Physical Data Organization and
Query Processing

Question: How do we organize a database
physically in order to achieve efficient query
processing?

Obvious points:

« Physical database organization has a profound
effect upon the efficiency of query processing.

« Indices (both primary and secondary) to the most
important attributes are the key to efficiency.
Assumptions:

A relation is stored as a group of tuples.

« Each tuple of a relation is stored as a record.

o The primary key of the relation is used as the
primary key of the physical storage
organization.

« Other indices are possible; these are
secondary design decisions.

20110505: slides15: 1 of 17



Note further:
« Secondary indices are expensive to maintain.

It may not be feasible to maintain a secondary
index on every attribute.

We start by looking at each of the fundamental
query types in isolation:

o Select

o Project

« Join

20110505: slides15: 2 of 17



Processing of Select Queries:

The “easiest” situation occurs when the selection
criterion (the "Where" part) involves a simple
selection on a primary key:

*

Select
From DEPARTMENT
Where DNUMBER =3

« Just use the primary key index to identify the
desired tuples.

In other cases, efficiency depends upon other
issues:

*

Select
From EMPLOYEE
Where SUPERSSN = 123456789

« If the select is on a secondary index, things are
almost as good.

« If selection is not on a secondary index, then the
tuples must be processed one-by-one.

20110505: slides15: 3 of 17



If there are multiple select conditions, those which
are indexed should be processed first.

Select *
From EMPLOYEE
Where (DNO =5) AND (SEX =F’)

o Assume that DNO is a secondary index. Then, it
is more efficient to select the tuples satisfying
(DNO = 5) first, and then the tuples satisfying
(SEX ="F).

« Alternatively, for each tuple selected with (DNO =
5), the check for (SEX = ‘F’) may be performed
immediately.

With disjunctive queries, there is no easy solution:
Select ~
From EMPLOYEE
Where (DNO =5)OR (SEX="F)

o The best way to process the query is to check

both conditions simultaneously on each tuple.
This avoids processing each tuple twice.

20110505: slides15: 4 of 17



With range queries, an index which allows
sequential access is the best:

*

Select
From EMPLOYEE
Where SSN < 300000000

« If we can process tuples in order of SSN’s, the
operation will be far more efficient.

« In such a case, hashed-table access is not very
useful.
e B’-tree access is superior to extendible-
hashing access.

20110505: slides15: 5 of 17



Processing of Project Queries:

« With pure projections, the only nontrivial issue is
the removal of duplicate entries.

Select distinct SALARY
From EMPLOYEE

o There are two options:

1. Retrieve the tuples, sort the list, and remove
the duplicates.

2. Sort the list on the fly, as it is built. Throw out
duplicates on the fly.

« Either option effectively requires sorting the list.

20110505: slides15: 6 of 17



Processing Join Queries:

« Itis important to realize that, in the worst case, a
join can consist of ns e n, tuples, where n; and n;
are the sizes of the two relations. Thus,
efficiency is paramount.

o There are two general strategies:
« Use existing index structures.
« Build custom, temporary index structures.

« The first option is employed, whenever possible,
since constructing temporary indices is
expensive.

20110505: slides15: 7 of 17



Sorted sequential processing:

First consider the case that the matched
attributes of each relation are indexed
sequentially.

Assume that MGRSSN is indexed sequentially in
DEPARTMENT, and that SSN is the primary key
of EMPLOYEE, also allowing sequential access:

*

Select

From EMPLOYEE, DEPARTMENT

Where EMPLOYEE.SSN =
DEPARTMENT.MGRSSN

The processing method is similar to the familiar
algorithm for merging sorted lists.

Maintain a pointer to each list.

Repeat:

« Increment the one pointing to the smaller value
until it matches or exceeds the other.

« If there is a match, create a join tuple.

Until one list is exhausted.

The time complexity of this strategy is ®(ns+n,),
where ny and n; are the respective sizes of the
two relations.

Because adjacent records are usually blocked
together in a (primary) sequential index, this
strategy is particularly attractive in that the
constant multiplier of the complexity will be
relatively low.

20110505: slides15: 8 of 17



Indexed Processing:

When the join attributes are indexed, but without
rapid sequential access (e.g., with extendible
hash indices), this approach will prove attractive.

Only one of the relations need be indexed.

« Process the tuples of the non-indexed relation,
one-by-one.

« For each tuple, search the index for matching
tuples in the other relation.

This strategy is ®(n; e s(ny)), where:

e N1 = size of the non-indexed relation.

e N, = size of the indexed relation.

e s(n2) = time required to retrieve an indexed
element in the indexed relation.

In extendible hashing, s(n;) = ®(1), so the
complexity is just ®(n4).

The constant multiplier will be substantial in
comparison to the indexed sequential approach,
however, since a separate access is needed for
each element in the indexed part.

A non-sequential index on the first relation (“non-
indexed” above) will be of little use.

If both relations are indexed, process the smaller
one sequentially, and use the non-sequential
index of the larger one.

20110505: slides15: 9 of 17



Non-indexed Processing:

If indices on the join attributes are not available,
there are still several choices: Assume the following
parameters:
e Ny = size of relation which is processed
linearly or sorted.
e N, = size of the other relation.
e s(n2) = time to search for one element of the
second relation.

1. Brute force processing:

« In this approach, for each record of the first
relation, a search is conducted in the second
for a matching tuple.

o Complexity: ®(ns o s(n2)).
» With no special indexing, ®(n; e ny).

2. Common-hash

« One can also build a temporary hash table.

o In this case, it is often best to hash both
relations into the same table. Matching
entries will then be found in the same
buckets.

« Usually an intermediate index is used, to
avoid physical movement of records.

e The big cost of this approach is building the

intermediate hash table: ®(ns + ny), with a
large constant multiplier.

e The join complexity is then also ®(n; + ny).

20110505: slides15: 10 of 17



When the join is on more than one attribute:

o Usually it is best to create a join on just one
attribute first, and then pare down that result with
further select-style checks.

« Whenever possible, choose the most ideal
attributes for the first join.
« The fastest operation.
« Creation of the fewest tuples.

« In the example below, assume that no indices
exist for the join attributes:
« Join on the second condition first. Why?

o Now assume that DEPARTMENT is indexed by
MGRSSN.
o Use the index on MGRSSN, and join on the
first condition first. Why?

Select *
From EMPLOYEE, DEPARTMENT
Where (EMPLOYEE.SUPERSSN =
DEPARTMENT.MGRSSN)
AND
(DEPARTMENT.DNAME =
EMPLOYEE.LNAME)

20110505: slides15: 11 of 17



General principle:

« In all of these approaches, view asymptotic

complexity measures with caution.
« The size of constant multipliers often determines

the complexity in practical terms.

20110505: slides15: 12 of 17



Processing Compound Queries:

« With compound queries, there may be options to
arrange things to make the processing more
efficient.

o The general strategy is to try to perform

operations which reduce the size of relations:

« Selection

« Projection

« Intersection
before performing operations which increase the
size of things:

« Join

o Union.

20110505: slides15: 13 of 17



Example:
Select *
From EMPLOYEE, DEPARTMENT
Where (EMPLOYEE.SUPERSSN =
DEPARTMENT.MGRSSN)
AND
(SALARY > 50000)

« This may be realized in two ways.

X1 <
EMPLOYEE i superssn=merssny DEPARTMENT

X2 < O(sALARY > 50000)(X1)
or

X4 <= osaLary > s50000(EMPLOYEE)

Xz < X1 <(superssn=merssn) DEPARTMENT

« Clearly, the second alternative is more efficient, in
that far fewer tuples are generated.

o There is an extensive theory of such operations,
known as query optimization.

20110505: slides15: 14 of 17



Examining Query Plans in PostgreSQL

PostgreSQL has a (honstandard) command called
EXPLAIN.

Example:

company=> explain select * from
employee, department

company-> where
employee.dno=department.dnumber;

QUERY PLAN
Hash Join (cost=1.04..2.24 rows=8
width=128)
Hash Cond: ("outer".dno =
"inner" .dnumber)
-> Seq Scan on employee
(cost=0.00..1.08 rows=8 width=92)
-> Hash (cost=1.03..1.03 rows=3
width=36)
-> Seq Scan on department
(cost=0.00..1.03 rows=3 width=36)
(5 rows)

20110505: slides15: 15 of 17



Query Processing on Distributed
Databases: Semijoins

In distributed database systems, the cost of
transmitting data becomes an important concern.

The semijoin is a relational operator which arose in
the context of efficient query processing on
distributed databases.

« Suppose that we wish to compute the join of the
instances of two relation schemata which are
stored at distinct remote sites:

« R[AB] stored at node 1
« S[BC] stored at node 2.

« Suppose that the query processing may be
performed at either remote site, and the result
then shipped to the local site.

« Using ordinary joins, we would have to ship at
least one of the relations to the other remote site.
This could be expensive.

« The semijoin operation provides a way to reduce
this cost.

o Suppose that B is a key for S[BC], but that it is
not a key for R[AB].

« Suppose further that the size of an “A” value is
much larger than that of a “B” value.

20110505: slides15: 16 of 17



e Suppose further that it is expected that there will
be a lot of “mismatches” between the two “B”
columns (i.e., tuples which will not find a match in
the other relation).

It would then be more economical to ship just
those tuples of R[AB] which match a tuple of
S[BC] to site 2, rather than to ship all tuples of
R[AB].

« We can follow this plan:

1. Send the projection ng(R[AB]) to node 2.

2. Compute the semijoin

S[BC] x R[AB] = S[BC] < ns(R[AB])
at node 2. In words, S[BC] x R[AB] consists of
just those tuples of S[BC] which match some
tuple of R[AB] in the join.

3. Ship this semijoin back to node 1.

4. Compute

R[AB] > (S[BC] x R[AB])

at node 1. This value is equal to R[AB] < S[BC].

o Observe that communication costs may have
been reduced, because the whole of S[BC] did

not have to be transmitted across the network.

« This must be balanced against the cost of
shipping ns(R[AB]) to node 2.

20110505: slides15: 17 of 17



