
Physical Data Organization and
Query Processing

Question: How do we organize a database
physically in order to achieve efficient query
processing?

Obvious points:

· Physical database organization has a profound
effect upon the efficiency of query processing.

· Indices (both primary and secondary) to the most
important attributes are the key to efficiency.

Assumptions:

· A relation is stored as a group of tuples.

· Each tuple of a relation is stored as a record.

· The primary key of the relation is used as the
primary key of the physical storage
organization.

· Other indices are possible; these are
secondary design decisions.

20110505: slides15: 1 of 17

Note further:

· Secondary indices are expensive to maintain.

· It may not be feasible to maintain a secondary
index on every attribute.

We start by looking at each of the fundamental
query types in isolation:

· Select
· Project
· Join

20110505: slides15: 2 of 17

Processing of Select Queries:

The “easiest” situation occurs when the selection
criterion (the "Where" part) involves a simple
selection on a primary key:

Select *
From DEPARTMENT
Where DNUMBER = 3

· Just use the primary key index to identify the
desired tuples.

In other cases, efficiency depends upon other
issues:

Select *
From EMPLOYEE
Where SUPERSSN = 123456789

· If the select is on a secondary index, things are
almost as good.

· If selection is not on a secondary index, then the
tuples must be processed one-by-one.

20110505: slides15: 3 of 17

If there are multiple select conditions, those which
are indexed should be processed first.

Select *
From EMPLOYEE
Where (DNO = 5) AND (SEX = ‘F’)

· Assume that DNO is a secondary index. Then, it
is more efficient to select the tuples satisfying
(DNO = 5) first, and then the tuples satisfying
(SEX = ‘F’).

· Alternatively, for each tuple selected with (DNO =
5), the check for (SEX = ‘F’) may be performed
immediately.

With disjunctive queries, there is no easy solution:

Select *
From EMPLOYEE
Where (DNO = 5) OR (SEX = ‘F’)

· The best way to process the query is to check
both conditions simultaneously on each tuple.
This avoids processing each tuple twice.

20110505: slides15: 4 of 17

With range queries, an index which allows
sequential access is the best:

Select *
From EMPLOYEE
Where SSN < 300000000

· If we can process tuples in order of SSN’s, the
operation will be far more efficient.

· In such a case, hashed-table access is not very
useful.
· B+-tree access is superior to extendible-

hashing access.

20110505: slides15: 5 of 17

Processing of Project Queries:

· With pure projections, the only nontrivial issue is
the removal of duplicate entries.

Select distinct SALARY
From EMPLOYEE

· There are two options:

1. Retrieve the tuples, sort the list, and remove
the duplicates.

2. Sort the list on the fly, as it is built. Throw out
duplicates on the fly.

· Either option effectively requires sorting the list.

20110505: slides15: 6 of 17

Processing Join Queries:

· It is important to realize that, in the worst case, a
join can consist of n1 · n2 tuples, where n1 and n2

are the sizes of the two relations. Thus,
efficiency is paramount.

· There are two general strategies:
· Use existing index structures.
· Build custom, temporary index structures.

· The first option is employed, whenever possible,
since constructing temporary indices is
expensive.

20110505: slides15: 7 of 17

Sorted sequential processing:

· First consider the case that the matched
attributes of each relation are indexed
sequentially.

· Assume that MGRSSN is indexed sequentially in
DEPARTMENT, and that SSN is the primary key
of EMPLOYEE, also allowing sequential access:

Select *
From EMPLOYEE, DEPARTMENT
Where EMPLOYEE.SSN =
 DEPARTMENT.MGRSSN

The processing method is similar to the familiar
algorithm for merging sorted lists.
· Maintain a pointer to each list.
· Repeat:

· Increment the one pointing to the smaller value
until it matches or exceeds the other.

· If there is a match, create a join tuple.
 Until one list is exhausted.

· The time complexity of this strategy is (n1+n2),
where n1 and n2 are the respective sizes of the
two relations.

· Because adjacent records are usually blocked
together in a (primary) sequential index, this
strategy is particularly attractive in that the
constant multiplier of the complexity will be
relatively low.

20110505: slides15: 8 of 17

Indexed Processing:

· When the join attributes are indexed, but without
rapid sequential access (e.g., with extendible
hash indices), this approach will prove attractive.

· Only one of the relations need be indexed.

· Process the tuples of the non-indexed relation,
one-by-one.

· For each tuple, search the index for matching
tuples in the other relation.

· This strategy is (n1 · s(n2)), where:
· n1 = size of the non-indexed relation.
· n2 = size of the indexed relation.
· s(n2) = time required to retrieve an indexed

element in the indexed relation.

· In extendible hashing, s(n2) = (1), so the
complexity is just (n1).

· The constant multiplier will be substantial in
comparison to the indexed sequential approach,
however, since a separate access is needed for
each element in the indexed part.

· A non-sequential index on the first relation (“non-
indexed” above) will be of little use.

· If both relations are indexed, process the smaller
one sequentially, and use the non-sequential
index of the larger one.

20110505: slides15: 9 of 17

Non-indexed Processing:

If indices on the join attributes are not available,
there are still several choices: Assume the following
parameters:

· n1 = size of relation which is processed
linearly or sorted.

· n2 = size of the other relation.
· s(n2) = time to search for one element of the

second relation.

1. Brute force processing:
· In this approach, for each record of the first

relation, a search is conducted in the second
for a matching tuple.
· Complexity: (n1 · s(n2)).
· With no special indexing, (n1 · n2).

2. Common-hash
· One can also build a temporary hash table.
· In this case, it is often best to hash both

relations into the same table. Matching
entries will then be found in the same
buckets.

· Usually an intermediate index is used, to
avoid physical movement of records.

· The big cost of this approach is building the
intermediate hash table: (n1 + n2), with a
large constant multiplier.

· The join complexity is then also (n1 + n2).

20110505: slides15: 10 of 17

When the join is on more than one attribute:

· Usually it is best to create a join on just one
attribute first, and then pare down that result with
further select-style checks.

· Whenever possible, choose the most ideal
attributes for the first join.
· The fastest operation.
· Creation of the fewest tuples.

· In the example below, assume that no indices
exist for the join attributes:
· Join on the second condition first. Why?

· Now assume that DEPARTMENT is indexed by
MGRSSN.
· Use the index on MGRSSN, and join on the

first condition first. Why?

Select *
From EMPLOYEE, DEPARTMENT
Where (EMPLOYEE.SUPERSSN =
 DEPARTMENT.MGRSSN)
 AND
 (DEPARTMENT.DNAME =
 EMPLOYEE.LNAME)

20110505: slides15: 11 of 17

General principle:

· In all of these approaches, view asymptotic
complexity measures with caution.

· The size of constant multipliers often determines
the complexity in practical terms.

20110505: slides15: 12 of 17

Processing Compound Queries:

· With compound queries, there may be options to
arrange things to make the processing more
efficient.

· The general strategy is to try to perform
operations which reduce the size of relations:

· Selection
· Projection
· Intersection

before performing operations which increase the
size of things:

· Join
· Union.

20110505: slides15: 13 of 17

Example:

Select *
From EMPLOYEE, DEPARTMENT
Where (EMPLOYEE.SUPERSSN =
 DEPARTMENT.MGRSSN)
 AND
 (SALARY > 50000)

· This may be realized in two ways.

X1 
 EMPLOYEE (SUPERSSN=MGRSSN) DEPARTMENT

X2  (SALARY > 50000)(X1)

or

X1  (SALARY > 50000)(EMPLOYEE)

X2  X1 (SUPERSSN=MGRSSN) DEPARTMENT

· Clearly, the second alternative is more efficient, in
that far fewer tuples are generated.

· There is an extensive theory of such operations,
known as query optimization.

20110505: slides15: 14 of 17

Examining Query Plans in PostgreSQL

● PostgreSQL has a (nonstandard) command called
EXPLAIN.

● Example:

company=> explain select * from
 employee, department
company­> where
 employee.dno=department.dnumber;

 QUERY PLAN
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
 Hash Join (cost=1.04..2.24 rows=8
width=128)
 Hash Cond: ("outer".dno =
"inner".dnumber)
 ­> Seq Scan on employee
(cost=0.00..1.08 rows=8 width=92)
 ­> Hash (cost=1.03..1.03 rows=3

 width=36)
 ­> Seq Scan on department
(cost=0.00..1.03 rows=3 width=36)
(5 rows)

20110505: slides15: 15 of 17

Query Processing on Distributed
Databases: Semijoins

In distributed database systems, the cost of
transmitting data becomes an important concern.

The semijoin is a relational operator which arose in
the context of efficient query processing on
distributed databases.

· Suppose that we wish to compute the join of the
instances of two relation schemata which are
stored at distinct remote sites:

· R[AB] stored at node 1
· S[BC] stored at node 2.

· Suppose that the query processing may be
performed at either remote site, and the result
then shipped to the local site.

· Using ordinary joins, we would have to ship at
least one of the relations to the other remote site.
This could be expensive.

· The semijoin operation provides a way to reduce
this cost.

· Suppose that B is a key for S[BC], but that it is
not a key for R[AB].

· Suppose further that the size of an “A” value is
much larger than that of a “B” value.

20110505: slides15: 16 of 17

● Suppose further that it is expected that there will
be a lot of “mismatches” between the two “B”
columns (i.e., tuples which will not find a match in
the other relation).

· It would then be more economical to ship just
those tuples of R[AB] which match a tuple of
S[BC] to site 2, rather than to ship all tuples of
R[AB].

· We can follow this plan:

1. Send the projection B(R[AB]) to node 2.

2.Compute the semijoin

 S[BC]  R[AB] = S[BC]  B(R[AB])

 at node 2. In words, S[BC]  R[AB] consists of
just those tuples of S[BC] which match some
tuple of R[AB] in the join.

3. Ship this semijoin back to node 1.

4. Compute
R[AB]  (S[BC]  R[AB])

at node 1. This value is equal to R[AB]  S[BC].

· Observe that communication costs may have
been reduced, because the whole of S[BC] did
not have to be transmitted across the network.

· This must be balanced against the cost of
shipping B(R[AB]) to node 2.

20110505: slides15: 17 of 17

