
Transaction Isolation
in Mixed-Level and Mixed-Scope Settings

Stephen J. Hegner
DBMS Research of New Hampshire

PO Box, 2153, New London, NH 03257, USA
dbmsnh@gmx.com

Abstract

Modern database-management systems permit the isolation level to be set on a per-
transaction basis. In such a mixed-level setting, it is important to understand how trans-
actions running at different levels interact. More fundamentally however, these levels are
sometimes of different scopes. For example, READ COMMITTED and REPEATABLE READ are
of local scope, since the defining properties depend upon only the transaction and its re-
lationship to those running concurrently. On the other hand, SERIALIZABLE is of global
scope; serializability is a property of a schedule of transactions, not of a single transaction.
In this work, in addition to formalizing the interaction of transactions at different levels,
the meaning of serializability within local scope is also addressed.

1 Introduction

In a modern relational database-management system (RDBMS), there is tradeoff between per-
formance via transaction concurrency and adequate isolation of transactions from the operations
of other transactions. It has therefore long been held that a single notion of isolation is not
adequate. Rather, the level of isolation should be determined by the needs of the application.
This philosophy is integral to SQL, the standard of which [10, Part 2, Sec. 4.36] identifies four
distinct levels of isolation for transactions, ordered with increasing isolation as

READ UNCOMMITTED < READ COMMITTED < REPEATABLE READ < SERIALIZABLE.
Based upon the names of the isolation levels, as well as upon the semantics as defined

in the SQL standard, this classification is very confusing, because it mixes isolation levels
of distinct scope. The isolation levels READ UNCOMMITTED, READ COMMITTED, and REPEATABLE

READ are local in scope; the definitions apply to individual transactions, with the relevant
isolation properties of a transaction T completely determined in conjunction with the behavior
of those transactions which run concurrently with it. On the other hand, the isolation level
SERIALIZABLE is global in scope; it applies to an entire schedule of transactions. Indeed, it
makes no sense to say that an individual transaction is serializable; it only makes sense to say
that a set of transactions, organized into a schedule S, is serializable; that is, that the results of
running the transactions according to S is equivalent to running them in some schedule S ′ with
no concurrency. This raises the obvious question of what it means, in a mixed-level system, to

ADBIS 2019 final draft corrected 20190728, page 1

run some but not all transactions with serializable isolation. A main goal of this paper is to
address such questions of isolation involving multiple scopes.

It is the apparent intent of the SQL standard that the SERIALIZABLE isolation level serve
double duty, with both local and global scope, called a multiscope isolation level. On the one
hand, it is defined to be a local isolation level, call it DEGREE 3,1 which is slightly stronger than
REPEATABLE READ. On the other hand, it is also defined in the standard to be a serializable-
generating isolation level, in the sense that if all transactions are run at that level, then the
result must be a serializable schedule. Unfortunately, it has been known for some time that
DEGREE 3, as defined above, is not serializable generating [2, Sec. A5B], rendering the standard
somewhat confusing at best. Nevertheless, the idea of a serializable-generating local isolation
level is an important one. In this paper, working within the context of modern MVCC (multi-
version concurrency control), a minimal serializable-generating local isolation level called RCX
is identified. Interestingly, while it is slightly stronger than READ COMMITTED, it is not order
comparable to REPEATABLE READ. Indeed, it is shown that it is not necessary to require re-
peatable reads (i.e., to require that the transaction read the same value for a data object x
regardless of when the read occurs during its lifetime) in order to achieve serializable-generating
behavior; rather, the critical requirement is to prohibit so-called backward read-write depen-
dencies. Thus, the SQL standard imposes a condition for the local component of its multiscope
isolation level SERIALIZABLE which is not necessary for serialization.

For such a serializable-generating local isolation level, it is natural to ask whether it has any
properties related to serializability when run in a mixed-level context, with other transactions
running at other levels. The answer is shown to be in the affirmative. RCX, as well as all
higher levels of isolation, are serializable preserving, in the sense that if transaction T runs at
that level, then adding T to the schedule will not result in any new cycles. In particular, if the
existing schedule is serializable, then adding T will preserve that property.

The way in which new serializable-generating strategies, including SSI [4], [7] and SSN
[15], fit into this picture is also examined. SSI is of particular interest because it is used for
implementation of the SERIALIZABLE isolation level in PostgreSQL [12]. Both may be termed
preemptive regional strategies. They look for certain small structures in the conflict graph
which are a necessary part of any cycle, aborting one of the participants when such a structure
is found. However, in contradistinction to RCX, neither is serializable preserving, or has any
similar property, so they have dubious benefit in a mixed-level context.

The paper is organized as follows. In Sec. 2, necessary background material on transactions
and serializability is summarized. In Sec. 3, local isolation levels are studied, with a particular
focus on how they interact with each other in a mixed-mode setting. In Sec, 4, serialization in
multi-scope settings is examined. Finally, Sec. 5 contains conclusions and further directions.

2 Transactions, Schedules, and Serialization

In this section, the basic ideas of transactions, schedules, and serialization are summarized. The
focus is to provide a precise and ambiguous notation and terminology to use as a foundation
for the ideas presented in Sec. 3 and 4.

1The SQL standard gives SERIALIZABLE no name to identify its local scope. Since it is sometimes called
Degree 3 isolation in the literature, [9, Sec. 7.6], the moniker DEGREE 3 is introduced here, purely for clarification.
Technically, it is REPEATABLE READ which additionally prohibits so-called phantoms.

ADBIS 2019 final draft corrected 20190728, page 2

2.1 Data objects and the global schema A database schema D is defined by a set
DObj〈D〉 of data objects. Each such object has a single value at any point in time, which may
be read or written by a transaction.

In this work, such a schema D, called the global schema, is fixed. The current instance of
the global schema is called the global database.

2.2 Time Brackets are used to identify time intervals of the real numbers R, using common
conventions. For a, b ∈ R, [a, b] = {c ∈ R | a ≤ c ≤ b}, (a, b] = {c ∈ R | a < c ≤ b}, and
[a, b) = {c ∈ R | a ≤ c < b}.

2.3 Transactions A transaction T over DObj〈D〉 is defined by certain time points in R,
in addition to read and write operations. First, T has a start time tStart〈T 〉 and an end time
tEnd〈T 〉, with tStart〈T 〉 < tEnd〈T 〉.

The specification of operations on the database follow an object-level model, in which it is
only known whether a transaction reads and/or writes a given x ∈ DObj〈D〉, without knowledge
of specific values. The read set ReadSet〈T 〉 ⊆ DObj〈D〉 of T consists of all data objects which
T reads. Similarly, the write set WriteSet〈T 〉 ⊆ DObj〈D〉 of T consists of all data objects which
T writes.

The request time assignment of T provides the time at which read and write operations
are requested by the transaction. Formally, the request time assignment Req for T assigns
to each x ∈ ReadSet〈T 〉 a time tReq

Read〈x〉〈T 〉 ∈ [tStart〈T 〉, tEnd〈T 〉), and to each x ∈ WriteSet〈T 〉
a time tReq

Write〈x〉〈T 〉 ∈ (tStart〈T 〉, tEnd〈T 〉]. Note that the read time tReq

Read〈x〉〈T 〉 may be the same as
the start time, but that it must occur strictly before the end time. Similarly, the write time
tReq

Write〈x〉〈T 〉 may be the same as the end time, but that it must occur strictly after the start time.
Furthermore, if x ∈ ReadSet〈T 〉∩WriteSet〈T 〉, then tReq

Read〈x〉〈T 〉 < tReq

Write〈x〉〈T 〉; that is a write must
occur after a read. It is assumed that each transaction T reads and writes a data object x at
most once. The set of all time points of T is TimePoints〈T 〉 =

{tStart〈T 〉, tEnd〈T 〉} ∪ {tReq

Read〈x〉〈T 〉 | x ∈ ReadSet〈T 〉} ∪ {tReq

Write〈x〉〈T 〉 | x ∈ WriteSet〈T 〉}.
The set of all transactions over D is denoted Trans〈D〉.

2.4 Effective time assignments In early systems using single-version concurrency control
(SVCC), the request time of a read or write was often the same as the time at which the global
database was actually read or written by the transaction. However, for modern systems, this
is almost never the case for writes and often not the case for reads either. Rather, there is
an effective time assignment, whose values depend upon the isolation protocol. In virtually
all cases for a system employing MVCC, the effective time for a write is at the end of the
transaction, while the effective time for a read depends upon the isolation protocol. With
the read-request-write-end time assignment, denoted RRWE, all writes occur at the end of
the transaction, while reads occur at their request times. Specifically, for x ∈ ReadSet〈T 〉,
tRRWE

Read〈x〉〈T 〉 = tReq

Read〈x〉〈T 〉, while for x ∈ WriteSet〈T 〉, tRRWE
Write〈x〉〈T 〉 = tEnd〈T 〉. With the read-beginning-

write-end time assignment, denoted RBWE, all reads occur at the start of the transaction,
and all writes occur at the end. Specifically, for x ∈ ReadSet〈T 〉, tRBWE

Read〈x〉〈T 〉 = tStart〈T 〉, while
for x ∈ WriteSet〈T 〉, tRRWE

Write〈x〉〈T 〉 = tEnd〈T 〉. RRWE is typically associated with variants of read-
committed isolation, while RBWE is usually associated with variants of snapshot isolation, as

ADBIS 2019 final draft corrected 20190728, page 3

elaborated in Sec. 3. TASetEff = {RRWE,RBWE} denotes the set consisting of the two effective
time assignments.

2.5 Transactions with effective time assignment It is important to be able to run the
same transaction at different levels of isolation, which may have associated with them different
effective time assignments (see 3.3). Therefore, rather than building a fixed effective time
assignment into a transaction, it is more appropriate to associate such a time assignment as
a parameter. Formally, a transaction with effective time assignment, or a Teff-transaction for
short, is a pair 〈T, τ〉 with T ∈ Trans〈D〉 and τ ∈ TASetEff. The set of all Teff-transactions
over D is denoted TransTeff〈D〉.

The set of time points of 〈T, τ〉 is exactly the same as the set of time points of T ;
TimePoints〈〈T, τ〉〉 = TimePoints〈T 〉. Observe that in an effective time assignment (RRWE
or RBWE) each write occurs at tEnd〈T 〉, and each read at either its request time tReq

Read〈T 〉〈x〉 or else
at tStart〈T 〉, so the effective time assignment does not add any new time points, beyond those
defined by transaction start and end, plus effective times of reads and writes.

2.6 Schedules and temporal relationships between transactions A pair
{T1, T2} ⊆ Trans〈D〉 is time compatible if TimePoints〈T1〉 ∩ TimePoints〈T2〉 = ∅. A pair
{〈T1, τ1〉, 〈T2, τ2〉} ⊆ TransTeff〈D〉 is time compatible precisely in the case that {T1, T2} has
that property.

A schedule over Trans〈D〉 is a finite (possibly empty) set S ⊆ TransTeff〈D〉 for which every
distinct pair {〈T1, τ1〉, 〈T2, τ2〉} ⊆ S is time compatible. Define TransOf〈S〉 = {T | 〈T, τ〉 ∈ S}.

Two distinct transactions {T1, T2} ⊆ TransOf〈S〉 are concurrent, written T1 ‖ T2, if both
tStart〈T1〉 < tEnd〈T2〉 and tStart〈T2〉 < tEnd〈T1〉 hold. If {T1, T2} is not concurrent, then it is serial in
S. In that case, if tStart〈T1〉 < tStart〈T2〉, write T1 <S T2, and if tStart〈T2〉 < tStart〈T1〉, write T2 <S T1.

The set of all schedules over Trans〈D〉 is denoted Sched〈D〉.

2.7 Serializable behavior of schedules Roughly speaking, a schedule S is serializable
if its transactions may be relocated in time so that no two are concurrent, while preserving
the effect of all read and write operations. There are many distinct ways to formalize this
idea; in [16, Ch. 3] there are descriptions of no fewer than five major alternatives, many with
minor variants. In this work, the notion of conflict serializability of a schedule S will be used,
owing to its simple characterization in terms of edges in the conflict graph of the schedule, also
called the direct serialization graph, or DSG, of S. For comprehensive summaries of conflict
serializability, see [11, Sec. 2.6] and [16, Sec.3.8]. In addition, [1] examines the DSG with an
eye towards modern isolation protocols. Here, only the essential notions, will be identified.

The DSG associated with a schedule S is denoted DSG〈S〉. In that graph, the vertices are
the members of TransOf〈S〉. There are three types of edges (also called dependencies). For

〈T1, τ1〉, 〈T2, τ2〉 ∈ S, there is a read-write edge, or rw-edge, from T1 to T2, denoted T1
rw−→ T2, if

T1 reads some data object x for which T2 is the next writer. More precisely, this means that
tτ1Read〈x〉〈T1〉 < tτ2Write〈x〉〈T2〉, and for no other 〈T3, τ3〉 ∈ S with x ∈ WriteSet〈T3〉 is it the case that
tτ1Read〈x〉〈T1〉 < tτ3Write〈x〉〈T3〉 < tτ2Write〈x〉〈T2〉.

Similarly, there is a write-write edge, or ww-edge, from T1 to T2, denoted T1
ww−→ T2 if T1

writes some data object x and T2 is the next writer of x; i.e., tτ1Write〈x〉〈T1〉 < tτ2Write〈x〉〈T2〉, and for no

ADBIS 2019 final draft corrected 20190728, page 4

other 〈T3, τ3〉 ∈ S with x ∈ WriteSet〈T3〉 is it the case that tτ1Write〈x〉〈T1〉 < tτ3Write〈x〉〈T3〉 < tτ2Write〈x〉〈T2〉.
Finally, there is write-read edge, or wr-edge, from T1 to T2, denoted T1

wr−→ T2, if T1 writes
some data object x and T2 subsequently reads the version of x which T1 wrote; i.e., tτ1Write〈x〉〈T1〉 <
tτ2Read〈x〉〈T2〉, and for no other 〈T3, τ3〉 ∈ S with x ∈ WriteSet〈T3〉 is it the case that tτ1Write〈x〉〈T1〉 <
tτ3Write〈x〉〈T3〉 < tτ2Read〈x〉〈T2〉.

Note that effective time assignments are used throughout these definitions.
For T1

zz−→ T2, zz ∈ {rw,ww,wr} is called the type of the edge, which is furthermore outgoing
from T1 and incoming to T2.

A schedule S is conflict serializable if DSG〈S〉 contains no directed cycles. (Cycles in
the DSG are always taken to be directed in this work.) If S is conflict serializable, then an
equivalent serial order is any (irreflexive) total order ≺ of TransOf〈S〉 for which T1 ≺ T2 implies
that there is no directed path in DSG〈S〉 from T2 to T1. Less formally, if there is an edge of

the form T1
zz−→ T2, with zz ∈ {rw,ww,wr}, then T1 must precede T2 in any equivalent serial

order. The order ≺ is commit-order preserving if for every distinct pair {T1, T2} ⊆ TransOf〈S〉,
tEnd〈T1〉 < tEnd〈T2〉 implies T1 ≺ T2.

2.8 The temporal sense of edges Given a schedule S, an edge T1
zz−→ T2 in DSG〈S〉, with

zz ∈ {rw,ww,wr} is called (temporally) forward if T1 commits before T2 (tEnd〈T1〉 < tEnd〈T2〉)
and (temporally) backward if T2 commits before T1 (tEnd〈T2〉 < tEnd〈T1〉). If T1

zz−→ T2 is a forward

(resp. backward) edge, this may be noted explicitly via T1
f :zz−−→ T2 (resp. T1

b:zz−−→ T2). If the type
of an edge (rw, ww, or wr) is unimportant, and only its temporal direction is relevant, this may

be denoted via T1
f :-−→ T2 or T1

b:-−→ T2. For T1
d :zz−−→ T2, with zz ∈ {rw,ww,wr} and d ∈ {f , b},

d :zz is called the sensed type of the edge.

Note that a temporally backward edge T1
b:zz−−→ T2 must always connect concurrent transac-

tions, regardless of the type zz. An edge T1 −→ T2 in which T2 ends before T1 begins is never
possible in any DSG.

DSG〈S〉 has the unisense property if either all edges are temporally forward or else all edges
are temporally backward.

2.9 Observation — Consequences of unisense edges Let S be a schedule over Trans〈D〉.

(a) If DSG〈S〉 has the unisense property, then it must be acyclic.

(b) If DSG〈S〉 is conflict serializable, then there is an equivalent serial order ≺ which is
commit-order preserving iff DSG〈S〉 has the unisense property with all forward edges.

Proof: (a) First assume that all edges are forward. Then, for any cycle T1
f :-−→ T2

f :-−→
. . .

f :-−→ Tn
f :-−→ T1, it must be the case that tEnd〈T1〉 < tEnd〈T2〉 < . . . tEnd〈Tn〉 < tEnd〈T1〉, which is

impossible. Thus, no such cycle is possible. The proof for all backward edges is analogous.
(b) This is immediate from the definition of equivalent serial order (see 2.7). 2

2.10 Observation — Impossible edges Let S be a schedule over Trans〈D〉.

(a) In DSG〈S〉, edges of sensed type b:ww and b:wr are not possible.

ADBIS 2019 final draft corrected 20190728, page 5

(b) In DSG〈S〉 with 〈T1, τ1〉, 〈T2, τ2〉 ∈ S distinct, if T2 uses RBWE in S; i.e., if τ2 = RBWE,

then no edge of the form T1
f :wr−−→ T2 is possible when T1 ‖ T2.

Proof: (a) Let 〈T1, τ1〉, 〈T2, τ2〉 ∈ S. For an edge of the form T1
-:ww−−→ T2 (resp. T1

-:wr−−→
T2) to exist in DSG〈S〉, it must be the case that tτ1Write〈T1〉〈x〉 < tτ2Write〈T2〉〈x〉 (resp. tτ1Write〈T1〉〈x〉 <
tτ2Read〈T2〉〈x〉) for some x ∈ WriteSet〈T1〉 ∩WriteSet〈T2〉 (resp. x ∈ WriteSet〈T1〉 ∩ ReadSet〈T2〉).
Since tτ1Write〈T1〉〈x〉 = tEnd〈T1〉 for both τ1 = RRWE and τ1 = RBWE, it follows that tEnd〈T1〉 =
tτ1Write〈T1〉〈x〉 < tτ2Write〈T2〉〈x〉 = tEnd〈T2〉 (resp. tEnd〈T1〉 = tτ1Write〈T1〉〈x〉 < tτ2Read〈T2〉〈x〉 < tEnd〈T2〉); i.e., that
T1 commits before T2, making any such edge forward.

(b) For an edge of the form T1
f :wr−−→ T2 to exist in DSG〈S〉, there must be an x ∈

WriteSet〈T1〉 ∩ ReadSet〈T2〉 with tτ1Write〈T1〉〈x〉 < tτ2Read〈T2〉〈x〉. Since τ2 = RBWE, tτ2Read〈T2〉〈x〉 =
tStart〈T2〉, which implies that tEnd〈T1〉 = tτ1Write〈T1〉〈x〉 < tτ2Read〈T2〉〈x〉 = tStart〈T2〉, and so T1 and T2 are
not concurrent. 2

3 Concurrency-Based Isolation Levels

In this section, local isolation levels, also called concurrency-based isolation levels, are examined
in detail, with a focus on how transactions run at different levels of isolation relate to each other.
Although the study is formal, the properties of fundamental variants such as read committed
(RC) and snapshot isolation (SI) are based upon the way that corresponding levels behave in
PostgreSQL [13].

3.1 Concurrency-based properties of a transaction Informally, a concurrency-based
property (also called local property) of a Teff-transaction is one which is based only upon the
properties of that transaction, and how it relates to those other transactions in a schedule S
with which it is concurrent. Three main ways of characterizing such properties are the following.

Locks: Lock-based characterization of isolation was the first to be studied systematically
[8], [9, Sec. 7.6]. More modern approaches, including S2PL and SS2PL [3], were developed
subsequently; however, these approaches have fallen out of favor with the rise of MVCC.

Anomalies: The main ideas (dirty read, lost update, phantom) are developed in the early
lock-based approach of [8], and are also used in the SQL standard [10, Part 2]. They are
somewhat tied to the older SVCC, and due to a lack of rigorous definition, are also subject
to multiple interpretations [2].

DSG: In this approach, the properties are based upon edges between concurrent transactions
in the DSG. It is well suited to the modern MVCC architecture, providing clean, direct
characterizations of isolation levels such as snapshot isolation (SI).

In this work, the focus is upon DSG-based characterization, since the study of serialization in
Sec. 4 is based upon it, and a systematic investigation does not appear to have been conducted
previously.

3.2 Winner and loser transactions Let S ∈ Sched〈D〉. As shown in 2.10, edges of
(sensed) type b:ww and b:wr are never possible in a DSG〈S〉 when all transactions have ef-
fective time assignment RRWE or RBWE. Since those are the only effective time assignments

ADBIS 2019 final draft corrected 20190728, page 6

considered, such edge types will not be considered further. Of the four remaining types, f :rw,
b:rw, f :ww, and f :wr, any such edge has a winner and a loser. For all edges of type rw or wr,
regardless of sense, the winner is always the first committer. Specifically, in the case of an edge

T1
b:rw−−→ T2, the winner is T2, while for T1

f :rw−−→ T2 and T1
f :wr−−→ T2, the winner is T1.

For edges of type f :ww, there are two principal variants, first-committer wins (FCW) and
first-updater wins (FUW). With FCW, the winner is the transaction which commits first wins,
exactly as for the other three types of edges. With FUW, it is the first transaction which
declares a write, according to request, not effective times, which wins. The situation is a bit
complex, since there may be a (nonempty) set X ⊆ DObj〈D〉 which each transaction writes.

It is the first writer over all such data objects which wins. Formally, for an edge T1
f :ww−−→ T2,

transaction T1 wins if min({tReq

Write〈T1〉〈x〉 | x ∈ X}) < min({tReq

Write〈T2〉〈x〉 | x ∈ X}); otherwise, T2
wins.

The choice of FCW or FUW is a system-wide policy, since it must be applied to pairs of
transactions. Most existing systems use FUW, although Pyrrho [5] (see also 4.7) is a notable
exception.

3.3 General local DSG-based isolation levels A local DSG-based isolation level for a
transaction T is defined by three items, the effective time assignment used by T , a set of sensed
edge types, and a read-only status. Formally, recall from 2.4 that TASetEff = {RRWE,RBWE},
and let CEdges = {f :rw, b:rw, f :ww, f :wr}, RWmode = {RW,RO}. Then, define an isolation-
policy triple to be an ordered triple 〈τ,∆, µ〉 with τ ∈ TASetEff, ∆ ⊆ CEdges, and µ ∈ RWmode.
In 〈τ,∆, µ〉, τ identifies the effective time assignment used by the transaction, ∆ identifies
the types of concurrent edges which are forbidden or impossible to loser transactions, and µ
indicates whether the transaction is read-write or read-only. The set of all isolation-policy
triples over D is denoted PolTr〈D〉. A local DSG-based isolation level is defined by such a
triple.

In general, a loser transaction with a forbidden edge type must abort in order to satisfy
the isolation level. It is very important to understand why only loser transactions may forbid

edge types. Consider, for example, an edge of the form T1
b:rw−−→ T2 in DSG〈S〉. According to

the conditions spelled out in 3.2, T2 is the winner and T1 is the loser because T2 commits first
(backward edge). Now let x ∈ ReadSet〈T1〉∩WriteSet〈T2〉. At the time at which T2 commits, it
may not be known that T1 intends to read x; i.e., it may be the case that tReq

Write〈T2〉〈x〉 ≤ tEnd〈T2〉 <
tReq

Read〈T1〉〈x〉. Since committed transactions cannot be rolled back, there is no reasonable way that
such a policy could be enforced, other than by delaying the commit of T2. As such delays are
not part of the model, it is impossible for the winner to enforce an edge-prohibition policy.

3.4 Named DSG-based isolation levels Using the notion of concurrency-based property
of 3.1, eight named isolation levels are summarized in Table 1. Column 2 indicates the effective
time assignment used, while columns 3-6 indicate the status of members of CEdges for that
policy, with “P” indicating that the edge type is prohibited for the loser transaction, “X”
indicating that it is impossible for the loser transaction to have such an edge under the indicated
policy, and blank indicating allowed. These policies are discussed in detail, including the
meaning of the abbreviations, in 3.5, 3.6, and 3.7.

ADBIS 2019 final draft corrected 20190728, page 7

Policy
Eff Time
Assign

Status conc edge type RW
Mode

Used in
practice?f :rw b:rw f :ww f :wr

RC RRWE RW Y
RCX RRWE P RW ?

SI RBWE P X RW Y
SIX RBWE P P X RW Y

RCRO RRWE X X RO Y
RCXRO RRWE X P X RO ?

SIRO RBWE X X X RO Y
SIXRO RBWE X P X X RO Y

Table 1: Concurrency properties of transaction classes

3.5 RRWE-based isolation levels The fundamental RRWE-based isolation level is read
committed RC. Its representation as a policy triple is 〈RRWE, ∅,RW〉. This may be taken as
the definition of the name; thus RC = 〈RRWE, ∅,RW〉. In accordance with RRWE, all reads are
performed at request time, while writes are performed at the end of the transaction. There are
no further restrictions on allowable edges of the DSG. RC is very common isolation level in real
systems, usually offered via the READ COMMITTED SQL isolation level.

Although not widely used in real systems, an important theoretical variant of RC for this
work is read-committed with excluded backward dependencies, or RCX = 〈RRWE, {b:rw},RW〉.
It differs from RC only in that backward rw-edges are not allowed, subject, of course, to the
general limitation that only a loser transaction may prohibit an edge. As will be seen in 4.6, it
is the weakest local isolation level which guarantees serializability of schedules.

3.6 RBWE-based isolation levels The fundamental RBWE-based isolation level is snap-
shot isolation SI = 〈RBWE, {f :ww, f :wr},RW〉. All effective reads are performed at the begin-
ning of the transaction, while writes are performed at the end. SI is very common isolation
level in real systems, often offered using the REPEATABLE READ2 or SERIALIZABLE SQL isolation
level.

For the reader who has learned that concurrent writes are prohibited under SI, it may seem
strange that forward ww-edges are allowed for the winner. To understand this better, consider

an edge T1
f :ww−−→ T2 in the DSG, with T1 ‖ T2, and suppose that x ∈ WriteSet〈T1〉∩WriteSet〈T2〉.

If both T1 and T2 run with isolation SI, then since only one of them can be the winner (as defined
in 3.2), the edge is not allowed. However, suppose that T1 runs under SI but T2 runs under RC
(or RCX) isolation. If FCW is used for conflict resolution, then since T1 commits first, it is the
winner. Although T2 is the loser, its isolation level permits concurrent writes. As it writes x
after T1 commits, that write is completely outside of the lifetime of T1. If conflicts are resolved
via FUW, then either T1 or T2 may be the winner. However, even if the winner runs under SI,
if the loser runs under RC or RCX, then by a similar argument, both transactions will write x.
One must be very careful when asserting that concurrent writes are prohibited under SI when
characterizing a mixed-level setting. A transaction running under RC plays by different rules

2Strictly speaking, SI does not provide READ COMMITTED isolation. See [2, Remark 9] for details.

ADBIS 2019 final draft corrected 20190728, page 8

than one running under SI; the SI transaction cannot impose its rules on its RC neighbor.

Note, however, that T1
f :wr−−→ T2 is impossible when the loser transaction (which must be T2)

runs under SI, since with RBWE reading from a concurrent transaction cannot occur.
The level snapshot isolation with backward rw exclusion is SIX =

〈RBWE, {b:rw, f :ww, f :wr},RW〉. It is the same as SI, save for that backward rw-edges are
not allowed. It bears the same relationship to SI as RCX does to RC. It is the sole mode of
isolation of Pyrrho, described in 4.7. As a simple example, suppose that, in schedule S, T1
running under SIX reads x and writes y, so tStart〈T1〉 = tRBWE

Read〈T1〉
〈x〉 < tRBWE

Write〈T1〉
〈y〉 = tEnd〈T1〉, and

T2, also running under SIX, writes x, so tStart〈T2〉 < tRBWE
Write〈T2〉

〈x〉 = tEnd〈T1〉. Then T1
d :rw−−→ T2 in

DSG〈S〉. If d = f ; i.e., if the edge is forward, then both transactions may commit. However, if
d = b; i.e., if the edge is backward, then the loser must abort. Under FCW, as is the case in
Pyrrho (see 4.7), this loser is always T1.

3.7 Read-only transactions Since it is possible to define a transaction to be read only
in SQL, a read-only mode is also supported in the isolation model presented here. RCRO =
〈RRWE, {f :rw, f :ww},RO〉 is essentially the same as RC with read-only mode enabled. Similarly,
SIRO = 〈RBWE, {f :rw, f :ww, f :wr},RO〉 is essentially the same as SI, with read-only mode en-
abled. Analogously, RCXRO = 〈RRWE, {f :rw, b:rw, f :ww},RO〉 and SIXRO =
〈RBWE, {f :rw, b:rw, f :ww, f :wr},RO〉.

Observe that an edge of the form T1
f :rw−−→ T2 is not possible if the loser (which must be T2)

is read only.

3.8 Ordering of policy triples Policy triples admit a natural ordering. For TASetEff,
use the order RRWE < RBWE, and for RWmode, use the order RW < RO. Then define
〈τ1,∆1, µ1〉 ≤ 〈τ2,∆2, µ2〉 iff τ1 ≤ τ2, ∆1 ⊆ ∆2, and µ1 ≤ µ2. The idea is that lesser policies
in this ordering correspond to lower levels of isolation. The intuition behind the ordering on
TASetEff is that RBWE imposes more constraints than does RRWE. For example, even under
RRWE, a transaction T could perform all of its reads at the very beginning; this would be
the case if tReq

Read〈T 〉〈x〉 = tStart〈T 〉 for every x ∈ ReadSet〈T 〉. Similarly, the intuition behind the
ordering on RWmode is that prohibiting writes is a stronger condition than allowing them.
Finally, it is clear that prohibiting (or rendering impossible) more types of edges results in a
more restrictive policy. For the set CBIso = {RC,RCX, SI, SIX,RCRO, SIRO,RCXRO, SIXRO},
RC < RCX < SIX < SIXRO, RC < SI < SIX, RC < RCRO < SIRO, SI < SIRO, and RCX <
RCXRO.

4 Multiscope Serializable Isolation

In this section, the main ideas of multiscope serializable isolation are developed.

4.1 Transactions with isolation A transaction with isolation is an ordered pair 〈T, ι〉
in which T ∈ Trans〈D〉 and ι is a local DSG-based isolation level. The isolation level ι may
be represented either as a member of CBIso, or else as a policy triple. Thus, 〈T,RCX〉 and
〈T, 〈RRWE, {b:rc},RWmode〉〉 have exactly the same meaning. The set of all transactions with

ADBIS 2019 final draft corrected 20190728, page 9

isolation over D is denoted TransIso〈D〉. A transaction with isolation 〈T, ι〉 carries strictly more
information than a transaction with effective time assignment 〈T, τ〉. For ι = 〈τ,∆, µ〉 ∈ PolTr,
define πTASetEff〈ι〉 = τ ; then 〈T, πTASetEff〈ι〉〉 = 〈T, τ〉 is the associated transaction with effective
time assignment.

4.2 Schedule augmentation strategies When a transaction is ready to commit, a test
must be made to determine whether that commit should be allowed. If so, it is added to the
set of committed transactions. If not, it must be rejected. To formalize this, begin by defining
〈S, 〈T, ι〉〉 with S ∈ SchedIso〈D〉 and 〈T, ι〉 ∈ TransIso〈D〉 to be an augmentation pair over D if
adding 〈T, πTASetEff〈ι〉〉 to S results in a schedule with the property that each transaction in S must
either have committed before T , or else run concurrently with T : for every T ′ ∈ TransOf〈S〉, one
of tEnd〈T ′〉 < tEnd〈T 〉 or T ‖ T ′ must hold. Think of S as the collection of existing transactions,
with 〈T, πTASetEff〈ι〉〉 a candidate to be added to S. An (augmentation) test routine is a function
α : AugPr〈D〉 → {0, 1}, with 〈S, 〈T, ι〉〉 7→ 1 indicating that 〈T, πTASetEff〈ι〉〉 should commit and
be added to S, and 〈S, 〈T, ι〉〉 7→ 0 indicating that it should not.

A central example is AugTestb:rw, defined on elements by 〈S, 〈T, ι〉〉 7→ 1 iff DSG〈S ∪
{〈T, πTASetEff〈ι〉〉}〉 does not contain an edge of the form T

b:rw−−→ T ′ or T ′
b:rw−−→ T for a 〈T ′, τ ′〉 ∈ S,

with T the loser transaction for that edge. Another is AugTestPolTr, defined on elements by
〈S, 〈T, ι〉〉 7→ 1 iff DSG〈S ∪ {〈T, πTASetEff〈ι〉〉}〉 does not contain any edges involving T which are
forbidden by ι. More precisely, if ι = 〈τ,∆, µ〉, then no new edge of a type in ∆ is allowed in
the case that T is the loser transaction associated with that edge. Finally, for κ ∈ PolTr〈D〉,
AugTest≥κ is defined on elements by 〈S, 〈T, ι〉〉 7→ 1 iff ι ≥ κ and AugTestPolTr(〈T, ι〉) = 1. Thus,
AugTest≥κ allows 〈T, πTASetEff〈ι〉〉 to be added to S iff ι provides DSG-based isolation at level κ or
greater, and adding 〈T, πTASetEff〈ι〉〉 to DSG〈S〉 does not result in new edges which are forbidden
for T by ι.

These examples are local in scope in that the test conditions depend only upon the transac-
tion 〈T, ι〉 to be added and certain properties of those transactions in S which run concurrently
with it. The reference routine for serialization, which is global in scope, is AugTestDSG, defined
on elements by 〈S, 〈T, ι〉〉 7→ 1 iff DSG〈S ∪ {〈T, ι〉}〉 does not contain any cycles which include
T . Other examples which are not local in scope are considered in 4.10 and 4.12.

Processing a sequence of transactions, in order to build a schedule, is formalized as fol-
lows. An ordered schedule over D is a sequence C = 〈〈T1, ι1〉, 〈T2, ι2〉, . . . , 〈Tk, ιk〉〉 with the
properties that {〈Ti, πTASetEff〈ιi〉〉) | 1 ≤ i ≤ k} ∈ Sched〈D〉 and for 1 ≤ i < j ≤ k, one
of tEnd〈Ti〉 < tEnd〈Tj〉 or Ti ‖ Tj must hold. The stepwise commit-based DSG construction of
S using α begins with the empty schedule ∅, and adds, in the order specified by C, each
pair of the form 〈Ti, πTASetEff〈ιi〉〉 which α classifies as acceptable. Formally, Step〈C, α, 0〉 = ∅;
Step〈C, α, i+ 1〉 = Step〈C, α, i〉 ∪ {〈Ti+1, πTASetEff〈ιi+1〉〉}

if α(〈Step〈C, α, i〉, 〈Ti+1, πTASetEff〈ιi+1〉〉〉) = 1;
Step〈C, α, i+ 1〉 = Step〈C, α, i〉 otherwise.

4.3 FUW and delayed commit In the formalism of 4.2, if adding 〈T, πTASetEff〈ι〉〉 to S results

in a forbidden edge of the form T ′
-:-−→ T or T

-:-−→ T ′, then T is not permitted to commit. With
FUW, it may be the case that T ′ has not yet committed when the test is performed. To maximize
concurrency, many systems will suspend T until it is known whether or not T ′ commits. If T ′

ADBIS 2019 final draft corrected 20190728, page 10

does not commit, T may continue. Although space limitations preclude formalizing this idea
(which involves introducing suspendable transactions with flexible time points), omitting it
does not alter the main results developed here. In any case, this issue does not arise with FCW.
Indeed, with FCW, all transactions in S will have committed before T .

4.4 Serial properties of augmentation strategies An augmentation test routine α
is serializable generating (abbreviated SerGen) if for any ordered schedule C of length k,
Step〈C, α, k〉 is conflict serializable. Thus, it produces serializable schedules when only trans-
actions which pass its test are allowed. This is the global-scope meaning of serializability, as
intended in the SERIALIZABLE isolation level of SQL. The routine α is commit-order SerGen if
it is SerGen and some equivalent serial order is commit-order preserving.

The routine α is serializable preserving (abbreviated SerPres) if for any augmentation
pair 〈S ′, 〈T, ι〉〉 over D with α(〈S ′, 〈T, ι〉〉) = 1, T does not participate in any cycle of S ′ ∪
{〈T, πTASetEff〈ι〉〉}. In particular, if S ′ is conflict serializable, then so too is S ′ ∪ {〈T, πTASetEff〈ι〉〉}.
Observe that SerPres always implies SerGen.

In contrast to SerGen, the property of SerPres is local in scope; it does not depend upon
properties of the extant schedule S, except those which result from concurrency of its trans-
actions with 〈T, τ〉. (Note that S ′ is universally quantified in the definition of SerPres; it can
be the result of running and committing transactions at any level of isolation.) Thus, as elab-
orated in 5.1, SerPres is an appropriate semantics for SERIALIZABLE when applied to a single
transaction, since, on the one hand, it provides SerGen behavior when all transactions run at
that level, and, on the other hand, it provides a meaningful contribution to serializability even
when other transactions run at different levels of isolation.

AugTestDSG is always SerPres (and hence SerGen). The interesting question is whether there
are simpler, local isolation levels which also provide these properties. This is established in the
affirmative below.

4.5 Theorem — AugTestb:rw is both SerGen and SerPres The augmentation test
AugTestb:rw is both serializable generating and serializable preserving.

Proof: Let 〈S, 〈T, ι〉〉 ∈ AugPr〈D〉. For T to be part of a cycle in S∪{〈T, πTASetEff〈ι〉〉}, it must
have at least one outgoing edge. Since it is the last transaction to commit, that outgoing edge
must be backward. However, AugTestb:rw prohibits edges of type b:rw for the loser transaction,
and since T commits last, it must be the loser for any rw-edge (see 3.2). Thus, T cannot have
outgoing edges of type b:rw. Since outgoing edges of types b:ww and b:wr are not possible
(see 2.10(a)), T cannot have any outgoing edges at all, so it cannot be involved in a cycle of
〈S, 〈T, ι〉〉 ∈ AugPr〈D〉. Hence AugTestb:rw is SerPres, and so also SerGen. 2

4.6 Corollary — AugTest≥RCX The augmentation test routines AugTest≥RCX and
AugTest≥SIX are both SerPres (and hence SerGen), with AugTest≥RCX the weakest such test de-
fined by a policy triple.

Proof: The proof follows immediately from 4.5 and the fact that RCX and SIX prohibit edges
of type b:rw. 2

ADBIS 2019 final draft corrected 20190728, page 11

4.7 Serialization in Pyrrho The Pyrrho RDBMS [5], [6] employs SIX for its only isolation
level. In view of 4.6, it thus provides a working instance of true SERIALIZABLE isolation which
is based entirely upon a local property of transactions. A unique feature of Pyrrho is that it
uses pure FCW for conflict resolution; transactions are never blocked for any reason.

4.8 Example — Wide cursor stability Some RDBMSs offer a feature called cursor
stability [9, Sec. 7.6.2] as part the isolation level READ COMMITTED. Suppose that transaction T1,
running under RC, reads and then later writes data object x. Suppose further that transaction
T2 also runs under RC and also writes x, and commits between the two operations of T1.
Formally, tRRWE

Read〈T1〉
〈x〉 < tRRWE

Write〈T2〉
〈x〉 < tEnd〈T2〉 < tRRWE

Write〈T1〉
〈x〉 < tEnd〈T1〉. This behavior is not

serializable because in the serialization T1 ≺ T2, the final write of x is by T2, not by T1 as it
should be; and in T2 ≺ T1, T1 does not read the initial value of x, before T2 wrote it. Cursor
stability prevents this this “in between” write by T2, either by locking x between the read and
write of T1, or else by T1 rereading x after the commit of T2. However, it does this only when
the read and the write of T1 are part of the same SQL statement. With serialization, this
behavior is not permitted, regardless of the “distance” between tRRWE

Read〈T1〉
〈x〉 and tRRWE

Write〈T1〉
〈x〉, since

there is an edge T1
b:rw−−→ T2 which is not allowed RCX or any stronger isolation level. Thus,

RCX effectively provides wide cursor stability, which does not require the read and the write
to be part of the same statement. If the loser runs under an isolation which is SerPres, cursor
stability is automatic.

If preservation of commit order is desired in the serialization, then AugTestb:rw is actually
optimal in the following sense.

4.9 Theorem — Optimality of AugTestb:rw AugTestb:rw is a globally optimal commit-
order-preserving SerGen augmentation test routine, in the precise sense that any other such
routine AugTest′ with the property that AugTest′(〈S, 〈T, τ〉〉) = 1 but AugTestb:rw(〈S, 〈T, τ〉〉) = 0
for some 〈S, 〈T, τ〉〉 ∈ AugPr〈D〉 cannot be commit-order preserving.

Proof: The proof follows immediately from 2.9(b), since the presence of any backward edge
in the DSG implies that commit order must be violated in any serialization. 2

4.10 SSI — a preemptive serializable-preserving strategy The SerGen strategy SSI
(serializable SI) [4], [7] is used to implement the SERIALIZABLE isolation level of PostgreSQL

[12]. Define a dangerous structure (DS) to be a path in the DSG of the form T2
-:-−→ T1

b:rw−−→ T0
in which T0 commits first and T1 ‖ T2. (Note that T0 ‖ T1 is automatic since the edge is
backward.) T0 and T2 may be the same transaction, in which case {T0, T1} forms a cycle by
itself. As shown in [7, Thm. 2.1], if all transactions run under SI, then every cycle of the DSG
contains a DS. To represent this in terms of an augmentation routine, define AugTestSSI on
elements by 〈S, 〈T, ι〉〉 7→ 0 iff T is the last transaction to commit in a DS of DSG〈S〉.

It is worth noting that it is not necessary to require that all transactions run under SI;
RC is sufficient. However, a proof will not be presented here; only the original SI-based SSI
will be evaluated. Unfortunately, while serializable generating, AugTestSSI is not serializable
preserving.

ADBIS 2019 final draft corrected 20190728, page 12

4.11 Serialization properties of SSI AugTestSSI is SerGen but not SerPres.

Proof: The proof that AugTestSSI is SerGen is found in [4], [7]. To show that it is not

SerPres, it suffices to present a counterexample. In Fig. 1, a DSG cycle T0
f :rw−−→ T4

b:rw−−→
T3

f :rw−−→ T2
b:rw−−→ T1

b:rw−−→ T0. consisting of five transaction is shown. Time increases horizontally,

r〈x4〉 w〈x0〉
T0

r〈x0〉 w〈x1〉
T1

r〈x2〉 w〈x3〉
T3

r〈x1〉 w〈x2〉
T2

r〈x3〉 w〈x4〉
T4

b:rw

b:rw

b:rw

f :rw

f :rw

Figure 1: DSG with no DS involving the last transaction to commit

with the beginning and end of each transaction marked by a vertical bar; the commit order
is 〈T0, T3, T1, T2, T4〉. The reads and writes of each transaction are depicted by r〈-〉 and w〈-〉
respectively, Each transaction Ti runs under SSI, so as Teff-transactions, 〈Ti, τi〉 = 〈Ti,RBWE〉.
The last transaction to commit, T4, is not part of any DS. So, letting S ′ = {〈Ti, τi〉 | 0 ≤ i ≤ 3},
it is immediate that AugTestSSI〈S ′, 〈Ti, τi〉〉 = 1. 2

4.12 SSN Recently, a preemptive SerGen strategy which relies on a more complex “danger-
ous structure” than does SSI has been developed [15]. Dubbed serializable safety net, or SSN
for short, it is of particular relevance to this work in that any local level of isolation which is
at least as strong as RC may be serialized, thus reinforcing the observation that local isolation
and serialization are orthogonal. As is the case with SSI, SSN is not serializable preserving.
While space limitations preclude a full proof, the reader familiar with the construction in [15]
can verify easily that the schedule of Fig. 1 provides the necessary counterexample.

5 Conclusions and Further Directions

5.1 Conclusions The semantics of including serializable isolation, global in scope, in a
mixed-mode setting with levels of local scope, such as RC and SI, has been investigated. Two
alternatives have been identified. In the first, serializable generating (SerGen), the serializable
level has meaning only when all transactions run at that level. SSI and SSN fall into that
category. While highly effective when used exclusively, they revert to a lower level otherwise,
with little or no additional benefit. The second is serializable preserving (SerPres), which
has the property that, regardless of the DSG consisting of all committed transactions, adding
a new transaction will never result in a new cycle. Used for SERIALIZABLE, it provides a
semantics which is both local and global in scope, in line with the original intent of the SQL
standard. The augmentation test AugTestDSG which examines the entire DSG for cycles has

ADBIS 2019 final draft corrected 20190728, page 13

this property, although it has large space complexity.3 Identified in this paper is a far less
complex option, in which a standard local complexity level, such as RC or SI, is augmented to
disallow all backward rw-dependencies (resulting in RCX or SIX). As elaborated in 5.2, it is
proposed that this alternative be explored more thoroughly, as a suitable implementation of
SQL SERIALIZABLE.

An additional issue arises if SI is used to implement REPEATABLE READ in an RDBMS,
while RCX is used to implement SERIALIZABLE. The unusual (and likely unwanted) situation
arises that the two are incomparable as local levels of isolation. Put another way, SI offers
higher isolation than RCX in one way — it prohibits concurrent writes, even though it offers
lower isolation in another — it permits backward rw-dependencies. This can be remedied by
implementing SERIALIZABLE as SIX, but it nevertheless shows that complex decisions must be
made when enlisting a single isolation level to serve multiple scopes.

5.2 Further directions The following two topics are proposed for further investigations.

Performance measurement for RCX and SIX: Although SIX is used in the Pyrrho sys-
tem (see 4.7), it has not been compared for performance to alternatives such as SSI (used
in PostgreSQL). Since SIX appears to perform well in Pyrrho, it may be the case that
although it will have a higher number of false positives (aborted transactions due to con-
currency conflicts) than SSI, (since every DS must contain a backward dependency), it may
nevertheless be completely satisfactory for many transaction mixes. Advantages of RCX
and SIX (over SSI and SSN) include that they are far simpler to implement, and that they
provides serializable-preserving isolation. It is thus proposed to study their performance
experimentally. In addition, a parallel comparison of FUW and FCW is warranted, given
the success of FCW in Pyrrho.

Extension to lock-based approaches: Due to space limitations, the local levels of iso-
lation studied in this paper have been limited to those which are DSG based. However,
locked-based levels, such as S2PL and SS2PL, are also of importance, as they are the clas-
sical local isolation levels which deliver serializable-preserving behavior. An investigation
of how they fit into the framework of this paper is therefore warranted.

References

[1] A. Adya, B. Liskov, and P. E. O’Neil. Generalized isolation level definitions. In D. B.
Lomet and G. Weikum, editors, Proceedings of the 16th International Conference on Data
Engineering, San Diego, California, USA, February 28 - March 3, 2000, pages 67–78, 2000.

[2] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E. O’Neil. A critique
of ANSI SQL isolation levels. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, San Jose, California, May 22-25, 1995, pages 1–10,
1995.

3It should be noted that one experimental system, called PSSI, has taken exactly the approach of constructing
the entire DSG (with all transactions running under SI) to achieve serializable generating behavior, reporting
good results [14].

ADBIS 2019 final draft corrected 20190728, page 14

[3] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz, and A. Silberschatz. On rigorous
transaction scheduling. IEEE Trans. Software Eng., 17(9):954–960, 1991.

[4] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable isolation for snapshot databases.
ACM Trans. Database Syst., 34(4), 2009.

[5] M. Crowe. The Pyrrho Database Management System.
https://pyrrhodb.uws.ac.uk/index.htm. Accessed 2019-03-30.

[6] M. Crowe. Transactions in the Pyrrho database engine. In M. H. Hamza, editor,
IASTED International Conference on Databases and Applications, part of the 23rd Multi-
Conference on Applied Informatics, Innsbruck, Austria, February 14-16, 2005, pages 71–
76. IASTED/ACTA Press, 2005.

[7] A. Fekete, D. Liarokapis, E. J. O’Neil, P. E. O’Neil, and D. Shasha. Making snapshot
isolation serializable. ACM Trans. Database Syst., 30(2):492–528, 2005.

[8] J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Granularity of locks and degrees
of consistency in a shared data base. In G. M. Nijssen, editor, Modelling in Data Base
Management Systems, Proceeding of the IFIP Working Conference on Modelling in Data
Base Management Systems, Freudenstadt, Germany, January 5-8, 1976, pages 365–394.
North-Holland, 1976.

[9] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann, 1993.

[10] J. Melton, editor. ISO/IEC 9075:2011, Information Technology — Database Languages
— SQL. ANSI, 2011. (The 2011 SQL Standard).

[11] C. Papadimitriou. The Theory of Database Concurrency Control. Computer Science Press,
1986.

[12] D. R. K. Ports and K. Grittner. Serializable snapshot isolation in PostgreSQL. Proc.
VLDB Endowment, 5(12):1850–1861, 2012.

[13] PostgreSQL: The World’s Most Advanced Open Source Relational Database.
https://www.postgresql.org. Accessed 2019-03-30.

[14] S. Revilak, P. E. O’Neil, and E. J. O’Neil. Precisely serializable snapshot isolation (PSSI).
In Proceedings of the 27th International Conference on Data Engineering, ICDE 2011,
April 11-16, 2011, Hannover, Germany, pages 482–493, 2011.

[15] T. Wang, R. Johnson, A. Fekete, and I. Pandis. Efficiently making (almost) any concur-
rency control mechanism serializable. VLDB J., 26(4):537–562, 2017.

[16] G. Weikum and G. Vossen. Transactional Information Systems. Morgan Kaufmann, 2002.

ADBIS 2019 final draft corrected 20190728, page 15

	Introduction
	Transactions, Schedules, and Serialization
	Data objects and the global schema
	Time
	Transactions
	Effective time assignments
	Transactions with effective time assignment
	Schedules and temporal relationships between transactions
	Serializable behavior of schedules
	The temporal sense of edges
	Observation — Consequences of unisense edges
	Observation — Impossible edges

	Concurrency-Based Isolation Levels
	Concurrency-based properties of a transaction
	Winner and loser transactions
	General local DSG-based isolation levels
	Named DSG-based isolation levels
	RRWE-based isolation levels
	RBWE-based isolation levels
	Read-only transactions
	Ordering of policy triples

	Multiscope Serializable Isolation
	Transactions with isolation
	Schedule augmentation strategies
	FUW and delayed commit
	Serial properties of augmentation strategies
	Theorem — [[b]rw] is both SerGen and SerPres
	Corollary — [RCX]
	Serialization in Pyrrho
	Example — Wide cursor stability
	Theorem — Optimality of [[b]rw]
	SSI — a preemptive serializable-preserving strategy
	Serialization properties of SSI
	SSN

	Conclusions and Further Directions
	Conclusions
	Further directions

