Bates, M., Moser, M. G., and Stallard, D. (1986). The IRUS transportable natural
language database interface. In Kerschberg, L., (ed.), Expert Database System,
Proceedings of the First International Workshop, 617–630. Kiawah Island, SC:
Benjamin/Cummings.

Brachman, R. J. and Schmolze, J. G. (1985). An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9: 171–216.

Brown, F. M., (ed.) (1987). The Frame Problem in Artificial Intelligence, Proceedings
of the 1987 Workshop. Morgan Kaufmann.

Chin, D. N. (1988). Intelligent Agents as a Basis for Natural Language Interfaces.
Technical Report UCB/USD 88/396, Computer Science Division of EECS, Uni-
versity of California at Berkeley.

Douglass, R. J. and Hegner, S. J. (1982). An expert consultant for the UNIX
operating system: bridging the gap between the user and command language
semantics. In Proceedings of the Fourth CSCSI/SCEIO Conference, 119–127.
Saskatoon: Canadian Society for the Computational Study of Intelligence.

Fenschel, R. S. and Estrin, G. (1982). Self-describing systems using integral help.
IEEE Transactions on Systems, Man, and Cybernetics, 12(2): 162–167.

Finin, T. W. (1983). Providing help and advice in task oriented systems. In Pro-
ceedings of the Eighth IJCAI, 176–178. Karlsruhe: Morgan-Kaufmann.

Genesereth, M. R. (1979). The role of plans in automated consultation. In Proceed-
ings of the Sixth IJCAI, 311–319. Tokyo: Morgan-Kaufmann.

Genesereth, M. R. and Nilsson, N. J. (1987). Logical Foundations of Aritificial
Intelligence. Morgan Kaufmann.

Georgeff, M. P. and Lansky, A. L., (eds.) (1986). Reasoning about Actions and Plans,
Proceedings of the 1986 Workshop. Morgan Kaufmann.

Grosz, B. J. (1983). TEAM: a transportable natural language interface system.
In Proceedings of the 1983 Conference on Applied Natural Language Processing,
39–45. Santa Monica: Association for Computational Linguistics.

Hart, P. E. (1982). Directions for AI in the eighties. SIGART Newsletter, 79: 11–16.
Hayes, P. J. (1982a). Cooperative command interaction through the Cousin sys-

tem. In Proceedings of the International Conference on Man/Machine Systems.
University of Manchester Institute of Science and Technology.

plan.tex; 27/06/2001; 19:25; no v.; p.46

Plan Realization for Complex Command Interaction 47

Hayes, P. J. (1982b). Uniform help facilities for a cooperative user interface. In
Proceedings of the 1982 NCC. Houston.

Hayes, P. J. and Szekely, P. A. (1983). Graceful Interaction through the Cousin Com-
mand Interface. Technical Report CMU-CS-83-102, Carnegie Mellon University,
Pittsburgh, PA.

Hecking, M., Kemke, C., Nessen, E., Dengler, D., Gutmann, M., and Hector, G.
(1988). The SINIX Consultant – A Progress Report. Technical Report Memo
Nr. 28, Universität des Saarlandes, FB 10 Informatik IV.

Hegner, S. J. (1988). Representation of command language behavior for an operating
system consultation facility. In Proceedings of the Fourth IEEE Conference on
Artificial Intelligence Applications, 50–55. San Diego: IEEE Computer Society.

Hegner, S. J. and Douglass, R. J. (1984). Knowledge base design for an operating
system expert consultant. In Proceedings of the Fifth CSCSI/SCEIO Conference,
159–161. London: Canadian Society for the Computational Study of Intelligence.

Mark, W., Wilczynski, D., Lingard, R., and Lipkis, T. (1980). Research Plans in
the Area of Cooperative Interactive Systems. Technical report, USC/Information
Sciences Institute.

Miller, P. L. (1984). A Critiquing Approach to Expert Computer Advice: ATTEND-
ING. Pitman: London.

Motro, A. (1986). BAROQUE: A Browser for Relational Databases. ACM Trans-
actions on Office Information Systems, 4: 164–181.

Neelkandan, H., Matthews, M. M., and Biswas, G. (1987). An intelligent assistance
system in the Unix domain. In Proceedings of Third Annual Expert Systems in
Government Conference. Computer Science Press.

Quilici, A., Dyer, M., and Flowers, M. (1988). Recognizing and responding to plan-
oriented misconceptions. Computational Linguistics, 14(3): 38–51.

Rachlin, J. N. (1993). Intelligent Planning in the UNIX Help Domain. Master’s
thesis, University of Vermont.

Rich, C. (1981). A formal representation for plans in the Programmer’s Apprentice.
In Proceedings of the Seventh IJCAI, 1044–1052. Vancouver: Morgan-Kaufmann.

Sacerdoti, E. D. (1977). A Structure for Plans and Behavior. Elsevier North-Holland.
Salveter, S. (1984). Natural Language Database Update. Technical Report TR#

84/001, Computer Science Department, Boston University.
Scragg, G. W. (1975). Answering process questions. In Proceedings of the Fourth

IJCAI, 435–442. Tbilisi: Morgan-Kaufmann.
Sila, N. P. (1993). The Design of A Graphical Interface for an Intelligent UNIX

Consultation System. Master’s thesis, University of Vermont.
Waltz, D. L. (1978). An English language question answering system for a large

relational database. Communicatios of the ACM, 21: 526–539.
Waters, R. C. (1985a). KBEmacs: Where’s the AI? AI Magazine, 7(1): 47–61.
Waters, R. C. (1985b). The Programmer’s Apprentice: a session with KBEmacs.

IEEE Transactions on Software Engineering, 11: 1296–1320.
Wilensky, R., Arens, Y., and Chin, D. (1984). Talking to UNIX in English: an

overview of UC. Communications of the ACM, 27: 574–593.
Wilensky, R., Chin, D. N., Luria, M., Martin, J., Mayfield, J., and Wu, D. (1988).

The Berkeley UNIX Consultant Project. Computational Linguistics, 14(4): 35–
84.

Zloof, M. M. (1977). Query-by-Example: a data base language. IBM Systems Jour-
nal, 16: 324–343.

plan.tex; 27/06/2001; 19:25; no v.; p.47

48 Stephen J. Hegner

Appendix. Formal definition of pr command

(define-command-manager: pr-command-manager:

(define-interconnection-syntax:
(sequence:
((name: pr-starter)
(status: mandatory)
(parameter: $actor (default: %terminal-connection))
(command-line-syntax: ""))
((name: pr-input-definition)
(status: mandatory)
(parameter: $user-supplied-input-file (default: %standard-input))
(command-line-syntax: filename (position: trail)))
((name: pr-command-main)
(status: mandatory)
(command-line-syntax: "pr"))
((name: pr-drop-header-trailer)
(status: optional)
(condition: (disjoint: pr-change-pageheaders))
(command-line-syntax: "-t"))
((name: pr-change-pageheader)
(status: optional)
(condition: (disjoint: pr-drop-header-trailer))
(parameter: $user-supplied-header)
(command-line-syntax: (string-append: "-h " $user-supplied-header)))
((name: pr-change-pagelength)
(status: optional)
(parameter: $user-supplied-pagelength)
(command-line-syntax: (string-append: "-l" $user-supplied-pagelength)))
((name: pr-change-startpage)
(status: optional)
(parameter: $user-supplied-startpage)
(command-line-syntax: (string-append: "+" $user-supplied-startpage)))
((name: pr-change-page-separator)
(status: optional)
(command-line-syntax: "-f"))
((name: pr-finisher)
(status: mandatory)
(command-line-syntax: "")))

)

(define-object-classes:
(dynamic-object-class: pr-command-main

(hierarchy: basic-command-filter)
(preconditions:
(AND:
(instance: (class: plain-file)

(identification: ((name: #I) (version: 0))))
(instance: (class: visible-byte-sequence)

(definition:
(retrieve: record-entry:

(field: contents)
(source: ((name: #I) (version: 0))))

(identification: (name: #B) (version: 0))))
(expand: (readable ((name: #I) (version: 0))))
(expand: (readable ((name: #U) (version: 0))))))

(postconditions:
(AND:
(= (entire-value: ((name: #I) (version: 0)))

(entire-value: ((name: #O) (version: 1))))))
(actor:
(instance: (class: terminal-connection)

(identification: ((name: #U) (version: 0)))))
)

plan.tex; 27/06/2001; 19:25; no v.; p.48

Plan Realization for Complex Command Interaction 49

(dynamic-object-class: pr-starter
(hierarchy: starter-filter)

(preconditions: (= ((name: #P) (version: 0))
(object-instance:
(class: pagination)
(%paginated-standard-pageheaders))))

(actor:
(= ((name: #U) (version: 0))

%actor))
)

(dynamic-object-class: pr-finisher
(hierarchy: finisher-filter)
(postconditions:
(= ((name: #O) (version: #current))

((name: %standard-output) (version: #current)))
(= (entire-value: ((name: #0)) (version: #current)))
(apply-filter: (filter: ((name: #P) (version: #current)))

(target: ((name: #O) (version: 0)))))
)

(dynamic-object-class: pr-input-definition
(hierarchy: option-filter)
(postcondition:
(= ((name: #I) (version: #0))

((name: $user-supplied-input-file) (version: 0))))
)

(dynamic-object-class: pr-drop-header-trailer
(hierarchy: option-filter)
(postconditions:
(updated: ((name: #P) (version: $current))

(action:
(newvalue: record-entry: (name: header-size)

(value: 0))
(newvalue: record-entry: (name: trailer-size)

(value: 0)))))
)

(dynamic-object-class: pr-change-pageheader
(hierarchy: option-filter)
(postconditions:
(updated: ((name: #P) (version: $current))

(action:
(newvalue: record-entry:

(name: pageheader)
(value: $user-supplied-header)))))

)

(dynamic-object-class: pr-change-pagelength
(hierarchy: option-filter)
(postconditions:
(updated: ((name: #P) (version: $current))

(action:
(newvalue: record-entry:

(name: lines-per-page)
(value: $user-supplied-pagelength)))))

)

(dynamic-object-class: pr-change-startpage
(hierarchy: option-filter)
(postconditions:
(updated: ((name: #P) (version: $current))

(action:
(newvalue: record-entry:

(name: start-page)
(value: $user-supplied-startpage)))))

)

plan.tex; 27/06/2001; 19:25; no v.; p.49

50 Stephen J. Hegner

(dynamic-object-class: pr-change-page-separator
(hierarchy: option-filter)
(postconditions: (updated: ((name: #P) (version: $current))

(action:
(newvalue: record-entry:

(name: page-separator)
(value: formfeed)))))

)
)

(define-interconnection-categories:
(stream-input:
(condition: (is-null: $user-supplied-input-file))
(identification: (input-line: #I)))

(file-input:
(condition: (not: (is-null $user-supplied-input-file)))
(identification: (input-line #I)))

(stream-output:
(condition: t)
(identification: (output-line: #O)))

))

Address for correspondence: Ume̊a University, Department of Computing Science,
S-901 87 Ume̊a, Sweden. Internet: hegner@cs.umu.se

plan.tex; 27/06/2001; 19:25; no v.; p.50

