
Independence and Interoperability

in

Database Systems

Stephen J. Hegner
Department of Computing Science

Umeå University
Sweden

0

Independence vs. Interoperability

Independence: the ability to alter a basic design feature
without the need to alter other design features.

� Physical database design (underlying data
structures)

� The underlying conceptual data model of a fixed
database

� The host programming language of a fixed
application

Interoperability: the ability to use the same applications
with a variety of members of the supporting cast,
including but not limited to:

� the vendor and version of the database system;

� the vendor and version of the operating system;

� the vendor and version of the program
development environment.

1

Direct File Access

� In the classical one-level architecture, the application

programs interact directly with the file system.

Application
Program m

Application
Program 1

File
System

...

: All applications programs must be rewritten if:

� the operating system or the hardware is to be changed;

or
� the data representation is to be altered.

: Concurrent access is only possible to the extent that

locking etc., are supported in the operating system, and

then each application program must handle this function

individually.

: This approach provides absolutely no independence.

2

The Two-Level DBMS Architecture

� In a two-level DBMS architecture, the application is

separated from the physical data model via a logical data

model.

User/
Application

Program

Logical
Data

Model

Physical
Data

Model

� The logical data model may be either vendor-supplied or

standardized.

Examples of vendor-supplied logical models:

classical: The IMS/VS hierarchical DBMS

modern: Most object-oriented database systems

Examples of standardized logical models:

classical: The CODASYL network model

modern: The relational model

: If the physical data model is altered for any reason,

only the mapping between it and the logical data model

need be redesigned.

3

The Relational Model — an Industry Standard

� In the relational model, the data are stored in tables.

� The structure of these tables is specified via a relational

schema.

� A toy schema:

Employee

SSN Name Salary

Project

PName Location

Works on

SSN PName Hours

� Key constraints (shown underlined in sepia) specify

those fields which uniquely determine a tuple.

� Foreign key constraints (represented as arrows in

midnight blue) specify inclusion of key fields.

4

A Relational Database for the Toy Schema

Employee

SSN Name Salary

3141592654 Kari Nordmann 80000

1618033989 Ola Nordmann 90000

2718281828 Renée Françoise 50000

Project

PName Location

Restoration Olso

Research Frankfurt

Works on

SSN PName Hours

3141592654 Restoration 30

3141592654 Research 30

1618033989 Research 40

2718281828 Restoration 40

5

Non-Procedural Queries in the Relational Model

� Function-free first-order logic with equality provides a

near-perfect mathematical foundation for the relational

model.

� In particular, queries may be expressed via formulas in

an associated logic, called the tuple calculus.

Query: Find the names of those employees who work on

some project which is located in Frankfurt.

���
e �����	�
���
���� ��������
�
 � e ������

p � ��� w � ���! �#"$
&%(' � p ���*) � ,+.- �0/ � w ����
e �21314� 5 w �61317�8��� �

p � � �9�:�
;5 w � � ���	�
�����
p �=<>�?%���'#@A�0/B5 “Frankfurt” �C�ED

Query: Find the names of those employees who work on

every project.

���
e �����	�
���
���� ��������
�
 � e ����GF

p � ��� w � ���! �#"$
&%(' � p � H �) � �+I- �0/ � w ����C�
e �21314� 5 w �61317����� �

p � � �9�:�
;5 w � � �9�:�
��J�J�KD

6

SQL — The Standard Query Language

� SQL is the standard query language which is used in

virtually all relational database systems.

� It is an outgrowth of the SEQUEL project of IBM in the

1970’s.

� SEQUEL = Structured English QUEry Language.

� Unfortunately, SQL is not faithful to the simple and

elegant query model provided by the tuple calculus.

� Rather, it is a mélange of several abstract query models

and a great deal of ad hoc constructs.

� Consequently, the expression of queries is often

needlessly complex and nonintuitive.

� SQL also supports:

➪ Updates to the database;

➪ Data definition;

➪ Authorization.

7

Examples of SQL

Query: Find the names of those employees who work on

some project which is located in Frankfurt.

Select Name

From Employee, Project, Works on

Where (Employee.SSN = Project.SSN)

and (Project.PName = Works on.PName)

and (Project.Location = “Frankfurt”);

Query: Find the names of those employees who work on

every project.

Select Name

From Employee

Where Not Exists

(Select PName From Project

Except

(Select PName

From Works on

Where (Employee.SSN = Works on.SSN)));

8

The Rôle of SQL

� SQL may be used as a direct user interface to a database
system in simple situations.

� All systems come with a client-side program which
permits the user to enter SQL queries, and receive
responses, directly in a program window.

� However, it is not suitable, by itself, as a general
database-application programming language, for the
following reasons.

➪ It is often necessary to perform complex
computations on retrieved data.

� Such computations are often impractical to
express in SQL.

➪ SQL is not universally suitable as a user interface.

➪ It is often necessary to access several databases, and
to perform computations and eventual updates based
upon all of these retrievals.

� For these reasons, it is essential to be able to combine the
use of SQL with that of conventional programming
languages.

9

The Client-Server Model and Multi-DBMS’s

Client 1

App11 App1n1
�����

Client 2

App21 App2n2
�����

Client m

Appm1 Appmnm
�����

Server 1

DB11 DB1n1
�����

Server k

DBk1 DBknk
�����

N
et

w
or

k

...

...

10

Vendor-Specific Solutions to DB Programming

Representative example: Oracle PL/SQL

� It is a proprietary PL/1-like language which supports
the execution of SQL statements which are specified in
the program.

� Oracle provides the entire development environment
for a variety of platforms.

Advantages:

Features: Many vendor-specific features, not common to
other systems, are supported.

Performance: Performance of the executable may be
optimized to the database systems of the vendor.

Disadvantages:

DBMS dependence: Any application developed with
such a product is strongly bound to a specific DBMS.

Potential client platform/OS dependence: Since the
development environment itself is supplied by the
vendor, it may not be available for all client-side
Platform/OS configurations.

� Such solutions provide essentially no interoperability.

11

Cross-Vendor Solutions to DB Programming

� In cross-vendor solutions, it is typically the case that:

� The program-development environment is generic,
and not provided by the DBMS vendor.

� DBMS drivers are provided by the DBMS vendor.

Program-
Development
Environment

DBMS-
Specific
Drivers

System resource Vendor resource

� Three alternative architectures of this configuration will
be discussed:

➪ Embedded SQL

➪ Modules

➪ CLI/ODBC

12

Embedded SQL

� The program is augmented with statements of the form

EXEC SQL <sql-directive>

� A precompiler converts these to statements in the
programming language which link to precompiled driver
modules supplied by the DB vendor.

� The resulting program is then compiled by the extant
system compiler for that language.

Features:

: The solution is independent of the DB vendor.

: There is an ANSI standard for embedded SQL in
C.

: It is difficult to support more than one DB vendor
in the same program.

: This solution depends not only upon the
programming language, but upon the specific compiler.
The vendor must supply a driver library for each
compiler (not language) which is to be supported.

: It suffers from the usual problems associated with
precompilers.

13

Support for SQL via Modules

� This approach is similar to that of embedded SQL, save
that precompiler directives are replaced by:

� function calls

� data definitions supported by included files

: This approach avoids the precompiler problems
associated with embedded SQL.

: Unfortunately, it shares most of the other problems of
embedded SQL.

� Dependence upon the compiler.

� Dependence upon the DB vendor for executable
modules.

� Difficulty to integrate calls to databases from distinct
vendors in the same program.

: There is no true standard for this approach.

14

CLI and ODBC

� CLI = Call Level Interface

� ODBC = Open Data Base Connectivity

� These are parallel standards.

� The architecture is shown on the next slide.

Features:

: The solution is independent of the DB vendor.

: There is a standard for the API’s.

: Multiple vendors are supported seamlessly.

: New vendors and/or databases may be added
without altering anything regarding existing ones.

: The solution is independent of the programming
environment.

: Some functionality of vendor-specific features may
be sacrificed.

: There may be a small performance penalty over
configurations which are more vendor specific.

15

The Architecture of ODBC
� Shown below is a typical architecture for a single client.

Program-
Development
Environment

ODBC
API Library

ODBC
Manager

User
ODBC

Mapping

Oracle
ODBC Driver

PostgreSQL
ODBC Driver

Microsoft
ODBC Driver

Network

Server 1

DB11 DB1n1
�����

Server k

DBk1 DBknk

�����

� Color code:
Supplied by the user
Installed in the operating system
Part of the development environment
Supplied by the system vendor

16

Handles in ODBC

� Just as file-access programs in a typical OS employ file

handles, ODBC employs a number of types of handles.

Environment handles: To each ODBC program is

associated an environment handle, which is used to

connect to the overall ODBC subsystem.

Connection handles: To each database with which the

ODBC program is to communicate is associated a

connection handle.

Statement handles: To each SQL statement which is to

be compiled and shipped to a database via ODBC is

associated a statement handle.

Descriptor handles:
� are pointers to data storage areas containing

metadata which describe attributes of an SQL query,

or the results of such a query;
� are typically allocated automatically by the system

for most purposes;
� may be allocated manually for advanced operations.

17

The API’s of ODBC

� ODBC contains over 80 API call definitions.
� Some representative calls are shown below.

API call Description

SQLAllocHandle Allocate a handle.

SQLFreeHandle Release a handle

SQLConnect Connect to a database

SQLDisconnect Disconnect from a database

SQLPrepare Compile an SQL query

SQLExecute Execute a complied SQL query

18

Data-type mapping in ODBC

� Although ODBC is fundamentally

programming-language independent, it is usually

associated with C or C++.
� Shown below are some representative data mappings for

these languages.
� These are defined in an include file which is usually

named sqlext.h.
� These are used in C programs with ODBC calls to make

a proper correspondence between the types of C and the

corresponding ODBC structures.

Examples of ODBC � type C associations:

ODBC type C type

SQLCHAR char

SQLINTEGER long int

SQLREAL float

SQLDATE a large struct

� There are also numerical encodings for the types of C

and SQL, which are used only as arguments to ODBC

API’s.

19

CLI and ODBC — History and Motivation

� CLI began as an effort in parallel with SQL-92 by the

SQL-Access Group, to develop a vendor-independent

callable interface for SQL.

� At about the same time, Microsoft also developed a

callable SQL interface, named ODBC.

� Although there are minor differences, Microsoft has

always modelled its interface after CLI.

� Both have evolved greatly over the past decade.

� To switch between the two standards, usually all that is

required is a change of header files.

� It seems that in the “real world,” ODBC is found more

frequently than CLI, even on UNIX/Linux systems.

20

JDBC — A PL-Specific Alternative

� JDBC is a Java-specific alternative to ODBC.

� Like ODBC, it accommodates a variety of database

vendors, who must supply JDBC drivers.

� Like ODBC, it is specific to the relational model.

� Unlike ODBC, it is tied to a single programming

language.

� Unlike CLI (upon which ODBC is based), it is not an

open standard, but rather a tightly controlled trademark of

Sun Microsystems.

21

The Future — Independence and Interoperability
beyond the Relational Model

Question: Why is interoperability limited to the relational

model?

Answer: More modern models, such as object-oriented

data models, have not matured to the point at which there

is a standard query language.

Question: What about CORBA?

Answer:

� CORBA is an architecture for the brokering of objects.
� It is not specific to the database world.
� While it would be a significant player in any sort of

extension of ODBC to the object-oriented world, it is

not in itself such an extension.

22

For Further Information

� The course web page for Databasteknik contains:

➪ An annotated series of example programs written in

C which perform ODBC calls.

➪ Slides which describe how to configure a client for

proper ODBC operation.

� Consult the slides for 2002 for information on

Unix/Linux clients which access the database system

PostgreSQL.

� Consult the slides for 2001 for information on Microsoft

Windows clients which access the database system

Microsoft Access.

23

