
Database Access via Programming Languages
5DV052 — Advanced Data Models and Systems

Ume̊a University
Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Spring 2011

Database Access via Programming Languages 20110320 Slide 1 of 25

The Limitations of Stand-Alone SQL

• SQL is primarily a language for data definition, retrieval, and update.

• It is not designed for complex computation.

• Enhancements such as OLAP are useful for certain specific tasks, but still
leave many important tasks difficult or impossible to achieve.

Theoretical shortcoming: Unlike most programming languages, it is not
Turing complete.

• There are computations which cannot be expressed in SQL at all.

Interoperability shortcoming: Stand-alone SQL clients are generally vendor
specific.

• Concurrent access to databases of different vendors is not possible
with a single client.

• Access to multiple databases via the same client is usually awkward,
requiring vendor-specific directives.

Database Access via Programming Languages 20110320 Slide 2 of 25

The Limitations of Stand-Alone SQL: 2

Practical shortcomings: There is also a host of practical reasons why
stand-alone SQL does not suffice:

Accessibility: Most users of databases are not computer scientists.

• They need a custom interface for non-experts.

• Even experts can often work more effectively via custom interfaces.

Simplicity: Real-world database schemata are often very large and complex.

• Users often need to work with custom views which present what
they need to know and are allowed to know.

Security: The correct management of access rights is a very complex task.

• It is often easier to manage access by admitting access via specific
interfaces.

Concurrency: The correct management of concurrent processes is also very
complex.

• It is often easier to manage concurrency via properly designed
interfaces.

Database Access via Programming Languages 20110320 Slide 3 of 25

Database Access via Programming Languages: Desiderata

Database access via standard SQL: Ça va sans dire !

Use with: • traditional programming languages: C, C++, Java, Python.

• languages for Web-based access: PHP, via Apache Tomcat.

Interoperability: Access to several different databases, running the systems
of many different vendors, perhaps on different platforms.

The Major Players in the DBMS arena:

The “big three” commercial systems: • Oracle Database

• IBM DB2

• Microsoft SQL Server

The major open-source systems: • PostgreSQL

• MySQL/InnoDB

Other significant commercial vendors: Mimer SQL, Sybase

Other products with widespread usage: M$ Access

Database Access via Programming Languages 20110320 Slide 4 of 25

Examples of Vendor-Specific Solutions

Oracle PL/SQL: A proprietary PL/1-like imperative programming language
which supports the execution of SQL queries.

Advantages:

• Many Oracle-specific features of SQL and the Oracle Database
systems are supported.

• Performance may be optimized in a manner not achievable with
solutions which are not vendor specific.

Disadvantages:

• Vendor lock-in: applications are tied to a specific DBMS.

• Application development is dependent upon the existence of a
development environment for the language (in this case, PL/1),
which may not be available on all platforms.

• Big problems arise if the vendor goes out of business or chooses
to stop supporting a given platform (e.g., Linux).

• VBA + MS Access under Microsoft Windows is an even stronger
vendor-specific example in the desktop environment.

Database Access via Programming Languages 20110320 Slide 5 of 25

Embedded SQL: a Vendor-Independent Solution

• In embedded SQL, calls to SQL statements are embedded in the host
programming language.

• Typically, such statements are tagged by a special marker,
usually EXEC SQL.

• A preprocessor is invoked to convert the source program into a “pure”
program in the hose language.

• The EXEC SQL statements are convert to statements in the host language
via a preprocessor.

• In static embedded SQL, table and attribute names must be declared in
the source program.

• In dynamic embedded SQL, they may be provided at run time.

• There is an ISO standard for embedded SQL.

Database Access via Programming Languages 20110320 Slide 6 of 25

Disadvantages of Embedded SQL

Embedded SQL has a number of distinct disadvantages:

Preprocessed: Debugging preprocessed programs is not a pleasant
experience.

Program development environment: Because of the nature of preprocessed
programs, it is not easy to provide support for the preprocessor directives
within a programming environment.

Specificity: The preprocessor must be vendor specific, and at least in part,
platform specific as well.

• Embedded SQL has been superseded in large part by CLI/ODBC.

Database Access via Programming Languages 20110320 Slide 7 of 25

A Closer Look at Interoperability

• A “real-world” situation might involve several DBMS, OSs, and PLs.

• The scenario might look something like this:

Network

Client1

App11 · · · App1k1

(Linux)

(C) (PHP)

Client2

App21 · · · App2k2

(Mac OS)

(C) (Python)

· · · Client`

App21 · · · App2k`

(M$ Windows)

(VBA) (C#)

Server1

DB11 · · · DB1m1

(Solaris)

(Oracle) (PostgreSQL)

Server2

DB12 · · · DB1m2

(Linux)

(IBM DB2) (MySQL)

· · · Servern

DB12 · · · DB1m2

(Windows Server)

(SQL Server) (MySQL)

• In the ideal case, any application should be able to access any database
using SQL ... subject only to limitations imposed by access rights.

Database Access via Programming Languages 20110320 Slide 8 of 25

The CLI/ODBC Solution to Interoperability

• There are two closely related specifications.

CLI (Call-Level Interface): An ISO/IEC standard developed in the early
1990s.

• Defined only for C and COBOL.

ODBC (Open Data Base Connectivity): A specification based upon CLI.

• Defined for many programming languages, including C, Python,
Ruby, and PHP.

JDBC: An ODBC-like specification for Java.

• All of these solutions exhibit a large degree of interoperability.

U ODBC is not platform, OS, or DBMS specific.

OS: Unix, Linux, MacOS, MS Windows, IBM

DBMS: You name it.

• Interestingly, the major player which promoted ODBC was ... Microsoft!

Database Access via Programming Languages 20110320 Slide 9 of 25

The Architecture of ODBC for a Single Client

Network

Client
OS

ODBC
Manager

Oracle ODBC Driver

PostgreSQL ODBC Driver

Microsoft ODBC Driver
User

ODBC Mapping

Program

Development

Environment

ODBC
API

Library

Server1

DB11 · · · DB1m1

Server2

DB12 · · · DB1m2

· · · Servern

DB12 · · · DB1m2

Color code:
Operating system OS-specific utility DBMS-specific module

Development-environment-specific module User configuration file

Database Access via Programming Languages 20110320 Slide 10 of 25

Using ODBC in the Linux Environment

• The main ideas are presented via a set of five annotated programs in C.

• These slides provide only supporting information.

• The specific context is the gcc compiler under Linux and Solaris.

• Although these examples are intended to be generic, they have been
tested only with the PostgreSQL DBMS, using Debian Linux and
Sun/Oracle Solaris as the client-side operating system.

• The on-line reference manual for ODBC may be found on a Microsoft
Web site. Use your favorite search engine to find it.

• Good books on ODBC are difficult to find.

• These notes and the example programs will provide enough to do the
ODBC laboratory exercise.

Database Access via Programming Languages 20110320 Slide 11 of 25

Compiling a C Program with ODBC Calls

• One of the ODBC client-side ODBC C libraries must be included.

• One of the following should work to compile program.c.:

cc -lodbc program.c

cc -liodbc program.c

• Although they are functionally equivalent, the libraries odbc and iodbc

cannot co-exist on the same system.

• Try one; if a list of error messages appears, try the other.

• There may be some small differences between the two which may require
changes in scanf and printf formats.

• Currently, use iodbc on the systems of the department.

• The actual structure of C programs which contain ODBC calls is
illustrated via accompanying example programs, with some basic
principles discussed in these slides.

Database Access via Programming Languages 20110320 Slide 12 of 25

Data-Source Configuration Under the Linux Installation

• Every data source which is to be reached via ODBC calls must be
declared in the .odbc.ini file in the home directory of the user.

• A minimal example file is shown below for connection to PostgreSQL
databases on the postgres server using Linux.

The ODBC data source names are are not used by PostgreSQL.

[ODBC Data Sources]

mydb1 = database1

mydb2 = database2

The name in square brackets is the ODBC DB name; may be chosen arbitrarily.

[database1]

Description = PostgreSQL test database 1

Driver = /usr/lib/odbc/psqlodbca.so

The name on the next line is the PostgreSQL DB name.

Database = hegner1

Servername = postgres

Here is the definition of a second database.

[database2]

Description = PostgreSQL test database 2

Driver = /usr/lib/odbc/psqlodbca.so

Database = hegner2

Servername = postgres
Database Access via Programming Languages 20110320 Slide 13 of 25

A More Complete Specification of a Data Source

[ODBC Data Sources]

mydb3 = database3

[database3]

Description = PostgreSQL test database 1

Driver = /usr/lib/odbc/psqlodbca.so

Database = hegner1

Servername = postgres

Port = 5432

ReadOnly = 0

Username = hegner1

Password = "badidea"

Trace = No

TraceFile = /tmp/odbc.log

• The fields not shown on the previous slide are optional.

• Port and ReadOnly need be specified only if they differ from the
defaults.

• Trace and Tracefile need only be specified if tracing is desired.

• The UserName and Password fields are not used in the access methods
used in this course. .

Database Access via Programming Languages 20110320 Slide 14 of 25

Variations for the Solaris Installation

• Under the Solaris installation, use the unixodbc library, and specify gcc

and the load path explicitly.

gcc -L/usr/local/lib -lodbc program.c

• Also, the driver is in a different location.
[ODBC Data Sources]

mydb1 = database1

mydb2 = database2

[database1]

Description = PostgreSQL test database 1

Driver = /usr/local/lib/psqlodbc.so

Database = hegner1

Servername = postgres

[database2]

Description = PostgreSQL test database 2

Driver = /usr/local/lib/psqlodbc.so

Database = hegner2

Servername = postgres

Database Access via Programming Languages 20110320 Slide 15 of 25

Combining Linux and Solaris in one .odbc.ini file

• To use a single .odbc.ini file for both Linux and Solaris, a simple solution
is to use different ODBC names.

[ODBC Data Sources]

mydb1Solaris = database1S

mydb1Linux = database1L

[database1S]

Description = PostgreSQL test database 1

Driver = /usr/local/lib/psqlodbc.so

Database = hegner1

Servername = postgres

[database1L]

Description = PostgreSQL test database 2

Driver = /usr/lib/odbc/psqlodbca.so

Database = hegner1

Servername = postgres

• This requires using a different ODBC name, for the same database, when
using Linux access than for Solaris.

Database Access via Programming Languages 20110320 Slide 16 of 25

Some Basics of ODBC Calls in C

Identifiers:

• Most ODBC identifiers begin with SQL (uppercase letters).

• It is therefore good practice to avoid using this sequence of
characters as the beginning of user-defined identifiers.

API calls:

• ODBC contains a large number of functions (around 80).

• They have names such as SQLAllocHandle and SQLCloseCursor.

• Only a few will be used in this course.

• Most (all?) return a value of type SQLReturn.

• The returned value is zero if the the execution was normal, and
nonzero if it was not.

Includes: To use ODBC API calls, the following two includes must be in the
program header: #include <sql.h>

#include <sqlext.h>

Database Access via Programming Languages 20110320 Slide 17 of 25

Matching SQL to Host-Language Data Structures

• SQL and the host language (in this case C) each have their own data
types.

• To use ODBC, there must be a mechanism for translation between these
types.

• To effect this, the primitive types which occur in SQL are assigned
corresponding types in the host language.

• The definitions are found in the header file sqltypes.h, which is loaded
by sql.h.

• A table of some of the principal associations is shown on the next slide.

• For API calls, these types, rather than the associated types of C, should
be used.

Database Access via Programming Languages 20110320 Slide 18 of 25

The Principal ODBC-C Data-Type Associations

• Some of the most commonly used associations are shown below.

ODBC Type C Type

SQLCHAR char

SQLSCHAR signed char

SQLINTEGER long int

SQLUINTEGER unsigned long int

SQLSMALLINT short int

SQLUSMALLINT unsigned short int

SQLREAL float

SQLDOUBLE,SQLFLOAT double

SQLDATE a large struct

• There are many others (e.g., for time).

• The exact associations may vary from system to system.

• Therefore, for API calls, the ODBC types, rather than the C types, should
be used.

Database Access via Programming Languages 20110320 Slide 19 of 25

Integer Encodings of ODBC Data Types

• Each ODBC type has an integer encoding.

• These encodings are used in the arguments to API calls, to indicate
which data type is to be used.

• Each encoding also has a symbolic name, so the programmer need not
know (and should not use) the actual integer.

• The associations of numbers to symbolic names are found in sqlext.h.

• A table of some of the most common ones is shown below.
ODBC Type Name for Integer Encoding

SQLCHAR SQL C CHAR

SQLSCHAR SQL C STINYINT

SQLINTEGER SQL C SLONG

SQLUINTEGER SQL C ULONG

SQLSMALLINT SQL C SSHORT

SQLUSMALLINT SQL C USHORT

SQLREAL SQL C FLOAT

SQLDOUBLE,SQLFLOAT SQL C DOUBLE

SQLDATE SQL C TYPE DATE

• These need not be remembered; only the concept is important.

Database Access via Programming Languages 20110320 Slide 20 of 25

Integer Encodings for SQL Data Types

• There is also an integer encoding (and an associated symbolic identifier)
for each SQL type.

• These associations are found in sqlext.h.

• The table below gives only typical associations, found in the on-line
documentation for ODBC.

SQL Type Name for Integer Encoding

char(n) SQL CHAR

varchar(n) SQL VARCHAR

smallint SQL SMALLINT

integer SQL INTEGER

real SQL REAL

numeric(p,s) SQL DECIMAL

decimal(p,s) SQL NUMERIC

date SQL TYPE DATE

• Consult the local documentation for exact usage.

Database Access via Programming Languages 20110320 Slide 21 of 25

ODBC Handles

• A handle is a numerical value with is associated with a certain object.

• File handles are familiar in systems programming.

• In ODBC, there are four types of handles.

Environment handles: In order to access a database via ODBC, an
ODBC environment must be established.

• There is normally only one such environment per program.

Connection handles: Just as there must be a file handle for every open
file in an operating system, so too must there be a connection
handle for each connection to an ODBC database.

Statement handles: A statement handle is associated with an SQL
statement which is to be issued to a database for execution.

Descriptor handles: Descriptors are metadata which describe formats
associated with SQL statements.

• Descriptor handles will not be used in this course.

Database Access via Programming Languages 20110320 Slide 22 of 25

Declaration and Use of ODBC Handles

• Handles are declared using the type SQLHandle.

• Handles are allocated using the function SQLAllocateHandle.

• Handles are freed using the function SQLFreeHandle.

• These are all illustrated in the example programs.

• The current version of ODBC is 3.xx.

• The (much) older version 2.xx used a different syntax for handles.

• That syntax is deprecated and should not be used, even though it may
still work.

Database Access via Programming Languages 20110320 Slide 23 of 25

Other Key ODBC Directives

• The following are just indicators of the key operations in ODBC.

• All are illustrated in the example programs.

SQLPrepare Prepare (“compile”) an SQL statement for execution.

SQLExecute Executed a compiled SQL statement.

SQLExecDirect Compile and then execute an SQL statement in one step.

• Appropriate in situations in which an SQL statement is to be
executed only once.

SQLBindParameter Bind an input-parameter index in an SQL statement to
a variable in the program.

SQLBindCol Bind a column of a query result (output parameter) to a
variable in the program.

SQLFetchTuple Fetch the next tuple from the result of a query.

SQLCloseCursor Close the cursor on a given query, so that the statement
handle may be used to collect the results of a new query.

Database Access via Programming Languages 20110320 Slide 24 of 25

Other Classes of API Calls

• A few other major classes of ODBC API calls are the following.

Catalog queries: Find out which relations are in a given database, what
the types of the columns are, what the constraints are, and so forth.

Optimization directives: Process large sets of queries with efficient
batch operations.

Error management: If something goes wrong, find out what the problem
is.

• In all, there are over 80 API calls in ODBC.

Database Access via Programming Languages 20110320 Slide 25 of 25

