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Abstract. When data from several source schemata are to be inte-
grated, it is essential that the resulting data in the global schema be
consistent. This problem has been studied extensively for the monogran-
ular case, in which all domains are flat. However, data involving spatial
and/or temporal attributes are often represented at different levels of
granularity in different source schemata. In this work, the beginnings of
a framework for addressing data integration in multigranular contexts
are developed. The contribution is twofold. First, a model of multigran-
ular attributes which is based upon partial orders which are augmented
with partial lattice-like operations is developed. These operations are
specifically designed to model the kind of dependencies which occur in
multigranular modelling, particularly in the presence of aggregation op-
erations. Second, the notion of a thematic multigranular comparison de-
pendency, generalizing ordinary functional and order dependencies but
specifically designed to model the kinds of functional and order depen-
dencies which arise in the multigranular context, is developed.

1 Introduction

Data integration is the process of combining several databases, called the data
sources, each with its own schema and method of representation, into a single
schema for unified access. There are many theoretical issues which must be
addressed in order to achieve effective integration. For a survey of these, see for
example [19]. One of the most fundamental issues which must be addressed is
integrity — to the extent that the information in the source databases overlaps,
it must do so in a consistent fashion. Put another way, it must not be possible
to derive a contradiction when the databases are combined.

Virtually all existing work on data integration, and in particular on ensuring
integrity, has been conducted within the monogranular context, in which the
domain of each attribute is a simple set of values. In that setting, the problem
of integration integrity becomes one of ensuring that contradictions cannot arise
within a unified logical theory upon combining the various data sources [20],
[7]. If such contradictions are detected, they may be resolved via so-called data
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cleaning [23]; in more formal work the idea of restoration of consistency is often
called repair [3], [1].

In the multigranular context, the notion of contradiction becomes consider-
ably more complex. Consider a multigranular attribute APlc which represents
geographic locations, endowed with a natural poset structure defined by spatial
and temporal inclusion. For example, one may write Region VIII vAPlc

Chile to
represent that Region VIII lies (entirely) within Chile. Such an attribute has ad-
ditional structure, however. It is also possible to assert that Chile is composed of
exactly fifteen nonoverlapping regions via a join-like rule of the following form.3⊔

⊥
APlc

{Region R | I ≤ R ≤ XV } = Chile (r-Chile)

The symbol
⊔
⊥

APlc
means that its arguments join disjointly; that any pair

{Region i ,Region j} with i 6= j is disjoint; i.e., nonoverlapping spatially. For the
most part, previous work on multigranular attributes has only modelled sub-
sumption (order) structure [8]. A main contribution of this paper is to provide
a model of data granules which supports rules such as (r-Chile) economically, as
well as a means to use them in the expression of constraints for data integration.

To illustrate the particular issues which arise in the multigranular framework,
consider integrating the two databases shown in Fig. 1. In each case, the schema

Source database 1

APlc ATim BBth

Region I Q1Y2014 n1

Region II Q1Y2014 n2

. . . . . . . . .

Region XV Q1Y2014 n15

Source database 2

APlc ATim BBth

Chile Q1Y2014 b1
Chile Q2Y2014 b2
Chile Q3Y2014 b3
Chile Q4Y2014 b4

Fig. 1. Two multigranular source databases

consists of the single relation scheme Rsumb〈APlc, ATim, BBth〉. A tuple of the form
〈p, s, n〉 represents that in region p, during time interval s, the total number
of births was n. The attribute APlc is as described above, ATim is similar but
represents time intervals, and BBth has numerical values representing birth totals.

From a monogranular perspective, it is clear that the functional dependency
(FD) APlcATim → BBth is the fundamental constraint with respect to these se-
mantics. If different sources provide data for different places and times, all that
need be checked is that the FD holds on a relation which combines the sources.
However, information overlap which may occur in the multigranular context re-
quires more complex constraints. In the above example, the semantics require
that the sum of the number of births over the regions for Q1Y2014 agree with
the value for all of Chile; that is, b1 =

∑15
i=1 ni. A further contribution of this

3 Actually, there is no Region XIII; it is called Region RM; this detail is ignored here.
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paper is to show how the model of granularity which is developed may be used
as a foundation for expressing such constraints.

As suggested by the example above, all relations to be integrated are assumed
to have the same structure; only the granularities may differ. This simplification
is made in order to focus upon the main problem — to deal with multigranularity
— without complicating the investigation with questions about how the sources
are to be integrated, for example, as local-as-view versus global-as-view [19].

The topic of granularity in the representation of data has received consid-
erable attention during the past twenty years. The modelling of time with a
focus upon granularity has been studied exhaustively [4], and was later adapted
for use in the context of spatial databases [2]. Integrity constraints concern-
ing multigranular data, however, have received less attention. Related work in
the spatial domain includes studies concerning models for checking topological
consistency at multiple representations, as well as for data integration [11], [26],
[12], [18], with a focus upon modelling the consistency of different representations
of the same geometric object. However, these works treat spatial constraints in
isolation, without considering the interaction with thematic attributes in a data-
base model. In the context of data warehousing, multigranular approaches have
also been employed [17], but largely to save space via aggregation; the issue of
integrating data at different granularities does not arise. Recently, functional de-
pendencies and conditional functional dependencies (CFDs) have been extended
to the multigranular framework [6]. Another recent work addresses repairs of
inconsistent data in the spatial framework [24], but the kinds of constraints con-
sidered are not those which characterize differences between data sources which
are locally consistent. In [27], rollup dependencies, which assert that certain the-
matic values (such as tax rate) are invariant under rollup, are studied. However,
they do not address thematic values which vary with granularity, or which in-
volve aggregation. That which is new to the ideas developed in this paper, which
distinguishes it from that cited above, is the formulation and study of constraints
which arise specifically when different sources provide the same or similar data,
but at different levels of granularity. In particular, the emphasis is upon situ-
ations in which the tie between the representations at differing granularities is
one of aggregation over attributes representing space or time.

The remainder of the paper consists of two main sections. In Section 2, the
ideas of multigranular attributes, with particular emphasis upon how to ex-
press the kind of join and disjointness conditions which arise when rules such as
(r-Chile) require. In Section 3, the associated integration dependencies are devel-
oped in detail, and a sketch of the data structures necessary to implement them
efficiently is also given. Section 4 provides conclusions and further directions.

2 Relational Concepts in the Multigranular Setting

In this section, the fundamental notions which underlie a relational database
schema are extended to the multigranular framework. As such, this material
forms the underpinnings for constraint formulation which is developed in Sec. 3.
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It is assumed that the reader is familiar with basic relational database theory,
as presented in [21]. However, even an introduction textbook, such as [13], should
provide further background for many of the ideas used here.

Notation 2.1 (Some mathematical notation). For any set S, Card(S) de-
notes its cardinality. 2S denotes the set of all subsets of S. f(x) ↓ denotes that
the partial function f is defined on argument x. S1 ⊆f S2 indicates that S1 is a
finite subset of S2 (while S1 ⊆ S2 denotes that S1 is any subset of S2, finite or
otherwise).
Z denotes the set of integers, N denotes the set of nonnegative integers, while

N+ = N \ {0}. Intervals are always of integers; [i, j] = {n ∈ Z | i ≤ n ≤ j}.

Definition 2.2 (Posets). For elaboration of the ideas surrounding partially
ordered sets (posets), see [9] for basic ideas and [15] for more advanced notions.
Only essential notation is reviewed here. A poset is a pair P = (P,≤P ) in which
P is a set and ≤P is a partial order on P . P is upper bounded if it has a
greatest element >P . If it also has a least element ⊥P , then it is bounded. The
bounds may be indicated explicitly in the notation; i.e., P = (P,≤P ,>P ), P =
(P,≤P ,⊥P ,>P ). It will always be assumed that in a bounded poset, >P and
⊥P are distinct elements.

For S ⊆ P , GLBP〈S〉 denotes the greatest lower bound of S (when it exists).

In [6], the definitions of granularity and granule are intertwined in a single defi-
nition, that of a domain schema. In this paper, following the classical approach
for monogranular schemata [21, Sec. 1.2], the notion of an attribute (and thus
granularity) is defined first, with the associated notion of a domain assignment
(and thus granule assignment) for that attribute defined afterwards.

Concept 2.3 (Granulated attributes). In the classical relational model,
the columns are labelled with attributes, with each attribute A assigned a set
of domain elements from which the values for A are taken. In the granulated
approach, each attribute consists of a partially ordered set of granularities. The
domain elements, called granules, also have a natural order structure which is
tied to the granularities. Formally, a granulated attribute A is defined by its
granularity poset Gran〈A〉 = (Gran〈A〉,≤Gran〈A 〉,>Gran〈A 〉), a finite upper-bounded
poset. The elements in Gran〈A〉 are called the granularity identifiers of A; or,
less formally, just the granularities of A. When the context of the operators is
clear, the subscripts may be dropped: Gran〈A〉 = (Gran〈A〉,≤,>).

The scheme Rsumb〈APlc, ATim, BBth〉 of Sec. 1 provides a context for exam-
ples. First of all, each of the three attributes has a coarsest granularity, which
recaptures no information about the domain value: >Gran〈APlc 〉 corresponds to all of
Chile, >Gran〈ATim 〉 lumps all time values into one, and >Gran〈BBth 〉 lumps all numbers
into one. The spatial attribute APlc might have, in addition to >Gran〈APlc 〉, Region,
City, and NatRegion (identifying natural, as opposed to political, regions) as gran-
ularities, with City ≤ Region ≤ >Gran〈APlc 〉 and NatRegion ≤ >Gran〈APlc 〉. It has no
least granularity, since a natural region of Chile may lie in two more more polit-
ical regions. The temporal attribute ATim might have, in addition to >Gran〈ATim 〉,
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QuarterYr, MonthYr, and WeekYr as granularities, with MonthYr ≤ QuarterYr
and WeekYr ≤ >Gran〈ATim 〉. Here QuarterYr represents a quarter of a given year;
similarly for MonthYr and WeekYr. >Gran〈ATim 〉 lumps together all of time. Note
that neither WeekYr ≤ MonthYr nor WeekYr ≤ QuarterYr holds, since a single
week may span two months or two quarters. It has no least granularity since the
overlap of a week and a month need not correspond to any granularity. Finally,
for the attribute BBth, fix maxr ∈ N+. For i ∈ [1,maxr], the granularity roundi
identifies rounding to i significant digits. In addition, the granularity round∞
represents no rounding at all, and is thus the least element of Gran〈BBth〉; i.e.,
round∞ = ⊥Gran〈BBth 〉. Thus ⊥Gran〈BBth 〉 = round∞ ≤ roundi ≤ roundj ≤ >Gran〈BBth 〉

for j < i. To elaborate these examples, it is necessary to have a representation
for granules as well. This issue is substantially more complex, and is examined
next.

Discussion 2.4 (Modelling the space of granules). Previous work on
multigranular attributes, including [6], have focused entirely upon the poset
structure of the granules, without means for the representation of join-like op-
erations, such as that expressed in formula (r-Chile). In considering possible
formulations, it is important to keep in mind that the least upper bound (LUB)
is not always the desired join. It would be incorrect to express a constraint, simi-
lar in form to (r-Chile), which expressed that Chile is composed of its cities, since
much of the country does not lie within the borders of any city, even though Chile
be the LUB of its cities in the poset of granules. To avoid such problems, one
option might be to assume that the space of granules forms a lattice, or at least
a semilattice. However, this would result in an enormous number of granules, in-
cluding many which would be of no use, since any combination of granules would
itself be a granule. The approach taken here is to enhance the poset structure of
the granules with partial operations which only identify combinations that are
also known granules.

Concept 2.5. Subset-based bounded posets One tempting approach to adding
constraints to the poset of granules is to allow partial join and meet rules. For
binary join and meet operations, the notion of a weak partial lattice [15, pp.
52-56] does exactly this. These ideas have been extended to operations of arbi-
trary finite arity via the notion of a generalized bounded weak partial lattice [16].
Unfortunately, as developed in some detail in [16], it is an NP-hard problem to
determine whether the added rules will force two elements to coalesce.

The solution forwarded here is to assume additional structure, which is always
satisfied in typical applications involving multigranular spatial and temporal
attributes. Specifically, a subset base for a bounded poset P = (P,vP ,⊥P ,>P )
is a pair 〈B, ι〉 in which B is a set, called the base set, and ι : P → B is an injective
function, called the concretization function, for which ι(>P ) = B, ι(⊥P ) = ∅,
and (∀p1, p2 ∈ P )((p1 ≤P p2) ⇔ (ι(p1) ⊆ ι(p2))). A subset-based bounded poset
(or SBBP for short) is a pair 〈P , 〈B, ι〉〉 in which P is a bounded poset and
〈B, ι〉 is a subset base for P . An SBBP is finite if P is a finite set; B need not
be finite.
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To illustrate, consider a spatial attribute such as APlc. The set BAPlc
might

be the coordinates in a two-dimensional plane, or those of the surface of the
a sphere (representing the earth). The concretization function ιAPlc

would map
each geographic unit (city, region, country, park, etc.) to the set of points which
represent it. Note that the points involved need not even be countable, much
less finite. It is only the set of actual granules which need be finite. A similar
model, using point in time, applies to the temporal attribute ATim.

It must be emphasized that the subset base and concretization function are
in the background; it is not necessary to represent them explicitly, and in many
cases it will not be practical to represent them explicitly. Rather, it is only
necessary to know that they exist. This existence comes automatically with
spatial and temporal attributes. Mathematically, they guarantee that the poset
may be modelled as a ring of sets, which ensures distributivity of any associated
lattice operations [15, Ch. 2, Thm. 19], such as those defined in Concept 2.6.

Concept 2.6 (Rules for SBBPs). In the context of an SBBP, it is very easy
to add rules of the form required to express the kind of constraints needed on
granules. Let 〈P , 〈B, ι〉〉 be an SBBP. A join rule over 〈P , 〈B, ι〉〉 is of the form⊔

P
S = a with S ⊆ P and a ∈ P ; a disjointness rule over 〈P , 〈B, ι〉〉 is of the

form
d

P
{p1, p2} = ⊥P with p1, p2 ∈ P ; a disjoint join rule over 〈P , 〈B, ι〉〉 is of

the form
⊔
⊥

P
S = a with S ⊆ P and a ∈ P . The semantics of these rules are easily

specified. If ϕ is a rule, use |=〈P ,〈B,ι〉〉 ϕ to express that the rule is satisfied in P .
Then |=〈P ,〈B,ι〉〉

⊔
P
S = a iff

⋃
{ι(s) | s ∈ S} = ι(a); |=〈P ,〈B,ι〉〉

d
P
{p1, p2} =

⊥P iff ι(p1) ∩ ι(p2) = ∅; |=〈P ,〈B,ι〉〉
⊔
⊥

P
S = a iff |=〈P ,〈B,ι〉〉

⊔
P
S = a and for

every p1, p2 ∈ S with p1 6= p2, |=〈P ,〈B,ι〉〉
d

P
{p1, p2} = ⊥P . It is clear that these

semantics are the correct ones for spatial and temporal attributes. It must be
emphasized once again that 〈B, ι〉 is in the background. For example, to know
that Chile is the disjoint union of its fifteen regions, as expressed in (r-Chile), it
is not necessary to know the precise geographic coordinates of the regions. It is
only necessary to know that their union covers all of Chile, without overlap.

Other rules, such a general meet rules, could be defined easily, but the above
selection has been chosen to support that which is needed to express common
constraints on granules.

The main notion of a granulated domain assignment, which, in contrast to the
formulation of [6], admits join rules as well as simple order statements, may now
be given.

Concept 2.7 (Granulated domain assignments). Let A be a granulated
attribute. A (granulated) domain assignment for A is a four-tuple
GDAA = (DomDomDomA , 〈BA , ιA〉,RulesA ,GrtoDomA) in which DomDomDomA = (DomA ,vA ,
⊥A ,>A) is a finite bounded poset, called the granulated domain of A, 〈BA , ιA〉 is
a subset base for DomDomDomA (so that 〈DomDomDomA , 〈BA , ιA〉〉 forms an SBBP), RulesA is a
set of rules over 〈DomDomDomA , 〈BA , ιA〉〉 (see Concept 2.6), and GrtoDomA : Gran〈A〉 →
2DomA is a function which is subject to the following conditions.

(gda-i) GrtoDomA(>Gran〈A〉) = {>A}.
(gda-ii) (∀g ∈ DomA \ {⊥A})(∃G ∈ Gran〈A〉)(g ∈ GrtoDomA(G)).
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(gda-iii) GrtoDomA(⊥A) = ∅.
(gda-iv) (∀G ∈ Gran〈A〉)(∀g1, g2 ∈ GrtoDomA(G))

(g1 6= g2 ⇒ (
d

A
{g1, g2} = ⊥A ∈ RulesA)).

(gda-v) (∀G1, G2 ∈ Gran〈A〉)((G1 ≤Gran〈A〉 G2)⇔
(∀g1 ∈ GrtoDomA(G1))(∃g2 ∈ GrtoDomA(G2))(g1 vA g2)).

(gda-vi) For each ϕ ∈ RulesA , |=〈A,〈B,ι〉〉 ϕ.

The elements of DomA are called the granules of GDAA . If g ∈ GrtoDomA(G),
then g is said to be of granularity G or to have granularity G. If g1 vA g2,
then g2 is said to be coarser than g1, and g1 is said to be finer than g2. It is
also said that g2 subsumes g1 and that g1 is subsumed by g2. As illustrated in
(gda-iv) and (gda-vi), to avoid long subscripts, |=〈DomDomDomA ,〈B,ι〉〉 is shortened to
just |=〈A,〈B,ι〉〉 , and the subscripts in rules are also shortened from DomDomDomA to
just A; thus

⊔
DomDomDomA

S = a is written as just
⊔

A
S = a, for example. Condition

(gda-iv) asserts a fundamental property of granularities — that distinct granules
of the same granularity are disjoint, in the sense that their meet in the SBBP
of granules is ⊥A . In spatial and temporal modelling, this means that they do
not overlap. Condition (gda-v) relates the order of granularities to the order of
granules — G1 ≤Gran〈A〉 G2 just in the case that for every granule g1 of G1, there
is a coarser granule g2 of G2. Finally, (gda-vi) requires that each rule in RulesA
be satisfied in DomDomDomA .

For the three attributes of Rsumb〈APlc, ATim, BBth〉, granulated domain as-
signments are completely straightforward. For APlc, the granules are geographic
regions, classified according to the granularities identified in Concept 2.3. For ex-
ample, Santiago and Concepción are granules of granularity City, while
Region VIII is a granule of granularity Region.

Similarly,ATim is assigned granules identifying time intervals. The granules
of BBth are just natural numbers, rounded as described in Concept 2.3. The
constraint of formula (r-Chile) in Sec. 1 may be represented easily in GDAAPlc

via

the single rule
⊔
⊥

R∈[I ,XV ]

APlc
Region R = Chile. Similarly, the constraint that Concepción

lies in Region VIII may be expressed using Concepción vAPlc
Region VIII , which

is not a rule but just an order statement in the poset DomDomDomAPlc
.

The same granule may belong to more than one granularity. For example, it
is not inconceivable that a single granule could have granularity both City and
Region. This would happen were a city to constitute a region by itself.

An ordinary monogranular attribute A is recaptured by a granularity which
contains only >Gran〈A〉 and the granularity ⊥Gran〈A〉 with GrtoDomA(⊥Gran〈A〉) =
FlatDom〈A〉, the set of all values which are allowed for attribute A in tuples.
>Gran〈A〉 is something of an artifact. It contains a single granule which is coarser
than each element of FlatDom〈A〉. In view of (gda-i), such a granule is required.

Notation 2.8 (Convention). For the rest of this section, unless stated ex-
plicitly to the contrary, take A to be a granulated attribute and GDAA =
(DomDomDomA , 〈BA , ιA〉,RulesA ,GrtoDomA) to be a granulated domain assignment for
A with DomDomDomA = (DomA ,vA ,⊥A ,>A).
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Observation 2.9 (Uniqueness of subsuming granules). Given g1, g2, g
′
2 ∈

DomDomDomA with g1 vA g2, g1 vA g′2, and G2 ∈ Gran〈A〉 with g2, g
′
2 ∈ GrtoDomA(G2),

it must be the case that g2 = g′2.

Proof. Let g1, g2, g
′
2 and G2 be as stated. By (gda-iv),

d
A
{g2, g′2} = ⊥A . How-

ever, g1 vA

d
A
{g2, g′2}, whence it must be the case that g2 = g′2. 2

Concept 2.10 (Coarsening). In order to support the management of source
data at differing granularities, it is often necessary to reduce them to a common
granularity. The operation of coarsening, which transforms a granule to a one at
a coarser granularity, is central to this idea. Formally, the function CoarsenA :
DomA×Gran〈A〉 → DomA is defined on 〈g1, G2〉 iff there is a g2 ∈ GrtoDomA(G2)
with g1 vA g2. In view of Observation 2.9, this g2 is unique whenever it exists.
In this case g2 = CoarsenA〈g1, G2〉, and is called the coarsening of g1 to G2. This
operation corresponds to MAP(g1, G2) of [6].

In the spatial context of APlc, the city of Concepción lies in Region VIII of
Chile. This would be represented by the coarsening
CoarsenAPlc

〈Concepción,Region〉 = Region VIII . Similarly, in the temporal con-
text of ATim, quarter 1 of year 2014 lies with 2014; this would be represented by
the coarsening CoarsenATim

〈Q1Y2014 ,Year〉 = 2014 .

Concept 2.11 (Thematic attributes and orderings). Following common
usage in geographic information systems [5], a thematic attribute is used to record
values associated with aggregating (e.g., spatial or temporal) attributes. For ex-
ample, in Rsumb〈APlc, ATim, BBth〉, BBth is thematic. When such attributes have
numerical domain values, there are often two distinct orders which are used
in modelling integrity under integration. First of all, granularities defined by
rounding, as explained in Concept 2.3, have a natural poset structure. How-
ever, there is also the natural order of numbers, independent of any gran-
ularity. This latter order is termed thematic. Formally, a thematic ordering
θA = {≤GθA | G ∈ Gran〈A〉} on GDAA assigns, for each granularity G ∈
Gran〈A〉, a partial order ≤GθA to GrtoDomA(G), subject to the requirement that

for G1, G2 ∈ Gran〈A〉 with G1 ≤Gran〈A〉 G2, and all g1, g
′
1 ∈ GrtoDomA(G1), if

g1 ≤G1

θA
g′1 then CoarsenA〈g1, G2〉 ≤G2

θA
CoarsenA〈g′1, G2〉. In other words, the-

matic order must be preserved under coarsening. For BBth, the thematic order
is simple numerical order, while the granular order is based upon subsumption
of intervals, as elaborated in Concept 2.3 and Concept 2.7.

Concept 2.12 (Aggregation operators on thematic orderings). Data in
a multigranular context are often statistical in nature. As such, thematic values
corresponding to coarser spatial or temporal regions may be aggregations of
those for finer ones. Therefore, a general formulation of an aggregation operator
is central to any effort to model data integration in such a context. Formally, let
θA = {≤GθA | G ∈ Gran〈A〉} be a thematic ordering on GDAA . An aggregation
operator on θA is a family

⊕A = {
⊕G

A : MultisetsOf〈GrtoDomA(G)〉 → GrtoDomA(G) | G ∈ Gran〈A〉}
of functions such that the following two properties hold for any G ∈ Gran〈A〉.
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(ag-i) For any g ∈ GrtoDomA(G),
⊕G

A{g} = g.

(ag-ii) For any finite multisets S1, S2 ⊆ GrtoDomA(G), if there is an injec-
tive multifunction h : S1 → S2 such that (∀g ∈ S1)(g ≤GθA h(g)), then⊕G

A(S1) ≤GθA
⊕G

A(S2).

In the above, MultisetsOf〈GrtoDomA(G)〉 denotes the set of all multisets of
GrtoDomA(G). A multiset, also called a bag, is similar to a set, except that
an element may have finitely many occurrences. A multifunction maps multi-
sets to multisets, with distinct occurrences of each element mapped possibly to
distinct elements. The idea should be clear. For aggregation operators such as
summation, it is necessary to treat each summand as a distinct element, even
for summands of the same value.

Summation, max, and min (using ≥ instead of ≤) all form aggregation oper-
ations on the natural thematic ordering of N, as sketched in Concept 2.11. On Z,
max and min form aggregation operations also, but summation does not, since it
does not respect the ordering condition. Operations which do not respect order,
such as averaging, are not aggregation operators in the sense defined here.

Concept 2.13. ]Coarsening tolerance] Coarsening and aggregation need not
commute with one another. For example, if the populations of the regions which
comprise a country are rounded before they are summed, the result will be differ-
ent than if they are summed first, and then rounded. Furthermore, data obtained
from different sources may vary slightly in thematic values, for any number of
reasons. Such data should not automatically be classified as inconsistent. Rather,
it is appropriate to build a certain amount of tolerance into the integration con-
straints. To this end, the notion of a coarsening tolerance is introduced. Formally,
let θA = {≤GθA | G ∈ Gran〈A〉} be a thematic ordering on GDAA . A coarsening

tolerance τA (for equality) with respect to θA is a Gran〈A〉 ×N-indexed family

{τ 〈G,n〉A ⊆ GrtoDomA(G) × GrtoDomA(G) | (G ∈ Gran〈A〉) ∧ (n ∈ N)} of reflex-
ive and symmetric relations for which the following three properties hold for all
n ∈ N.
(ct-i) τ

〈G,0〉
A = {(g, g) | g ∈ GrtoDomA(G)}.

(ct-ii) For G ∈ Gran〈A〉 and (g1, g2) ∈ τ 〈G,n〉A , if g′1, g
′
2 ∈ GrtoDomA(G) with

g1 ≤GθA g′1 ≤GθA g′2 ≤GθA g2, then (g′1, g
′
2) ∈ τ 〈G,n〉A as well.

(ct-iii) for G,G′ ∈ Gran〈A〉 with G ≤Gran〈A〉 G
′, if (g1, g2) ∈ τ 〈G,n〉A then

(CoarsenA〈g1, G′〉,CoarsenA〈g2, G′〉) ∈ τ 〈G
′,n〉

A .

The value of n identifies the amount of deviation from equality which is al-

lowed, with larger n permitting larger differences. If (g1, g2) ∈ τ 〈G,n〉A , then g1
and g2 are within the specified limit of deviation from equality for tolerance
level n. Often, n will indicate the number of elements being aggregated, but
this is not absolutely necessary. By default, a coarsening tolerance specifies the
amount of deviation from equality which is allowed. However, for certain con-
straints, a deviation from order may also be specified. More specifically, given a
coarsening tolerance τ as above and a thematic ordering θA on GDAA , the as-

sociated ordering tolerance is {τ 〈G,n,≤〉A ⊆ GrtoDomA(G)×GrtoDomA(G) | (G ∈
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Gran〈A〉) ∧ (n ∈ N)}, given relation by relation according to

τ
〈G,n,≤〉
A = τ

〈G,n〉
A ∪ {(g1, g2) ∈ GrtoDomA(G)× GrtoDomA(G) | g1 ≤GθA g2}.

In other words, τ
〈G,n,≤〉
A is obtained from τ

〈G,n〉
A by adding all tuples of granules

of the form (g1, g2) with g1 ≤GθA g2. To facilitate parameterized use of tolerances

in formulas, τ
〈G,n〉
A may also be represented as τ

〈G,n,=〉
A .

Consider the thematic attribute BBth of the scheme Rsumb〈APlc, ATim, BBth〉,
and the associated notions developed in the penultimate paragraph of Concept
2.3. Let the aggregation operator to be supported be summation

∑
, with results

rounded as specified by the granularity roundi. A useful tolerance ωBBth
for the

granularity roundi has summation accuracy 10−i times the number n of items to

be aggregated, so a suitable definition for ωBBth
at that level would be ω

〈roundi,n〉
BBth

=

{(k1, k2) | |k1 − k2| ≤ n× 10−i}. For i = 0, this matches the identity tolerance;

i.e., ω
〈round0,n〉
BBth

= {(k, k) | k ∈ N} for all n ∈ N.
Leaving the context of this example and returning to the general setting,

the identity tolerance IdTol
〈G,n〉
A is given by the set of relations which are the

identity on each set of granules; specifically, for each G ∈ Gran〈A〉 and each

n ∈ N, IdTol
〈G,n〉
A = {(g, g) | g ∈ GrtoDomA(G)}. Similarly, IdTol

〈G,n,≤〉
A =

{(g1, g2) | (g1, g2 ∈ GrtoDomA(G)) ∧ (g1 vA g2)}.

Concept 2.14 (Thematic triples). For a thematic attribute, it will prove
convenient to assemble the thematic ordering, aggregation operator, and toler-
ance into one notational unit. Specifically, let A be a multigranular attribute. A
thematic triple for A is of the form 〈θA ,⊕A, τA〉, with θA a thematic ordering
on A, ⊕ an aggregation operator for θA , and τ a coarsening tolerance for θA . In
some cases, aggregation is not used, and so the choice of aggregation operator
does not matter. In that case, the thematic triple may be written as 〈θA , -, τA〉.

Definition 2.15 (Multigranular relation schemes). Let U be a set of gran-
ulated attributes. Extending the classical definition [21, 1.2], for k ∈ N+, a
(k-ary) multigranular relation scheme over U is an expression of the form R〈α〉,
where α = 〈A1, A2, . . . , Ak〉 ∈ Uk. The symbol R is called the relation name,
and the list α is called an attribute vector.

Given a granulated domain assignment GDAA (see Concept 2.7) for each
A ∈ U, a data tuple for the attribute vector α = 〈A1, A2, . . . , Ak〉 is a k-tuple
t ∈ DomA1 × DomA2 × . . .× DomAk

. The set of all data tuples for α is denoted
Tuples〈α〉. A database for the schema R〈α〉 is a set M ⊆ Tuples〈α〉. The set of
all databases for R〈α〉 is denoted DB(R〈α〉).

3 Constraints for Data Integration

In this section, the concepts developed in Sec. 2 are used to develop specifi-
cations for the most important kinds of dependencies for data integration in
the multigranular context. As noted in Sec. 1 integration is over copies of the
same schema, albeit with differing granularities. For further simplicity, it will be
assumed that all tuples to be integrated have been placed in a single relation.
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Notation 3.1 (The context). Throughout this section, take U to be a fi-
nite universe of granulated attributes (Concept 2.3). In particular, assume that
{A1, A2, . . . , Ak, B} ⊆ U. Furthermore, for each A ∈ U, there is an associated
granulated domain assignment GDAA , (Concept 2.7).

Concept 3.2 (General notions of TMCDs). The dependencies developed
in this section are called thematic multigranular comparison dependencies, or
TMCDs. They resemble ordinary functional and order dependencies [14, 22, 25]
in many ways, including that properties of a set of attributes determines those of

another. The general notation is A1A2 . . . Ak
~−→

(`,r)
〈B :〈θ,⊕, τ〉〉, in which the Ai’s

and B are attributes and 〈θ,⊕, τ〉 is a thematic triple for B. The dependencies
are classified along three dimensions. First, the comparison operator, shown as ~
above, is either granular subsumption v or else equality. Second, the type, shown
as (`, r) above, indicates the nature of the expressions which are compared, and
will be explained further in the individual cases below. Finally, a dependency
may be unified or attributewise, with the latter indicated by underlining certain
attributes on the left-hand side. Although there are many variants in principle,
only two will be considered in this paper. Those of type (1, 1), which involve only
order conditions and no aggregation, are examined in Concept 3.4, while those
of types (⊥, 1) and (-, 1), which involve fundamental aggregation as illustrated
in the examples surrounding Rsumb of Sec. 1, are developed in Concept 3.5.

In contrast to the CFDs (conditional functional dependencies) of [6], the
TMCDs developed here are specifically oriented towards data integration. CFDs
are designed to recapture dependencies which hold only for certain granulari-
ties, with no support for aggregation or tolerance. TMCDs, on the other hand,
are designed to support these latter two concepts. The overlap of CFDs and
TCMDs is therefore minimal; they address complementary issues in the context
of constraints for multigranular schemata.

Definition 3.3 (Two useful functions). Before presenting the definitions of
specific TMCDs, it is necessary to introduce two special functions, which are
defined here for a generic granular attribute A.

GranSetOfA〈g〉 The function GranSetOfA : DomA → 2Gran〈A〉 returns the set
of granularities of the granule g.

CoarsenSetMUBA : The function CoarsenSetMUBA : 2DomA → 2Gran〈A〉 maps
S ⊆ DomA to the minimal elements (under ≤Gran〈S〉) in the set
{G ∈ Gran〈A〉 | (∀g ∈ S)(CoarsenA〈g,G〉)↓}. In words, it returns the min-
imal granularities to which all elements of S coarsen.

Concept 3.4 (TMCDs of expression type (1, 1)). The template for a

TMCD of type (1, 1) is A1A2 . . . Ak
~−→

(1,1)
〈B :〈θ, -, τ〉〉. This is the simplest type

of a unified TMCD, and lies closest to ordinary functional dependencies (FDs)
and order dependencies (ODs). In particular, no aggregation is involved; this
is why the aggregation operator in the thematic triple is shown as a dash; its
properties do not matter. Nevertheless, although basic, they are important be-
cause a violation can flag fundamental inconsistencies, such as a city having a
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greater population than the region which houses it. The parameter ~ is one of
v or equality (=), while the parameter (1, 1) indicates that the comparison op-
eration involves only a single tuple on each side. The governing formula for the
comparison operation of granular subsumption (when ~ is vA) is shown below.

(∀t1 ∈ Tuples〈α〉)(∀t2 ∈ Tuples〈α〉)(∀G ∈ CoarsenSetMUBB〈{t1.B, t2.B}〉)

(((R〈t1〉 ∧ R〈t2〉) ∧ (
∧

j∈[1,k]

(t1.Aj vAj
t2.Aj))

⇒ τ
〈G,1,≤〉
B 〈CoarsenB〈t1.B,G〉,CoarsenB〈t2.B,G〉〉)

To obtain the formula for equality, replace vAi
with =, and τ

〈G,1,≤〉
B with τ

〈G,1〉
B .

Coarsening is essential in the multigranular environment. Consider the con-
crete case of of the schema Rmaxp〈APlc, ATim, BPop〉, with A1 = APlc, A2 = ATim,
and B = BBth. Think of the context described in Sec. 2; specifically, consider
τ bound to ωBBth

, as described in Concept 2.13. There might be two tuples
〈p1, s1, n1〉 and 〈p2, s2, n2〉 such that p1 vAPlc

p2 and s1 vATim
s2. When applied

to these two tuples, with t1 = 〈p1, s1, n1〉 and t2 = 〈p2, s2, n2〉, the constraint
requires that n1 ≤ n2, up to coarsening to a common granularity and up to the
tolerance specified by ωBBth

. Concretely, if region p1 is contained in region p2,
and time interval s1 is contained in time interval s2, then the number of births
in p1 during s1 must be no larger than the number of births in p2 during s2.

Concept 3.5 (TMCDs of expression type (⊥, 1) and (-, 1)). Together
with those of type (1, 1) as described in Concept 3.4, these form the most im-
portant types of constraints for verifying the integrity of multigranular data from
different sources. The template for this dependency, with ` ∈ {⊥, -}, is

A1 . . . Ai−1AiAi+1 . . . Ak
~−→

(`,1)
〈B :〈θ,⊕, τ〉〉.

This type of constraint is attributewise; only one attribute on the left-hand
side (LHS) is allowed to vary in value amongst the tuples to be tested. The
values of those which are underlined are identical in all tuples considered. The
parameters (⊥, 1) and (-, 1) indicate that the comparison is between a set of
attribute values and a single value, with ⊥ indicating further that the set of
values forms a disjoint join and - indicating that the join need not be disjoint.
The general logical formula which covers all cases in which ~ is equality is
shown below, with the symbol

⊔
? representing one of

⊔
⊥ or

⊔
, depending upon

whether the type is (⊥, 1) or (-, 1). For inequality, replace ((
⊔
?

t1∈T1

Ait1.Ai) =

t2.Ai) with ((
⊔
?

t1∈T1

Ait1.Ai) vA t2.Ai) and τ
〈G,1〉
B with τ

〈G,1,≤〉
B . Due to space

limitations, only the case of ~ being equality will be discussed further, since the
most important modelling situations involve that operator.
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(∀T1 ⊆f Tuples〈α〉)(∀t2 ∈ Tuples〈α〉)(∀G1 ∈ CoarsenSetMUBB〈{t.B | t ∈ T1}〉)
(∀G2 ∈ GranSetOfB〈t2.B〉)(∀G ∈ MUB〈{G1, G2}〉)

((
∧
t1∈T1

R〈t1〉) ∧ R〈t2〉 ∧ (
∧
t1∈T1

j∈[1,k]\{i}

(t1.Aj = t2.Aj)) ∧ ((
⊔
?

t1∈T1

Ai

t1.Ai) = t2.Ai)

⇒ τ
〈G,Card(T1)〉
B 〈CoarsenB〈

⊕
t1∈T1

G1

B
CoarsenB〈t1.B,G1〉, G〉,CoarsenB〈t2.B,G〉〉)

To keep things concrete, consider the cases in which the type is (⊥, 1). This
kind of constraint applies when an equality of the form

⊔
⊥

Ai
S = a holds in

GDAAi
. As a specific example, consider the scheme Rmaxp〈APlc, ATim, BPop〉 with

Ai associated with APlc. Suppose further that ⊕B is bound to summation. S
might be a set of disjoint regions which together are exactly the region a. More
concretely, if there are tuples {〈pi, t, ni〉 | i ∈ [1,m]} in the relation, and also a

tuple 〈p, t, n〉, with (
⊔
⊥

i∈[1,m]
APlc

pi) = p holding in GDAAPlc
, then the LHS of the rule

is matched and the equality
∑
i∈[1,m] ni = n should hold, modulo coarsening and

tolerance. This is exactly what the constraint specifies — that the population
of a region, at a given point in time, is the sum of the populations of a set
of disjoint regions which cover it completely, without overlap. The reason for
coarsening the elements from T1 first to G1, and then to G after aggregation,
is that it is always desirable to perform aggregation at the finest granularity
possible. While it would be possible to aggregate everything to G from the
start, this could possibly result in increased error in the aggregation. Inequality
arises in this same context when only some of the regions are considered; if

(
⊔
⊥

i∈[1,m]
APlc

pi) vAPlc
p, then

∑
i∈[1,m] ni ≤ n, module coarsening and tolerance.

The corresponding nondisjoint constraint, with
⊔

Ai
replacing

⊔
⊥

Ai
, applies

when the aggregation operator does not require disjointness (e.g., max and min).

Discussion 3.6 (Discarding attributewise specification). In the case that
the same thematic order and aggregation operator is used with respect to all
attributes on the LHS of a TMCD, it is tempting to consider discarding the at-
tributewise specification, and combine all into one big dependency, which might
be represented as A1A2 . . . Ak

=−→
(`,1)

~〈B :〈θ,⊕, τ〉〉, with ` ∈ {⊥, -}, with the

following logical formula for type (⊥, 1).

(∀T1 ⊆f Tuples〈α〉)(∀t2 ∈ Tuples〈α〉)(∀G1 ∈ CoarsenSetMUBB〈{t.B | t ∈ T1}〉)
(∀G2 ∈ GranSetOfB〈t2.B〉)(∀G ∈ MUB〈{G1, G2}〉)

((
∧
t1∈T1

R〈t1〉) ∧ R〈t2〉 ∧ (
∧

i∈[1,k]

(
⊔
⊥

t1∈T1

Ai

t1.Ai) = t2.Ai) ∧

⇒ τ
〈G,Card(T1)〉
B 〈CoarsenB〈

⊕
t1∈T1

G1

B
CoarsenB〈t1.B,G1〉, G〉,CoarsenB〈t2.B,G〉〉)
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From a theoretical point of view, this definition is fine. However, without suitable
adaptation, it does not recapture what would normally be expected of such a
dependency. To illustrate, work within the context of Rsumb〈APlc, ATim, BBth〉,
with the rules

⊔
⊥

APlc
{p1, p2} =

⊔
⊥

APlc
{p3, p4} = p holding in GDAAPlc

and the

rules
⊔
⊥

A2
{s1, s2} =

⊔
⊥

A2
{s3, s4} = t holding in GDAATim

. Now, suppose that

T1 = {〈p1, s1, b1〉, 〈p2, s2, b2〉}, and t2 = 〈p, s, b〉 in the above formula. Assume
further that all values for attribute BBth are at the same granularity G, so no
coarsening is necessary. Furthermore, for simplicity, assume that the tolerance
τ is bound to the identity. Then the above rule mandates that b1 + b2 = b.
However, this is not realistic modelling. b1 is the number of births in region p1
during time s1, while b2 is the number of birth in region p2 during time interval
s2. To get the total number of births in region p during time interval t, it would
be necessary to find and add tuples of the form 〈p1, s2, b3〉 and 〈p2, s1, b4〉. Then,
and only then, would b1 + b2 + b3 + b4 = b hold. In other words, there must be a
tuple which captures every (place,time) point of an appropriate “rectangle” in
order to get the correct total number of births.

Unfortunately, things can become even more complex. Suppose instead that
T1 = {〈p1, s1, b1〉, 〈p2, s1, b2〉, 〈p3, s2, b3〉, 〈p4, s2, b4〉} and T2 = {〈p, s, b〉}. It is
easy to see that b1 + b2 + b3 + b4 = b must hold here as well. In other words,
different decompositions of p may be used for different corresponding values of
attributeATim. From a formal point of view, the most elegant solution is to regard

A1A2 . . . Ak as a combined domain, and replace (
∧k
i=1(

⊔
⊥

t1∈T1
Ai
t1.Ai = t2.Ai))

with something of the form
⊔
⊥

t1∈T1
Ai

(t1.A1A2 . . . Ak = t2.A1A2 . . . Ak). However, it

seems that to implement something so complex efficiently is almost impossible.
Thus, it seems that attributewise specification is a necessity.

Discussion 3.7 (The join logic for granulated domain assignments).
The presentation in this paper has focused upon the representation of constraints
for data integration in the multigranular environment, but not their implemen-
tation. Due to space limitations, a full discussion must be deferred to another pa-
per. Nevertheless, there is an issue which demands at least some brief discussion.
Looking particularly at the formula of Concept 3.5 for constraints of types (⊥, 1)
and (-, 1), it cannot help but be noted that quantification for T1 is over sets of tu-
ples, not just individual tuples. It might then be concluded that such constraints
cannot possibly be supported efficiently. However, it is not necessary to check all
subsets of tuples. Rather, it is sufficient to consider only those whose combined
values for attribute Ai match the LHS of some rule in the SBBP, closed under
deduction. This may be managed effectively using a propositional Horn logic.
Specifically, let A be an attribute, and let X be a set of rules of the form g1 vA g2,
with g1, g2 ∈ DomA , and of the form

⊔
S

= g, with S ⊆f DomA and g ∈ DomA .
The join logic of X, denoted JLogic〈X〉, is the propositional Horn logic whose
propositions are just the elements of DomA , with ⊥A representing the state-
ment which is always true and >A representing the statement which is always
false. The clauses Clauses〈JLogic〈X〉〉 of JLogic〈X〉 are given as follows. First, if
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(g1 vA g2) ∈ X, then (g2 ⇒ g1) ∈ Clauses〈JLogic〈X〉〉. Second, if (
⊔

S
= g) ∈ X,

then (
∧
S ⇒ g) ∈ Clauses〈JLogic〈X〉〉 and (g ⇒ s) ∈ Clauses〈JLogic〈X〉〉 for all

s ∈ S as well. The utility of this representation is that inference in propositional
Horn logic has complexity Θ(n) or Θ(n·log(n)), depending upon how proposition
names are accessed [10]. Thus, inference which operates on joins and order only,
and not meets, may be performed very efficiently. Disjointness conditions, neces-
sary to support rules of the form

⊔
⊥

A
S = g, are not represented in this logic, and

so must be handled separately. This may be managed via an auxiliary structure
which maintains information on disjointness of all pairs of granules. There are
numerous data structures which may be employed to achieve this efficiently, but
space limitations preclude further discussion.

4 Conclusions and Further Directions

A method for incorporating join and disjointness rules into the granule structure
of multigranular relational attributes has been developed, and these methods
have then been applied to the problem of integrating data at different granular-
ities. A family of constraints, the TMCDs, are proposed as a means of checking
integrity under such data integration. There are several avenues for further study.

Data structures for effective implementation: The ideas developed
in this paper will only prove useful if they can be implemented effectively.
Although a few ideas along these lines are sketched in Discussion 3.7, a
much more complete investigation, with implementation, is necessary.

Query language: The work here proposes only constraints. An accompa-
nying query language which takes into account the special needs of the
multigranular framework must also be developed.

Integration with monogranular approaches: To keep the initial inves-
tigation as focused as possible, the context of this paper is limited to sources
based upon identical unirelational schemata, differing only in granularity. It
is important to extend it to aspects common to monogranular approaches;
in particular, multirelational sources based upon different schemata.
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