
Transaction Models and Concurrency Control
5DV052 — Advanced Data Models and Systems

Ume̊a University
Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Spring 2011

Transaction Models and Concurrency Control 20110611 Slide 1 of 90



The Issue of Concurrency in the DBMS Context

• It is often the case that a database system will be accessed by many
users simultaneously.

• If this access is read-only, then there are no serious integrity problems;
only ones of performance.

• If the access includes writing the database, then serious problems will
arise if the interaction is not regulated.

• It is therefore necessary to characterize correct behavior in the context of
concurrent transactions.

Transaction Models and Concurrency Control 20110611 Slide 2 of 90



The ACID Characterization

• The properties which a set of concurrent transactions should exhibit is
often expressed via the acronym ACID:

Atomicity: For each transaction, either the complete result of its execution is
recorded in the database, or else nothing about its results is recorded.

Consistency: The execution of any transaction in isolation preserves the
integrity of the database.

Isolation: The execution of one running transaction must not affect the
execution of another concurrently running transaction.

Durability: The results of the transactions are permanent in the database.

• These slides will focus primarily upon isolation.

• A subsequent set of slides will focus upon atomicity and durability.

• Consistency is a property of a single transaction and will not be the focus
here.

Transaction Models and Concurrency Control 20110611 Slide 3 of 90



Example Transactions

Example (simplified bank transactions) : Two transactions T1 and T2.

• Ri and Wi are local variables for transaction i with i ∈ {1, 2}.
• There are the following operations:

R Bali 〈a〉 means that transaction Ti reads the balance of account a
into a local variable Ri : Ri ←− Bal〈a〉.

W Bali 〈a〉 means that transaction Ti writes the balance of account a
from variable Wi to the database: Bal〈a〉 ←−Wi .

Cpd Bali 〈X 〉 is a local operation that adds X % interest to Ri and
places the result in Wi : Wi ←− Ri × (1 + X/100).

Wthdi 〈X 〉 means that X Euros is subtracted from the local value Ri

and placed in Wi : Wi ←− Ri − X .

T1 Compound 10% on account 15:
R Bal1〈15〉; Cpd Bal1〈10〉; W Bal1〈15〉.

T2 Withdraw 2000 from account 15:
R Bal2〈15〉; Wthd2〈2000〉; W Bal2〈15〉.

Transaction Models and Concurrency Control 20110611 Slide 4 of 90



Order of Execution

• Shown below are two possibilities for schedules for these transactions.

T1 T2 Bal〈15〉
R Bal1〈15〉 10000

Cpd Bal1〈10〉 10000

W Bal1〈15〉 11000

R Bal2〈15〉 11000

Wthd2〈2000〉 11000

W Bal2〈15〉 9000

T1 T2 Bal〈15〉
R Bal2〈15〉 10000

Wthd2〈2000〉 10000

W Bal2〈15〉 8000

R Bal1〈15〉 8000

Cpd Bal1〈10〉 8000

W Bal1〈15〉 8800

• Both schedules are serial and both are correct ...

• ... even though the results differ.

• The order of serial execution does not affect correctness.

• The system cannot and should not decide which order is better.

Transaction Models and Concurrency Control 20110611 Slide 5 of 90



Lost Updates

• If the steps of the transactions are interleaved in certain ways, updates
may be lost. Shown below are two possibilities for schedules for these
transactions.

T1 T2 Bal〈15〉
R Bal1〈15〉 10000

Cpd Bal1〈10〉 10000

R Bal2〈15〉 10000

Wthd2〈2000〉 10000

W Bal2〈15〉 8000

W Bal1〈15〉 11000

T1 T2 Bal〈15〉
R Bal2〈15〉 10000

Wthd2〈2000〉 10000

R Bal1〈15〉 10000

Cpd Bal1〈10〉 10000

W Bal1〈15〉 11000

W Bal2〈15〉 8000

• In the schedule on the left, the result of T2 is lost.

• In the schedule on the right, the result of T1 is lost.

Transaction Models and Concurrency Control 20110611 Slide 6 of 90



Basic Steps and Transactions

• To study the issues surrounding concurrency systematically, some formal
notions are necessary.

Basic steps: A basic step for a transaction T is either a read r〈x〉 or a write
w〈x〉 of a data object x .

• The actual values of x which are read and written are not important
to the model.

• The internal steps (e.g., R Bali 〈x〉, R Bali 〈x〉, Wthdi 〈n〉,
Cpd Bali 〈n〉) are not represented.

• Only the fact that T read or wrote that object is important.

• For Ti , these are usually written ri 〈x〉 and wi 〈x〉, respectively.

Transaction: A transaction T = 〈t1, t2, . . . , tn〉 is a finite sequence of steps,
with each ti a basic step for T .

Example: T1 = r1〈x〉r1〈y〉w1〈y〉w1〈z〉 is a transaction.

• Steps〈T 〉 denotes the set of basic steps of T .

Example: Steps〈T1〉 = {r1〈x〉, r1〈y〉,w1〈y〉,w1〈z〉}.

Transaction Models and Concurrency Control 20110611 Slide 7 of 90



Schedules

• A schedule for a set of transactions is a specification of the order in
which the basic steps will be executed.

• Formally, let T = {T1,T2, . . . ,Tm} be a set of transactions, with

Ti = 〈ti1, ti2, . . . , tini 〉

for 1 ≤ i ≤ m.

The steps of a schedule: Define Steps〈T〉 =
⋃m

i=1 Steps〈Ti 〉.
Schedule: A schedule S for T is any total ordering ≤S of the set Steps〈T〉

with the property that tij ≤S tik whenever j ≤S k.

• In other words, the order of elements within each Ti is preserved.

Transaction Models and Concurrency Control 20110611 Slide 8 of 90



Serial Schedules

Serial schedules: A schedule S for the set T = {T1,T2, . . . ,Tm} of
transactions is serial if there is a total ordering ≤ of T with the property
that if Ti < Tj , then all elements of Ti occur before any element of Tj in
the ordering ≤S .

Examples: Let T1 =r1〈x〉r1〈y〉w1〈x〉w1〈y〉
T2 =r2〈z〉w2〈z〉w2〈y〉
T3 =r3〈z〉w3〈z〉r3〈x〉w3〈x〉

• Then

r2〈z〉w2〈z〉w2〈y〉 r1〈x〉r1〈y〉w1〈x〉w1〈y〉 r3〈z〉w3〈z〉r3〈x〉w3〈x〉

is the schedule corresponding to T2 < T1 < T3, while

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉 r2〈z〉 w1〈x〉w1〈y〉 w2〈z〉w2〈y〉 r3〈x〉w3〈x〉

is not a serial schedule.

Transaction Models and Concurrency Control 20110611 Slide 9 of 90



Serializability

• A serial schedule exhibits a correct semantics of concurrency, as there is
no undesirable intertwining of actions of different transactions.

• Allowing only serial schedules is too restrictive.

• It prohibits any form or concurrency whatever.

• Performance would be compromised greatly in many situations.

• The solution is to allow serializable schedules – ones which are equivalent
to serial schedules.

• Parallelism is allowed.

• The correctness of transactions is not compromised.

Question: How is serializability defined?

• It turns out that there are (at least) three reasonable definitions.

Transaction Models and Concurrency Control 20110611 Slide 10 of 90



Three Notions of Serializability

View serializability: In view serializability, it is ensured that the reads and
subsequent writes of each data object occur in the same order as in some
serial schedule.

• This is the most important theoretical notion of serializability.

• It is the “correct” theoretical notion of serializability.

• Testing a schedule for view serializability is NP-complete.

Final-state serializability: In final-state serializability, it is ensured that the
final result (i.e., the final values of the data objects) is the same as in
some serial schedule.

• This form of serializability is strictly weaker than view serializability
and not widely used.

• It will not be considered further in this course.

Conflict serializability: In conflict serializability, specific forms of conflict are
ruled out.

• Conflict serializability is strictly stronger than view serializability.

• It is of interest because there exist efficient algorithms for testing
conflict serializability.

Transaction Models and Concurrency Control 20110611 Slide 11 of 90



The Three Conditions Surrounding View Equivalence

• Let T = {T1,T2, . . . ,Tm} be a set of transactions, and let S be a
schedule for T.

• Let ri 〈x〉 ∈ Steps〈Ti 〉 and wj〈x〉 ∈ Steps〈Tj〉.
Read from: ri 〈x〉 reads from wj〈x〉 in S if wj〈x〉 ≤S ri 〈x〉 and there is no

k 6= j for which wj〈x〉 ≤S wk〈x〉 ≤S ri 〈x〉.
Initial read: ri 〈x〉 is an initial read in S if there is no k for which

wk〈x〉 ≤S ri 〈x〉.
Final write: wj〈x〉 is a final write in S if there is no k 6= j for which

wj〈x〉 ≤S wk〈x〉.
Example: In

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉 r2〈z〉 w1〈x〉w1〈y〉 w2〈z〉w2〈y〉 r3〈x〉w3〈x〉

• r2〈z〉 reads from w3〈z〉.
• r3〈x〉 reads from w1〈x〉.
• r1〈x〉, r1〈y〉, and r3〈z〉 are initial reads.

• w2〈z〉, w2〈y〉, and w3〈x〉 are final writes.
Transaction Models and Concurrency Control 20110611 Slide 12 of 90



View Equivalence and View Serializability

• Let T = {T1,T2, . . . ,Tm} be a set of transactions, and let S and S ′ be
schedules for T.

View equivalence: S and S ′ are view equivalent, written S ≈V S ′, if:

(ve-i) Every read action of the form ri 〈x〉 is, in each schedule, either an
initial read or else reads from the same write action wj〈x〉.

(ve-ii) The two schedules have the same final-write steps.

View Serializability: S is said to be view serializable if there is a serial
schedule S ′ such that S ≈V S ′.

Examples: The following schedules are view equivalent and view serializable.

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉 r2〈z〉 w1〈x〉w1〈y〉 w2〈z〉w2〈y〉 r3〈x〉w3〈x〉

r1〈x〉r1〈y〉 r3〈z〉 w1〈x〉w1〈y〉 w3〈z〉 r2〈z〉 w2〈z〉w2〈y〉 r3〈x〉w3〈x〉

r1〈x〉r1〈y〉 w1〈x〉w1〈y〉 r3〈z〉 w3〈z〉r3〈x〉w3〈x〉 r2〈z〉 w2〈z〉w2〈y〉
• The following schedule is not view serializable.

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉r3〈x〉 r2〈z〉 w1〈x〉w1〈y〉 w2〈z〉w2〈y〉 w3〈x〉
Transaction Models and Concurrency Control 20110611 Slide 13 of 90



Motivation for Conditions of View Equivalence

• The motivation for condition (ve-i) is clear.

Question: Is (ve-ii) (equivalence of final writes) really necessary?

Example to motivate (ve-ii): Let

T1 = w1〈x〉w1〈y〉 T2 = w2〈x〉w2〈y〉

• Note that:

• In any serial schedule, the first transaction has no effect.

• Since there are no reads, no schedule can violate (ve-i).

Example: The following schedule is not equivalent to a serial schedule, yet
satisfies (ve-i):

w1〈x〉w2〈x〉w2〈y〉w1〈y〉

• In general, both (ve-i) and (ve-ii) are necessary to obtain a satisfactory
notion of serializability.

Transaction Models and Concurrency Control 20110611 Slide 14 of 90



Blind Writes

Examples Each of the two schedules contains write operations which do not
first read the associated data object.

T1 = w1〈x〉w1〈y〉 T2 = w2〈x〉w2〈y〉

Blind write: Let T = 〈t1, t2, . . . , tn〉 be a transaction. The operation
tj = w〈x〉 is called a blind write (of x) if for no i < j is it the case that
ti = r〈x〉.
• Without blind writes, condition (ve-ii) would not be necessary.

Theorem: In general, the problem of deciding whether two schedules are
view equivalent is NP-complete. �

But..: There is a polynomial-time algorithm to decide view serializability for
the special case that none of the transactions involves blind writes.

Transaction Models and Concurrency Control 20110611 Slide 15 of 90



Conflict Serializability

• Let T = {T1,T2, . . . ,Tm} be a set of transactions.

Conflicting steps: The pair {p, q} ⊆ Steps〈T〉 is said to be conflicting for T
if the following three conditions hold:

• They are from distinct transactions.

• They operate on the same data object.

• At least one is a write.

Conflict equivalence: Two schedules S and S ′ for T are conflict equivalent,
denoted S ≈C S ′, if for any pair {p, q} which is conflicting for T:

(p ≤S q)⇔ (p ≤S′ q)

Conflict serializability: The schedule S for T is conflict serializable if there is
a serial schedule S ′ for T with S ≈C S ′.

Theorem: Every conflict-serializable schedule is also view-serializable. �

Transaction Models and Concurrency Control 20110611 Slide 16 of 90



An Algorithm to Decide Conflict Serializability

• Let T = {T1,T2, . . . ,Tm} be a set of transactions, and let S be a
schedule for T.

Conflict graph: The (directed) conflict graph of S is defined as follows:

Vertices: The vertices are just the elements of T.

Edges: There is a directed edge from Ti to Tj iff there are
p ∈ Steps〈Ti 〉, q ∈ Steps〈Tj〉 with p ≤S q and {p, q} conflicting for
T.

Observation: If the conflict graph of S is acyclic, then any ordering of T for
which Ti ≤ Tj identifies a serial execution of T which is conflict
equivalent to S . �

Theorem: S is conflict serializable iff its conflict graph is acyclic. �

Corollary: If its conflict graph is acyclic, then S is view serializable. �

Remark: The conflict graph is also called the precedence graph.

Transaction Models and Concurrency Control 20110611 Slide 17 of 90



Examples of Conflict Graphs

Examples: The conflict graph for all of these schedules

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉 r2〈z〉 w1〈x〉w1〈y〉 w2〈z〉w2〈y〉 r3〈x〉w3〈x〉

r1〈x〉r1〈y〉 r3〈z〉 w1〈x〉w1〈y〉 w3〈z〉 r2〈z〉 w2〈z〉w2〈y〉 r3〈x〉w3〈x〉

r1〈x〉r1〈y〉 w1〈x〉w1〈y〉 r3〈z〉 w3〈z〉r3〈x〉w3〈x〉 r2〈z〉 w2〈z〉w2〈y〉

T1

T3

T2
y

x z The edges are labelled with the
data names which induce them.

Example: The conflict graph for

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉r3〈x〉 r2〈z〉 w1〈x〉w1〈y〉 w2〈z〉w2〈y〉 w3〈x〉

T1

T3

T2
y

x z

x

Transaction Models and Concurrency Control 20110611 Slide 18 of 90



The Relationship Between View and Conflict Equivalence

Recall: Every conflict-serializable schedule is also view-serializable. �

Restricted model: In the restricted model of transactions, there are no blind
writes.

Theorem: In the restricted model, a schedule is view serializable iff it is
conflict serializable. �

Corollary: It is blind writes which force the decision problem for view
serializability to be NP-complete. �

Example: For i ∈ {1, 2, 3}, let Ti = wi 〈x〉wi 〈y〉.
Then

w1〈x〉 w2〈x〉w2〈y〉 w1〈y〉 w3〈x〉w3〈y〉

is view serializable and with T1 < T2 < T3, but it is not conflict
serializable since T1

x−→ T2
y−→ T1 occurs in the conflict graph.

Transaction Models and Concurrency Control 20110611 Slide 19 of 90



Realizing Serializable Schedules

• It is not reasonable to generate candidate schedules and then test for
serializability.

• Rather, what is needed is a systematic way of guaranteeing that
constructed schedules are serializable.

• There are several approaches in practice:

Locking: Locks are used to prevent more than one transaction from
writing the same data object concurrently, and also to prevent reads
of objects which are being written.

Pure optimism: Nothing is locked; conflicts are detected when
transactions commit, and conflicts are resolved by aborting one or
more transactions.

Multiversioning: Each write operation generates a new version of the
data object which is written. The versions are consolidated when the
transactions finish.

• Many “real” approaches combine aspects of all three.
Transaction Models and Concurrency Control 20110611 Slide 20 of 90



Locks

• In a lock-based approach, for a transaction to access a data object, it
must request and be granted a lock on that object.

• There are two basic forms of lock:

Write lock: A write lock permits a transaction both to read and to write a
data object.

• Only one transaction may hold a write lock on a data object at any
given point in time.

• Also called an exclusive lock or X-lock.

Read lock: A read lock permits a transaction to read a data object, but not
to write it.

• Several transactions may hold read locks on a data object
concurrently.

• Also called a shared lock or S-lock.

Transaction Models and Concurrency Control 20110611 Slide 21 of 90



Lock Requests and Releases:

• The following three basic lock operations are defined for a data object x
by transaction Ti .

rlki 〈x〉: Request a read lock on x . This request may be granted provided
there are no current write locks on x .

wlki 〈x〉: Request a write lock on x . This request may be granted provided
there are no locks on x .

unlki 〈x〉: Dissolve the lock on x held by Ti .

• There are also two operations which upgrade and downgrade locks:

upgri 〈x〉: Convert a read lock by Ti on x to a write lock. This request may
only be granted in the case that no other transaction holds a read lock
on x .

dngri 〈x〉: Convert a write lock by Ti on x to a read lock.

• For various reasons, upgrades and downgrades are sometimes excluded
from a modelling situation.

Transaction Models and Concurrency Control 20110611 Slide 22 of 90



Transactions with Locks

• Informally, a transaction with locks is a transaction with lock commands
interspersed.

Transaction with locks A transaction with locks is a sequence Ti of elements
of the form ri 〈x〉, wi 〈x〉, rlki 〈x〉, wlki 〈x〉, unlki 〈x〉, upgri 〈x〉, and
dngri 〈x〉, where x may be any data object and need not be the same for
each element in the sequence, such that:

• If the operations of the form rlki 〈x〉, wlki 〈x〉, unlki 〈x〉, upgri 〈x〉, and
dngri 〈x〉 are removed, the result is an ordinary transaction.

• The sequence must obey the locking protocol given on the next slide.

Transaction Models and Concurrency Control 20110611 Slide 23 of 90



Locking Requirements

• A transaction with locks Ti must obey the following locking rules:

• Before a data object x is read by Ti , a lock (read or write) must be
requested and granted.

• Before a data object x is written by Ti , a write lock must be
requested and granted.

• All reads on x must be performed before the corresponding lock on
x is released.

• All writes on x must be performed before the corresponding lock on
x is released or downgraded.

• All locks must be released (via unlock) before the transaction
finishes (commits).

• It is usually (but not always) assumed that transactions do not
request redundant locks.

• This makes analyses simpler.

Locking protocol: A scheduler operates according to a locking protocol just
in case these conventions are followed.

Transaction Models and Concurrency Control 20110611 Slide 24 of 90



Examples of Transactions with Locks

• Consider the transaction T1 = r1〈x〉r1〈y〉w1〈y〉w1〈z〉.
• The following are schedules with locks for T1.

wlk1〈x〉wlk1〈y〉wlk1〈z〉r1〈x〉r1〈y〉w1〈y〉w1〈z〉unlk1〈x〉unlk1〈y〉unlk1〈z〉
rlk1〈x〉wlk1〈y〉wlk1〈z〉r1〈x〉r1〈y〉w1〈y〉w1〈z〉unlk1〈x〉unlk1〈y〉unlk1〈z〉
rlk1〈x〉r1〈x〉wlk1〈y〉r1〈y〉w1〈y〉wlk1〈z〉w1〈z〉unlk1〈x〉unlk1〈y〉unlk1〈z〉
rlk1〈x〉r1〈x〉unlk1〈x〉wlk1〈y〉r1〈y〉w1〈y〉unlk1〈y〉wlk1〈z〉w1〈z〉unlk1〈z〉
rlk1〈x〉r1〈x〉unlk1〈x〉rlk1〈y〉r1〈y〉upgr1〈y〉w1〈y〉unlk1〈y〉wlk1〈z〉w1〈z〉unlk1〈z〉

Transaction Models and Concurrency Control 20110611 Slide 25 of 90



Schedules with Locks

• Let T = {T1,T2, . . . ,Tm} be a set of transactions, and let S be a
schedule for T.

• A schedule with locks S ′ is a schedule S which has been augmented with
lock operations.

• More precisely, it is a sequence of operations of the form ri 〈x〉, wi 〈x〉,
rlki 〈x〉, wlki 〈x〉, unlki 〈x〉, upgri 〈x〉, and dngri 〈x〉 which satisfies:

• If the lock, unlock, upgrade, and downgrade operations are removed,
the result is a schedule.

• The rules given on the previous slide which define when these
locking operations may be applied are followed.

• The locking protocol is followed.

• Informally, this means that objects must be locked appropriately
before they are accessed.

• This idea is expanded on the next slide.

Locking schedule: In this case, S ′ is said to be a locking schedule for S .

Transaction Models and Concurrency Control 20110611 Slide 26 of 90



Example of a Schedule with Locks

• Here is a nonserializable schedule considered earlier.

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉r3〈x〉 r2〈z〉 w1〈x〉w1〈y〉 w2〈z〉w2〈y〉 w3〈x〉

• Here is one valid schedule of locks for it:

rlk1〈x〉wlk1〈y〉 r1〈x〉r1〈y〉 rlk3〈z〉 r3〈z〉 upgr3〈z〉rlk3〈x〉

w3〈z〉r3〈x〉 unlk3〈z〉unlk3〈x〉wlk2〈z〉 r2〈z〉 upgr1〈x〉 w1〈x〉w1〈y〉

unlk1〈y〉wlk2〈y〉 w2〈z〉w2〈y〉 unlk1〈x〉wlk3〈x〉 w3〈x〉

unlk3〈x〉unlk2〈x〉unlk2〈y〉

• Note that it is necessary for T3 to lock x , release it, and then lock it
again.

• This is for illustration only; it is not a reasonable schedule.

Transaction Models and Concurrency Control 20110611 Slide 27 of 90



The Two-Phase Locking Protocol

• The two-phase locking protocol is defined for each transaction Ti

individually.

• Let Ti be a transaction with locks.

Condition for two-phase locking (2PL): Ti satisfies the two-phase locking
protocol (2PL) if no lock or upgrade operation comes after an unlock or
downgrade operation in the ordering.

• All lock and upgrade operations precede all unlock and downgrade
operations.

growing phase

constant phase
shrinking phase

time

locks

Definition: A schedule with locks is defined to be 2PL if each of its
transactions with locks has that property.

Transaction Models and Concurrency Control 20110611 Slide 28 of 90



Examples of 2PL

• Here is a nonserializable schedule considered earlier.

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉r3〈x〉 r2〈z〉 w1〈x〉w1〈y〉 w2〈z〉w2〈y〉 w3〈x〉

• Here is one valid schedule of locks for it:

rlk1〈x〉wlk1〈y〉 r1〈x〉r1〈y〉 rlk3〈z〉 r3〈z〉 upgr3〈z〉rlk3〈x〉

w3〈z〉r3〈x〉 unlk3〈z〉unlk3〈x〉wlk2〈z〉 r2〈z〉 upgr1〈x〉 w1〈x〉w1〈y〉

unlk1〈y〉wlk2〈y〉 w2〈z〉w2〈y〉 unlk1〈x〉wlk3〈x〉 w3〈x〉

unlk3〈x〉unlk2〈x〉unlk2〈y〉

• In this schedule with locks, T1 and T2 are 2PL, but T3 is not.

• Hence, the schedule is not 2PL.

Transaction Models and Concurrency Control 20110611 Slide 29 of 90



2PL Schedules with Locks

• Let T = {T1,T2, . . . ,Tm} be a set of transactions, let S be a schedule
for T, and let S ′ be a locking schedule for S .

Theorem: If S ′ is 2PL, then S is conflict serializable. �

• Call a schedule with locks S ′′ view serializable (resp. conflict serializable)
iff the underlying schedule without locks has that property.

Theorem: If S ′′ is 2PL, then it is conflict serializable. �

Remark: There exist schedules with locks which are conflict serializable but
not 2PL.

Example: Let T1 =w1〈x〉w1〈y〉
T2 =r2〈x〉r2〈z〉
T3 =r3〈y〉

and let S = w1〈x〉r2〈x〉r3〈y〉r2〈z〉w1〈y〉.
• S is conflict serializable with T3 < T1 < T2.

• There is no 2PL locking schedule for S .
Transaction Models and Concurrency Control 20110611 Slide 30 of 90



Assessment of 2PL

Question: To what extent is 2PL useful in real systems?

• The answer is not a simple one.

• There are at least three issues which must be considered.

Recoverability: If a transaction does not finish normally, that is, if it
aborts, it must be handled in such as way that preserves the
integrity of the remaining transactions.

Management of deadlock: Transactions can deadlock in their requests
for resources. If they occur, these deadlocks must be resolved.

Implications of locking: Locking entails significant costs, and can reduce
parallelism immensely.

• Each of these issues will be considered in turn.

Transaction Models and Concurrency Control 20110611 Slide 31 of 90



Termination of Transactions

• The atomicity requirement of ACID demands that a transaction either
run to completion or else have no effect on the database.

Commit: When a transaction commits, its results are irrevocably entered
into the database, and the transaction ceases to exist.

Abort: When a transaction aborts, it is terminated without entering any
updates into the database.

• The model of transactions which has been considered so far does not
take the possibility of abort into account.

Problem: What if a transaction aborts after executing at least one write
operation?

• A second transaction may have read from that write.

• The effects of that second transaction must be reversed.

Question: What if that second transaction has already committed?

• This process can lead to cascading aborts of many transactions.

• A more detailed analysis of this phenomenon is required.
Transaction Models and Concurrency Control 20110611 Slide 32 of 90



The Commit Operation

• When a transaction has completed its operations successfully, it commits.

• The results of its operations are made a permanent part of the
database.

• The transaction ceases to exist and so cannot be aborted any more.

• The commit operation is, by definition, the last thing that a successful
transaction does.

• It is useful to express the commit operation explicitly.

• Write cmti to indicate that transaction Ti commits.

Example: T1 = r1〈x〉r1〈y〉w1〈y〉w1〈z〉 with explicit commit is written
T1 = r1〈x〉r1〈y〉w1〈y〉w1〈z〉cmt1.

• Call such a representation a transaction with explicit commit.

Transaction Models and Concurrency Control 20110611 Slide 33 of 90



Schedules with Explicit Commits

• It is often useful to write schedules with explicit commits for its
transactions.

Examples: In this example, the respective commit operations occur
immediately after the end of each transaction.

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉 cmt3 r2〈z〉 w1〈x〉w1〈y〉 cmt1 w2〈z〉w2〈y〉 cmt2

• However, this is not required.

• Each of the following is also admissible.

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉 r2〈z〉 w1〈x〉w1〈y〉 w2〈z〉w2〈y〉 cmt1cmt2cmt3

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉 r2〈z〉 w1〈x〉w1〈y〉 cmt3 w2〈z〉 cmt1 w2〈y〉 cmt2

Transaction Models and Concurrency Control 20110611 Slide 34 of 90



Nonrecoverable Schedules

Example: Consider the following two simple transactions:

T1 = r1〈x〉w1〈x〉r1〈y〉w1〈y〉
T2 = r2〈x〉w2〈x〉

• and the following schedule:

r1〈x〉w1〈x〉 r2〈x〉w2〈x〉 cmt2 r1〈y〉w1〈y〉 abort1

in which T1 aborts before completion.

• Note that T2 read the value of x from T1.

• Since T1 aborts, this value is invalid.

• Thus, T2 must be aborted as well.

• But it has committed.

• This is an example of a nonrecoverable schedule.

Transaction Models and Concurrency Control 20110611 Slide 35 of 90



Cascading Nonrecoverability

Example: Consider the following three simple transactions:

T1 =r1〈x〉w1〈x〉r1〈y〉w1〈y〉
T2 =r2〈x〉w2〈x〉r2〈z〉w2〈z〉
T3 =r3〈z〉w3〈z〉

• and the following schedule:

r1〈x〉w1〈x〉 r2〈x〉w2〈x〉r2〈z〉w2〈z〉 cmt2 r3〈z〉r3〈z〉 cmt3 r1〈y〉w1〈y〉 abort1

• T2 reads x from T1 and then commits.

• T3 reads z from T2 and then commits.

• Both T2 and T3 must be aborted even though they have committed.

• This illustrates cascading nonrecoverability.

• It may clearly be extended to any finite number of transactions.

Transaction Models and Concurrency Control 20110611 Slide 36 of 90



Recoverable Schedules

• A schedule is recoverable if Tj reads from Ti implies that Ti commits
before Tj .

Example: Consider again the following two simple transactions:

T1 =r1〈x〉w1〈x〉r1〈y〉w1〈y〉
T2 =r2〈x〉w2〈x〉

• The first schedule below is recoverable, while the other two are not.

r1〈x〉w1〈x〉 r2〈x〉w2〈x〉 r1〈y〉w1〈y〉 cmt1 cmt2

r1〈x〉w1〈x〉 r2〈x〉w2〈x〉 r1〈y〉w1〈y〉 cmt2 cmt1

r1〈x〉w1〈x〉 r2〈x〉w2〈x〉 cmt2 r1〈y〉w1〈y〉 cmt1

Transaction Models and Concurrency Control 20110611 Slide 37 of 90



2PL and Recoverability

• It is easy to see that 2PL does not guarantee recoverability.

Example: The following schedule is 2PL but not recoverable.

wlk1〈x〉wlk1〈y〉 r1〈x〉w1〈x〉 unlk1〈x〉wlk2〈x〉

r2〈x〉w2〈x〉 unlk2〈x〉 cmt2 r1〈y〉w1〈y〉 unlk1〈y〉 cmt1

• To guarantee recoverability, transactions must not release locks too early.

Transaction Models and Concurrency Control 20110611 Slide 38 of 90



Strict 2PL

• One way to ensure recoverability is to require that each transaction retain
all of its write locks until it commits.

• Let Ti be a transaction with locks and explicit commit.

Condition for strict two-phase locking (S2PL): Ti satisfies the strict
two-phase locking protocol (S2PL) if it satisfies 2PL and all write locks
are held until the transaction commits.

growing phase

constant phase --- all write locks
shrinking phase

read locks only

time

locks

Definition: A schedule with locks and explicit commits is defined to be strict
2PL (S2PL) if each of its transactions has that property.

Theorem: Every S2PL schedule is recoverable. �
Transaction Models and Concurrency Control 20110611 Slide 39 of 90



Superstrict 2PL

• Let Ti be a transaction with locks and explicit commit.

Condition for superstrict two-phase locking (SS2PL): Ti satisfies the
superstrict two-phase locking protocol (SS2PL) if it satisfies 2PL and all
locks (read and write) are held until the transaction commits.

growing phase

constant phase --- all locks

time

locks

Definition: A schedule with locks and explicit commits is defined to be
superstrict 2PL (SS2PL) if each of its transactions has that property.

Theorem: Every SS2PL schedule is recoverable. �

• SS2PL is also called rigorous 2PL.
Transaction Models and Concurrency Control 20110611 Slide 40 of 90



2PL in Real Systems

• Textbooks on database systems often state that SS2PL is widely used in
practice.

• The degree to which this is true will be discussed later in these lectures.

• What can be stated is the following:

• To the extent that 2PL is used in real systems, it is of the form
SS2PL.

• Nonerecoverable schedules are almost never acceptable in real systems.

Question: Why SS2PL and not S2PL?

• I do not have a good answer to that question.

• Possibly complexity of implementation is an issue.

Remark: In early literature, SS2PL was sometimes called S2PL.

• This terminology is no longer used.

Transaction Models and Concurrency Control 20110611 Slide 41 of 90



The Problem of Deadlock

Motivating example: Consider the following two transactions:

T1 =r1〈x〉r1〈y〉w1〈x〉
T2 =r2〈y〉r2〈x〉w2〈y〉

• Suppose that scheduling of execution begins as follows:

wlk1〈x〉 r1〈x〉 wlk2〈y〉 r2〈y〉

• To continue, either T1 must acquire at least a read lock on y , or else T2

must acquire at least a read lock on x .

• Neither is possible without forcing the other transaction to release a lock,
which it still needs.

• A deadlock has occurred.

• This can happen even if T1 and T2 begin with read locks.

Transaction Models and Concurrency Control 20110611 Slide 42 of 90



Detection of Deadlock

• Let T = {T1,T2, . . . ,Tm} be a set of transactions.

• A lock set for T is any subset of
{wlki 〈x〉 | 1 ≤ i ≤ m and x is a data object}.

• For simplicity, only write locks are considered.

• A lock situation for T is a pair (L,R) in which L and R are lock sets.

• L is the set of locks which are currently held.

• R is the set of locks which must be obtained in order to continue.

Wait-for graph: The (directed) wait-for graph for (L,R) has:

Vertices: T.

Edges: Ti
x−→ Tj iff wlki 〈x〉 ∈ L and wlkj〈x〉 ∈ R.

Theorem: (L,R) represents a deadlock situation iff the wait-for graph has a
(directed) cycle. �

Transaction Models and Concurrency Control 20110611 Slide 43 of 90



Example of the Wait-For Graph

• Return to the motivating example:

T1 = r1〈x〉r1〈y〉w1〈x〉
T2 = r2〈y〉r2〈x〉w2〈y〉

• The scheduling of execution begins as follows:

wlk1〈x〉 r1〈x〉 wlk2〈y〉 r2〈y〉

• The lock sets are:

L ={wlk1〈x〉,wlk2〈y〉}
R ={wlk1〈y〉,wlk2〈x〉}

• The wait-for graph is:

T1 T2

x

y

Transaction Models and Concurrency Control 20110611 Slide 44 of 90



Resolution of Deadlock

• To resolve deadlock, an edge (or edges) must be removed from the
wait-for graph to render it acyclic.

• There are two main approaches to managing deadlock:

Pessimistic resolution: Do not allow a transaction to begin until it is
guaranteed that it can acquire all of the locks that it needs.

Optimistic resolution: Allow transactions to proceed unhindered.

• When a deadlock is detected, abort one or more transactions in
order to render the wait-for graph acyclic.

Transaction Models and Concurrency Control 20110611 Slide 45 of 90



Pessimistic Resolution of Deadlock

• Pessimistic resolution may be guaranteed via conservative 2PL,
in which all locks are acquired before the transaction is allowed to proceed.

constant phase
shrinking phase

time

locks

• Pessimistic resolution is seldom employed in the DBMS context.

• Typically, conflicts due to lock contention far outnumber conflicts due to
deadlock.

• Also, when a transaction begins, it is not always known which resources
it will need.

=⇒ Conservative 2PL may result in many unnecessary locks.

Bottom line: The performance penalty imposed by conservative 2PL
outweighs the advantages gained.

Transaction Models and Concurrency Control 20110611 Slide 46 of 90



Optimistic Resolution of Deadlock

• Optimistic resolution of deadlock proceeds by choosing a victim
transaction to abort when a deadlock is detected.

Livelock: Livelock (also called starvation) occurs when a given transaction is
chosen to be the victim over and over, and so never is able to complete.

• Livelock may be avoided by timestamping each transaction with the time
of its initial begin.

• When a transaction is restarted after an abort, it is restarted with its
timestamp.

• In this way, transactions which have been aborted repeatedly receive
increasing priority and will eventually complete.

Caution: Optimistic resolution of deadlock and optimistic concurrency
control are two entirely different things which address two completely
different issues.

Transaction Models and Concurrency Control 20110611 Slide 47 of 90



Granularity of Locks

Question: What size of objects should be locked? (lock granularity)

• At first thought, it might seem best to lock the smallest possible objects.

• Smaller lock objects (finer granularity) have the advantage of allowing
increased parallelism due to lesser contention for data objects.

• However, finer granularity of locks implies greater overhead from lock
management.

Observation: Different transactions may require different lock granularities.

• Transaction A processes a whole relation or a large part of a relation
and so works best with coarse-grained locks.

• Transaction B processes only a few tuples at a time and so will
interfere less with other transactions if its locks are fine grained.

• Transaction C needs to read lock an entire relation but then updates
only a small part of it.

=⇒ It is thus advantageous to allow read and write locks of
differing granularity.

Transaction Models and Concurrency Control 20110611 Slide 48 of 90



Multigranularity Locking

• The classes of objects to be locked are arranged in a hierarchy.

• A simple example is shown in pink to the left below.

• An example of object instances is shown to the right in green.

• This hierarchy need not be a tree, but its graph must be acyclic.

• When an object is (read/write) locked, all objects below it are also
(read/write) locked.

• Note also there is a hierarchy within the range queries (not shown).

Database

Relation

Range query

Tuple

DB1

Employee

Sal ≥ 40000 Dept = Research 30000 ≤ Sal ≤ 50000

Alice Bruce Cora David Edith Florian Gisela

Transaction Models and Concurrency Control 20110611 Slide 49 of 90



Intention Locks

• Locking all objects below a given object provides correct semantics of
multigranular locking.

• Additional efficiency may be obtained by propagating a certain type of
lock to those objects above the object to be locked.

• When an object is locked, all objects above it are assigned an intention
lock of the same type.

Example: Consider the following two transactions:

• T1 updates information on employee Alice.

• T2 updates information on employees in the Research department.

• Before T1 is allowed to write lock the Alice tuple, it must obtain an
intention write lock on all employees in the Research department, as well
as the Employees relation and the whole database.

• This intention lock ensures that no other transaction will be able to lock
those objects which subsume the Alice tuple.

Transaction Models and Concurrency Control 20110611 Slide 50 of 90



Intention Locks — Formalization

Intention-to-read locks: Before a transaction Ti may obtain a read lock
rlki 〈x〉 on object x , it must obtain an intention-to-read lock irlki 〈x ′〉 on
every data object x ′ above and including x in the hierarchy.

• Also called a intention-shared lock or IS-lock.

Intention-to-write locks: Before a transaction Ti may obtain a write lock
wlki 〈x〉 on object x , it must obtain an intention-to-write lock iwlki 〈x ′〉 on
every data object x ′ above and including x in the hierarchy.

• Also called an intention-exclusive lock or IX-lock.

Compatibility matrix: Shows which types of locks are compatible.

T
yp

e
of

L
o

ck
H

el
d Type of Lock Requested

rlki 〈x〉 wlki 〈x〉 irlki 〈x〉 iwlki 〈x〉
rlkj〈x〉 yes no yes no
wlkj〈x〉 no no no no
irlkj〈x〉 yes no yes yes
iwlkj〈x〉 no no yes yes

Transaction Models and Concurrency Control 20110611 Slide 51 of 90



Read with Intention to Write

• It is often the case that a transaction will require a write lock on some
object x as well as a read lock on some object x ′ which is above x in the
hierarchy.

Example: Execute a large range query (read only), and then update
(write) just a few tuples.

RIW-locks: A read-with-intention-to-write lock riwlki 〈x〉 is equivalent to
rlki 〈x〉 and iwlki 〈x〉 together.

• Also called a shared and intention-exclusive lock or SIX-lock.

Compatibility matrix: Shows which types of locks are compatible.

T
yp

e
of

L
o

ck
H

el
d Type of Lock Requested

rlki 〈x〉 wlki 〈x〉 irlki 〈x〉 iwlki 〈x〉 riwlki 〈x〉
rlkj〈x〉 yes no yes no no
wlkj〈x〉 no no no no no
irlkj〈x〉 yes no yes yes yes
iwlkj〈x〉 no no yes yes no
riwlkj〈x〉 no no yes no no

Transaction Models and Concurrency Control 20110611 Slide 52 of 90



Concurrency Control in Real Systems

• SS2PL provides the degree of transaction correctness and recoverability
needed for true isolation.

• However, it comes with a price.

Example: Consider an update which first requires a range query on an
attribute which is not indexed.

• Give all employees with 29000 ≤ Salary ≤ 30000 a 10% raise.

• To execute that query, the entire Employee relation must be read locked
in order to identify those employee which meet the range condition.

• Those parts which are to be updated must then be write locked, and this
can cause a huge delay if the read lock is shared.

• Additionally, according to SS2PL, this read lock cannot be released until
the entire transaction has completed.

• Locking the entire relation, even for reading, can have a serious impact
on performance.

• Weaker notions of isolation are therefore often used in practice.

Transaction Models and Concurrency Control 20110611 Slide 53 of 90



Standard Degrees of Isolation

•• The SQL standard specifies four degrees of isolation.

• Each is described in terms of certain anomalies.

• They are summarized in the table below.
Anomaly allowed

Degree of
Isolation

Level of
isolation

Dirty
read

Nonrepeatable
read Phantom

1 Read uncommitted (RU) Yes Yes Yes

2 Read committed (RC) No Yes Yes

3 Repeatable read (RR) No No Yes

4 Serializable (SER) No No No

• Each of these modes requires write locks, but not necessarily following
2PL.

• The differences lie in the degrees of read locks required.

• Because of their importance in practice, each will be discussed briefly.

Transaction Models and Concurrency Control 20110611 Slide 54 of 90



Degree 1 Isolation — Read Uncommitted

• Under the read-uncommitted (RU) isolation level, data which are not
committed may be read by a transaction.

• In the context of locking, no locks are required for reading.

• Thus, the usual locking protocol is not followed.

• This mode allows dirty reads.

• An example in which T2 reads dirty data is shown below.

wlk1〈x〉 r1〈x〉w1〈x〉 wlk2〈y〉 r2〈x〉r2〈y〉w2〈y〉 r1〈z〉 abort1

• Since T1 aborts, the value which it wrote for x is invalid.

• However, T2 uses it anyway.

• Degree 1 isolation is useful in computing summary results, where small
errors are not an issue.

Transaction Models and Concurrency Control 20110611 Slide 55 of 90



Degree 2 Isolation — Read Committed

• Under the read-committed (RC) isolation level, only committed data may
be read.

• There are no other guarantees, however.

• In the setting of a locking protocol, this isolation level is often
implemented by requiring that a transaction acquire a read lock before
reading a given data item.

• But the lock may be released as soon as the item has been read.

• Another transaction may alter that data before the original reader
commits.

• This mode allows nonrepeatable reads.

• An example is shown on the next slide.

Transaction Models and Concurrency Control 20110611 Slide 56 of 90



Example of Nonrepeatable Read

• An example in which T1 performs a nonrepeatable read is shown below.

rlk1〈x〉 r1〈x〉 unlk1〈x〉wlk2〈x〉wlk2〈y〉 r2〈x〉r2〈y〉w2〈x〉w2〈y〉

unlk2〈x〉unlk2〈y〉rlk1〈y〉wlk1〈z〉 r1〈y〉w1〈z〉 unlk1〈y〉unlk1〈z〉

Concrete interpretation: x and y hold account balances.

• T1 computes z ← x + y .

• T2 transfers 100AC from x to y .

• Note that this is not possible with 2PL.

• Note that the read uncommitted error of the previous slide is not possible
with read committed.

Transaction Models and Concurrency Control 20110611 Slide 57 of 90



Degree 3 Isolation — Repeatable Read

• Under the repeatable read (RR) isolation level, the value read from a
single data item must be the same over multiple reads by the transaction.

• However, the set of tuples in a range query may change.

• In the context of locks, this issue is whether read locks are allowed on
nonexistent tuples.

• With RR, read locks are not necessary on nonexistent tuples.

• With serializabe isolation (SER), read locks are necessary for all
possible tuples in the range of the query.

• Such nonexistent tuples are called phantoms.

• An example is presented on the next slide.

Transaction Models and Concurrency Control 20110611 Slide 58 of 90



Example of Phantom with Repeatable Read

• An example in which T1 performs a repeatable read may be expressed
informally as follows.

• T1 computes the sum of the salaries of all employees.

• T2 inserts a new employee with a positive salary.

• T1 computes again the sum of the salaries of all employees.

• The second read by T1 may return a different value than the first.

• The inserted tuple is called a phantom.

• This is not possible with 2PL, since in 2PL all tuples in the range of the
query must be locked.

• Note, however, that the example of nonrepeatable read given previously
is not possible with repeatable read isolation.

• Reads of existing data items are by definition repeatable under RR
isolation.

Transaction Models and Concurrency Control 20110611 Slide 59 of 90



Full Isolation — Serializability?

Obvious fact: The serializable isolation SER mode of the SQL standard is
view serializability. Right?

• Wrong! Nothing is ever easy with the SQL standard.

• The SQL standard defines serializability as the absence of dirty reads,
nonrepeatable reads, and phantoms...

• ... and there are anomalies which pass those three tests yet violate
the SER isolation level.

Question: But surely the major DBMS vendors implement the standard SQL
serializable isolation level as SS2PL?

Answer: Of the five major DBMSs Oracle, IBM DB2, Microsoft SQL Server,
PostgreSQL and MySQL/InnoDB...

• ...only SQL Server even provides true serializable mode.

• The others provide something called snapshot isolation for serializable
isolation.

Transaction Models and Concurrency Control 20110611 Slide 60 of 90



Multiversion Concurrency Control

• Historically, systems which work with just a single version of the database
have have been widely used in DBMSs.

• Temporary data which may be maintained, of course.

• This model is called single-version concurrency control (SVCC).

• Nowadays, however, a much more common approach is multiversion
concurrency control (MVCC).

• In MVCC, there may be several versions of each primitive data object
(often tuple).

• An update to data object x does not overwrite the current value of
x ; rather, it creates a new version.

• Each version is tagged with a transaction identifier.

• The system also keeps a commit list of the identifiers of all
committed transactions.

• The current version of the database (called the stable version) is
constructed from the latest values of each object which are
associated with a committed transaction.

• Versions which are no longer needed are eventually removed.
Transaction Models and Concurrency Control 20110611 Slide 61 of 90



Motivation for Studying Lock-Based Concurrency Control

Question: Given that MVCC has become the dominant form of concurrency
control in DBMSs, why study SVCC lock-based approaches?

• SVCC provides a firm theoretical foundation for understanding what a
concurrency-control mechanism should do.

• It thus forms something of a reference model.

• At least in part, MVCC may be viewed as a mechanism for implementing
SVCC.

• This will become clearer when recovery techniques are studied.

• All that having been said, given its importance, most DBMS textbooks
unfortunately do not provide anything close to adequate coverage of
MVCC.

Transaction Models and Concurrency Control 20110611 Slide 62 of 90



The Models of MVCC Used in this Presentation

• It is relatively straightforward to implement classical lock-based
concurrency control, and in particular 2PL, S2PL, and SS2PL, within
MVCC.

• For reasons of limited time, the details will not be given in these lectures.

• Rather, a higher-level version-based model will be used, which builds upon
the idea that each transaction sees a distinct version of the database.

• The details how this version-based model is mapped to the lower-level,
data-item-based model will not be given in these lectures.

• The focus here is upon concepts, not low-level details.

Transaction Models and Concurrency Control 20110611 Slide 63 of 90



The Version-Based Model of MVCC

• The basic idea behind the version-based model of MVCC is that there are
many versions of the database.

• One of these versions is, of course, the stable database, reflecting just the
committed updates.

• (Obviously), the whole database is not replicated in each copy.

• Rather, the copies are implemented as descriptions of which versions of
data objects apply to it.

• Uncommitted updates by a transaction Ti are usually (always?) reflected
only in a private version of the database which is associated with Ti .

• Reads by Ti are made from a version which is determined by the isolation
level.

Transaction Models and Concurrency Control 20110611 Slide 64 of 90



Two Fundamental Modes for MVCC

• There are two fundamental modes for the version-based model of MVCC,
which correspond to distinct levels of isolation.

Snapshot mode: In snapshot mode, a “snapshot” of the database is taken
for transaction Ti when it begins execution.

• Throughout the life of the transaction, it reads from and writes to
this snapshot.

• This mode is used to define a new and very important isolation
mode called snapshot isolation.

Read-Committed dynamic mode (RC dynamic mode): In this mode, reads of
data objects which the transaction has not yet written are always made
from the latest committed version of that object.

• However, once a transaction has written data item x , that value
becomes part of its private version and it no longer see values of x
which are committed afterwards by other transactions.

• This mode is often used to implement the classical RC mode of
isolation within MVCC.

Transaction Models and Concurrency Control 20110611 Slide 65 of 90



Read-Committed Isolation in MVCC

• Suppose that transaction Ti is operating with the RC isolation level.

• It will then use RC dynamic mode of MVCC.

• All reads are made from the (unique) current committed version of the
database.

• Note that this version can (and usually will) change during the
lifetime of Ti .

• Writes are always made to a private version of the database which is
associated with Ti .

• If the transaction is to be aborted, this private version is simply discarded.

• Since it is invisible to the other transactions, it is not necessary to
“undo” anything which Ti has written to this private copy.

• Before Ti can commit, its private copy must be integrated into the
database.

Transaction Models and Concurrency Control 20110611 Slide 66 of 90



Managing Update Conflicts in MVCC

• Before moving on to snapshot isolation, it is important to sketch how
update conflicts and transaction commits are managed in MVCC.

Update conflict: Say that Ti and Tj are in update conflict if their private
versions contain at least one update on a common data object.

• There are many ways to resolve such conflicts.

• One common one is...

First Committer Wins: Let Ti be a transaction.

• No locks are required.

• No action is taken until a Ti is ready to commit.

• When it is, the stable version of the database is checked to see
whether any committed updates have been made to data items
which Ti has updated in its private version.

• If there is a conflict, Ti must be aborted.

• Otherwise, its updates are committed to the stable database.

Transaction Models and Concurrency Control 20110611 Slide 67 of 90



Managing Update Conflicts in MVCC via Locks

• Update conflicts in MVCC may also be managed using write locks.

• A transaction must write lock all data objects which it intends to write,
but there are no read locks.

• If Ti and Tj each hold a write lock on the same data object x , they may
proceed to update their local copies.

• However, only one will be allowed to commit.

• The choice of which is to commit may be made in many ways.

• A particular case is the following.

First updater wins: Let Ti and Tj be transactions.

• In this protocol, a transactions still write locks the data objects
which it intends to update.

• If Tj already holds a lock on some data object x which Ti also
wishes to write, then Ti must wait until Tj commits or aborts.

• If Tj commits, then Ti must abort.

• If Tj aborts, then Ti may obtain a write lock on x and continue.
Transaction Models and Concurrency Control 20110611 Slide 68 of 90



Snapshot Isolation

Snapshot Isolation (SI): Let Ti be a transaction.

• The private version of the database for Ti is a “snapshot” of the
database at the time at which Ti begins.

• This version cannot (normally) be accessed by other transactions.

• Thus, it appears to Ti that it is executing without any concurrent
operations from other transactions.

• When a transaction is ready to commit, the updates to its local version
must be integrated into the main database.

• This is typically realized via the first-committer-wins protocol.

• Thus, no locks at all are involved.

Transaction Models and Concurrency Control 20110611 Slide 69 of 90



Anomalies of Snapshot Isolation

• With SI, dirty writes and nonrepeatable reads cannot occur.

• Thus, the isolation level is at least as great as those provided by RU
(read uncommitted) and RC (read committed).

• Whether SI is as strong as repeatable read depends upon technical details
of the model.

• See [Berenson et al. 1995] for a detailed discussion.

• However, with the anomaly model presented here, it is strictly stronger
than RR (repeatable read).

• There are nevertheless other anomalies which cannot occur in true
serializable mode.

• The two principal ones are known as write skew and SI read-only
anomaly. updates.

Transaction Models and Concurrency Control 20110611 Slide 70 of 90



Write Skew

Example: Let x and y represent the balances of two distinct accounts.

Integrity constraint: x + y ≥ 500AC.

Initial state: x = 300AC, y = 300AC.

T1 : Withdraw 100AC from x .

T2 : Withdraw 100AC from y .

• Suppose that the two transactions run concurrently, so that they see the
same initial state “snapshot”.

• Each runs without knowledge of what the other does.

• The final state will be x = 200AC, y = 200AC, which violates the
constraint.

• This schedule clearly does not involve dirty reads, nonrepeatable reads, or
phantoms, so it is passes the test for the isolation levels RU, RC, and RR.

• Write skew cannot occur with true serializability.

• Thus, SI is strictly weaker than SER isolation.

Transaction Models and Concurrency Control 20110611 Slide 71 of 90



SI Read-Only Anomaly

• This anomaly is interesting in that two transactions produce a final result
which is consistent with a serializable schedule.

• However, a read-only transaction sees a state which is not possible
in any serial schedule.

• Let

T1 = r1〈x〉w1〈x〉 T2 = r2〈x〉r2〈y〉w2〈y〉 T3 = r3〈x〉r3〈y〉

• If the schedule is

r2〈x〉r2〈y〉 r1〈x〉w1〈x〉 cmt1 r3〈x〉r3〈y〉 cmt3 w2〈y〉 cmt2

then the result which T3 sees need not be the result of a serializable
schedule.

• Note that this schedule becomes serializable if T3 is removed.

• This is most easily seen via a concrete interpretation.

Transaction Models and Concurrency Control 20110611 Slide 72 of 90



SI Read-Only Anomaly 2

• Let x and y represent the balances of bank accounts.

• If a transaction forces x + y < 0, then a 10% interest charge is imposed.

• Let the initial balances be (x , y) = (0AC, 0AC).

• Let T1 read and then add 20AC to the balance of x .

• Let T2 read both balance and then deduct 10AC from the balance of y .

• Note that if the snapshot for T2 is taken before T1 commits, then
1AC in interest is also deducted.

• The final result of

r2〈x〉r2〈y〉 r1〈x〉w1〈x〉 cmt1 r3〈x〉r3〈y〉 cmt3 w2〈y〉 cmt2

is (x , y) = (20AC,−11AC), while T3 sees (x , y) = (20AC, 0AC).

• The values seen by T3 cannot be the result of reading during any
serializable execution of these transactions which computes (20AC,−11AC)
as its result, since the −11AC implies an interest charge.

• The only possibilities are
(x , y) ∈ {(0AC, 0AC), (0AC,−11AC), (20AC,−11AC)}.

Transaction Models and Concurrency Control 20110611 Slide 73 of 90



Serializable Isolation in MVCC

• The weakness of SI, relative to serializable isolation, is that SI cannot
identify certain read conflicts between two transactions.

Serializable SI: Very recently, a method for augmenting SI so that it always
produces serializable isolation has been developed.

• This method is called serializable SI or SerSI.

• It is clear that any such method must include a means of determining
which data items a transaction Ti reads from in computing its updates.

• The full development is complex and will not be presented here.

Performance: In benchmark tests, it appears that in many common
transaction mixes, SerSI does not incur a significant performance penalty
over ordinary SI.

• It seems likely that SerSI will be incorporated into real DBMSs in the
near future.

Transaction Models and Concurrency Control 20110611 Slide 74 of 90



SVCC vs. MVCC in Current Systems

• While SVCC used to be the norm, virtually all current-generation DBMSs
use MVCC.

Why?

• MVCC offers superior support for concurrency control.

• But it used to be too expensive to implement effectively.

• Memory (both primary and secondary) has become much less
expensive and available in much larger sizes.

• MVCC requires lots of memory to store the versions.

• The sole holdout seems to be IBM DB2, which is still primarily based
upon SVCC.

• However, even that system now offers MVCC with a particular
configuration for concurrency control.

Transaction Models and Concurrency Control 20110611 Slide 75 of 90



Isolation Levels in Current Systems

• Most systems with MVCC offer RC and SI as options.

• This is understandable since these two have natural implementations
with MVCC.

• Most systems have RC as the default isolation level.

• This is despite the fact that the SQL standard specifies SER as the
default isolation level.

• Of the major systems (Oracle, DB2, SQL Server, PostgreSQL,
MySQL/InnoDB), only SQL Server and DB2 offer SER isolation level.

• In the other systems, the isolation level which is identified as SER is
really SI!

Note: In DB2, the SER isolation level is called Repeatable Read.

• The isolation level which is called RR in these slides is called Read
Stability in DB2.

• The locking granularity for DB2 SER isolation is the table.

• In other words, if any part of a relation is involved in a transaction,
the entire relation is locked, regardless of available indices.

Transaction Models and Concurrency Control 20110611 Slide 76 of 90



Isolation Levels in Current Systems 2

• In PostgreSQL, RU is the same as RC, and RR is the same as SI.

• This is consistent with the standard, since RU and RR isolation levels
forbid certain anomalies but do not require that others be possible.

• As will be discussed shortly, RU and RR are not natural modes in MVCC.

• This PostgreSQL convention is likely used in many other systems as well.

• Many of the systems offer other non-standard modes as well.

• In particular, locking of physical entities such as pages and files is
sometimes supported.

• It is very easy to develop applications which are not portable because
they use choices of isolation level which are not used by other systems.

• The best choices for portability are RC and SI.

Transaction Models and Concurrency Control 20110611 Slide 77 of 90



Read-Uncommitted Isolation in MVCC

Interesting question: Does RU isolation make sense in MVCC?

• It could be implemented in a manner similar to that used for RC, except
that for a data item x which Ti reads but has not yet written, the version
of the database for Ti would contain the latest available version x ,
regardless of whether or not it has been committed.

Question: Why would this be easier to implement than RC?

Answer: In the general MVCC context, it would not be.

• Since RC provides “superior” data to RU, there is no apparent advantage
to RU over RC in MVCC.

Consequence: At least in some real DBMSs (e.g., PostgreSQL), RC and RU
isolation levels are identical and behave as RC.

However: It might be possible to implement RU to advantage in the context
of the DB cache.

• This possibility will be discussed in the context of recovery.

Transaction Models and Concurrency Control 20110611 Slide 78 of 90



Repeatable-Read Isolation in MVCC

• Repeatable read also seems a bit problematic in MVCC.

• Consider how repeatable read is implement in SVCC:

• The transaction read locks the part of the database which
corresponds to the retrieved data for the given range query Q on the
DB instance when the transaction is awarded the lock.

• These data are the correct answer to Q as long as new data which
satisfy Q are not added to the database.

• In MVCC, there would have to be a version which is invariant on the
result of Q on the initial database, but which may vary on other parts.

• What is the advantage of such an instance?

• It seems that this classical isolation mode does not make a lot of sense
for MVCC.

• In PostgreSQL, RR and SER isolation levels are identical (implemented
as SI).

Transaction Models and Concurrency Control 20110611 Slide 79 of 90



Optimistic and Pessimistic Concurrency Control

• In the discussion of the resolution of deadlock for lock-based SVCC,
notions of optimistic and pessimistic methods for the resolution of
deadlocks were presented.

• These concepts make sense in a more general context, including but not
limited to MVCC, possibly without locks and without deadlocks.

Optimisic concurrency control: refers to an approach in which transactions
are allowed to proceed, with conflicts resolved at commit time.

Pessimistic concurrency control: refers to an approach in which potential
conflicts are detected and resolved early on.

Example: Within MVCC, First Committer Wins is an example of optimistic
concurrency control.

Example: First Updater Wins is an example which has both optimistic and
pessimistic aspects.

Transaction Models and Concurrency Control 20110611 Slide 80 of 90



Issues with Concurrent Isolation Modes

• In a system with multiple concurrency models, each transaction is allowed
to choose its own concurrency model.

• The issue of isolation level is one of interacting transaction, and not just
a single transaction.

• Thus, even if transaction T1 chooses true serializable isolation, if
transaction T2 chooses read uncommitted, it can compromise the results
of T1.

• This underlines the necessity of having a policy for transactions which
support the overall goals of the enterprise.

Transaction Models and Concurrency Control 20110611 Slide 81 of 90



Transactions in Current Systems

• Major DBMSs do not in general follow SQL standard specifications in
regards to directives surrounding transactions.

• Each follows its own conventions.

• Thus, the SQL standard will not be discussed here.

• The general convention is that transaction initiation is implicit.

• It is not necessary (and in some cases not possible) to give an
explicit Begin Transaction statement or the like.

• On the other hand, it is generally possible to give a Commit or
Rollback statement.

• It is also possible to give directives to set the isolation level.

Transaction Models and Concurrency Control 20110611 Slide 82 of 90



Transaction Initiation and Commit in Current Systems

• There are two general models of transaction initiation:

Session based: SQL statements are executed one after the other, but a
commit occurs only at the end of the session or when an explicit
Commit directive is issued.

• Default for Oracle.

Statement based (autocommit): A Commit occurs immediately after
each SQL statement.

• Default for the other four systems.

• In all cases, there is a directive to choose which of these models applies
to a given session.

Transaction Models and Concurrency Control 20110611 Slide 83 of 90



Long-Running Transactions

• As the name suggests, long-running transactions are those which take a
“long” time to complete.

• They often access many different data objects, although they may
need some such objects for only short a short interval.

• They may also involve human interaction.

• Long-running transactions pose a particularly difficult problem for
concurrency control.

• If an optimistic strategy is employed, then the risk is that
transactions which have been running for a long time and are near
completion must be aborted.

• If a pessimistic strategy is employed, then the risk is that execution
will be nearly serial and so there will be unacceptably long waits
before a transaction is allowed to run.

• Solutions for dealing with long-running transactions must often be
customized for the given application area.

Transaction Models and Concurrency Control 20110611 Slide 84 of 90



Classical Reference Books on Concurrency Control

• This classical reference is available online at
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx. It
contains a detailed presentation of classical MVCC.

Bernstein, P. A., V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems, Addison-Wesley, 1987.

• The following is still one of the best references on the basic theory of
concurrency control. It is concise and well written.

Papadimitriou, C., The Theory of Database Concurrency Control,
Computer Science Press, 1986.

Transaction Models and Concurrency Control 20110611 Slide 85 of 90

http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx


Recent Reference Books on Concurrency Control

• This book is very current and presents an application-oriented perspective
without going into detailed theory. It is a great book for obtaining the
overall picture of transaction processing in the real world.

Philip Bernstein and Eric Newcomer. Principles of Transaction
Processing. Morgan Kaufmann, second edition, 2009.

• This book is a comprehensive reference on the theory of concurrency
control.

Gerhard Weikum and Gottfried Vossen. Transactional Information
Systems. Morgan Kaufmann, 2002.

Transaction Models and Concurrency Control 20110611 Slide 86 of 90



Papers on Snapshot Isolation

• The following now-classical paper presents a simple yet formal model of
modelling of transaction anomalies. It is the first paper to discuss
snapshot isolation from a formal perspective and illustrate write skew. It
is available for free download at http://arxiv.org/abs/cs/0701157.

Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton,
Elizabeth J. O’Neil, and Patrick E. O’Neil. A critique of ANSI SQL
isolation levels. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, San Jose,
California, May 22-25, 1995, pages 1–10, 1995.

Transaction Models and Concurrency Control 20110611 Slide 87 of 90

http://arxiv.org/abs/cs/0701157


Papers on Snapshot Isolation 2

• The following two papers provide the theoretical foundations for
augmenting SI to provide serializable isolation.

Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, Patrick E.
O’Neil, and Dennis Shasha. Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2):492–528, 2005.

Michael J. Cahill, Uwe Röhm, and Alan David Fekete. Serializable
isolation for snapshot databases. ACM Trans. Database Syst.,
34(4), 2009.

Transaction Models and Concurrency Control 20110611 Slide 88 of 90



Papers on Snapshot Isolation 3

• The following paper examines SI in the context of classical schedules.

Ragnar Normann and Lene T. Østby. A theoretical study of
’snapshot isolation’. In Luc Segoufin, editor, Database Theory -
ICDT 2010, 13th International Conference, Lausanne, Switzerland,
March 23-25, 2010, Proceedings, ACM International Conference
Proceeding Series, pages 44–49. ACM, 2010.

• The above paper is based upon an MSc thesis at the University of Oslo.
While the above paper is not available for free online, the thesis is, at:
http://www.duo.uio.no/sok/work.html?WORKID=74076

Lene T. Østby. En teoretisk studie av “snapshot isolation”.
Masteroppgave, Institutt for informatikk, Universitetet i Oslo, 2008.

Transaction Models and Concurrency Control 20110611 Slide 89 of 90

http://www.duo.uio.no/sok/work.html?WORKID=74076


DBTech Resources on Transactions

• DBTech EXT is a consortium, funded by the EU, which develops
educational materials in the DBMS area, with a focus upon hands-on use
of real systems.

• Their main portal is here: http://dbtech.uom.gr/

• Of particular interest is the materials which they have developed for
concurrency control and recovery, which may be found by clicking on the
appropriate link of the above site.

• These material include not only papers, but also exercises and even a
downloadable VBox image which contains Linux with the free versions of
both Oracle and DB2 installed.

• Two of the participants, Martti Laiho and Fritz Laux, have written a
paper entitled “On SQL Concurrency Technologies for Application
Developers”, which covers in detail how real systems handle concurrency
control.

• It is is available for free downloaded at:
http://www.dbtechnet.org/papers/SQL ConcurrencyTechnologies.pdf.

Transaction Models and Concurrency Control 20110611 Slide 90 of 90

http://dbtech.uom.gr/
http://www.dbtechnet.org/papers/SQL_ConcurrencyTechnologies.pdf

