| ndependence and I nteroperability
N
Database Systems

Stephen J. Hegner
Department of Computing Science
Umea University
Sweden

Independence vs. Interoperability

Independence: the ability to alter a basic design feature

without the need to alter other design features.

e Physical database design (underlying data
structures)

e The underlying conceptual data model of a fixed
database

e The host programming language of a fixed
application

Interoperability: the ability to use the same applications

with a variety of members of the supporting cast,
Including but not limited to:

e the vendor and version of the database system;
e the vendor and version of the operating system;

e the vendor and version of the program
development environment.

Direct File Access

e In the classical one-level architecture, the application
programs interact directly with the file system.

Application
Program 1

Application
Program m

I 2: All applications programs must be rewritten if:

e the operating system or the hardware is to be changed;
or

e the data representation is to be altered.

I 2: Concurrent access Is only possible to the extent that
locking etc., are supported in the operating system, and
then each application program must handle this function
Individually.

It 2: This approach provides absolutely no independence.

The Two-Level DBMS Architecture

e In atwo-level DBMS architecture, the application is
separated from the physical data model via a logical data
model.

User/ Logical Physical
Application Data Data
Program Model Model

e The logical data model may be either vendor-supplied or
standardized.

Examples of vendor-supplied logical models:

classical: The IMS/VS hierarchical DBMS
modern: Most object-oriented database systems

Examples of standardized logical models:

classical: The CODASYL network model
modern: The relational model

I’=: If the physical data model is altered for any reason,
only the mapping between it and the logical data model
need be redesigned.

The Relational Model — an Industry Standard

e In the relational model, the data are stored in tables.

e The structure of these tables is specified via a relational
schema.

e A toy schema:

Employee Project

‘ SSN ‘ Name ‘ Salary ‘ ‘ PName ‘ Location ‘

J

Works_on Y

‘ SSN | PName ‘ Hours ‘

e Key constraints (shown underlined in sepia) specify
those fields which uniquely determine a tuple.

e Foreign key constraints (represented as arrows in
midnight blue) specify inclusion of key fields.

A Relational Database for the Toy Schema

Employee

SSN Name Salary

3141592654 Kari Nordmann 80000

1618033989 Ola Nordmann 90000

2718281828 | Renée Francoise | 50000

Project

PName Location

Restoration Olso

Research Frankfurt

Works_on

SSN PName

3141592654 | Restoration

3141592654 Research

1618033989 Research

2718281828 | Restoration

Non-Procedural Queries in the Relational Model

e Function-free first-order logic with equality provides a
near-perfect mathematical foundation for the relational
model.

e In particular, queries may be expressed via formulas in
an associated logic, called the tuple calculus.

Query: Find the names of those employees who work on
some project which is located in Frankfurt.

{(e.Name) | Employee(e) A
(3p)(3w) (Project(p) A Works_on(W) A
(e.SSN =w.SSN) A (p.PName =w.PName)
(p-Location = “Frankfurt”))}

Query: Find the names of those employees who work on
every project.

{(e.Name) | Employee(e) A
(Vp)(3w)(Project(p) = (Works_on(w) A
((e.SSN =w.SSN) A (p.PName =w.PName)))}

SQL — The Standard Query Language

e SQL is the standard query language which is used in
virtually all relational database systems.

e It is an outgrowth of the SEQUEL project of IBM in the
1970’s.

e SEQUEL = Structured English QUEry Language.

e Unfortunately, SQL is not faithful to the simple and
elegant query model provided by the tuple calculus.

e Rather, it is a mélange of several abstract query models
and a great deal of ad hoc constructs.

e Consequently, the expression of queries Is often
needlessly complex and nonintuitive.

e SQL also supports:

[1 Updates to the database;
[1 Data definition;

1 Authorization.

Examples of SQL

Query: Find the names of those employees who work on
some project which is located in Frankfurt.

Select Name

From Employee, Project, Works_on

Where (Employee.SSN = Project.SSN)
and (Project.PName = Works_on.PName)
and (Project.Location = “Frankfurt™);

Query: Find the names of those employees who work on
every project.

Select Name
From Employee
Where Not EXxists
(Select PName From Project
Except
(Select PName
From Works_on
Where (Employee.SSN = Works_on.SSN)));

The Role of SQL

e SQL may be used as a direct user interface to a database
system in simple situations.

e All systems come with a client-side program which
permits the user to enter SQL queries, and receive
responses, directly in a program window.

e However, it is not suitable, by itself, as a general
database-application programming language, for the
following reasons.

[1 It is often necessary to perform complex
computations on retrieved data.

e Such computations are often impractical to
express in SQL.

[1 SQL is not universally suitable as a user interface.

[1 It is often necessary to access several databases, and
to perform computations and eventual updates based
upon all of these retrievals.

e [or these reasons, it is essential to be able to combine the
use of SQL with that of conventional programming
languages.

The Client-Server Model and Multi-DBMS’s

'Client 1=

o ——rn A==
IAPP111 -+ lApplnl

'Client 2=

A==
|App2n2

'Client m=

——r A= =
|Appm1| -+ PP

Vendor-Specific Solutions to DB Programming

Representative example: Oracle PL/SQL

e It is a proprietary PL/1-like language which supports
the execution of SQL statements which are specified in
the program.

e Oracle provides the entire development environment
for a variety of platforms.

Advantages:

Features: Many vendor-specific features, not common to
other systems, are supported.

Performance: Performance of the executable may be
optimized to the database systems of the vendor.

Disadvantages:

DBMS dependence: Any application developed with
such a product is strongly bound to a specific DBMS.

Potential client platform/OS dependence: Since the
development environment itself is supplied by the
vendor, it may not be available for all client-side
Platform/OS configurations.

e Such solutions provide essentially no interoperability.

Cross-Vendor Solutions to DB Programming

e In cross-vendor solutions, it is typically the case that:

e The program-development environment is generic,
and not provided by the DBMS vendor.

e DBMS drivers are provided by the DBMS vendor.

Program- '\
Development Specific
Environment)™ T\ Drivers

System resource Vendor resource

e Three alternative architectures of this configuration will
be discussed:

[0 Embedded SQL
[1 Modules

[1 CLI/ODBC

Embedded SQL

e The program is augmented with statements of the form
EXEC SQL <sql -directive>

e A precompiler converts these to statements in the
programming language which link to precompiled driver
modules supplied by the DB vendor.

e The resulting program is then compiled by the extant
system compiler for that language.

Features:

I’=: The solution is independent of the DB vendor.

I'5: There is an ANSI standard for embedded SQL in
C.

Ir 2 Itis difficult to support more than one DB vendor
In the same program.

I 2 This solution depends not only upon the
programming language, but upon the specific compiler.
The vendor must supply a driver library for each
compiler (not language) which is to be supported.

I 2 Itsuffers from the usual problems associated with
precompilers.

Support for SQL via Modules

e This approach is similar to that of embedded SQL, save
that precompiler directives are replaced by:

e function calls

e data definitions supported by included files

I’=: This approach avoids the precompiler problems
associated with embedded SQL.

. Unfortunately, it shares most of the other problems of
embedded SQL.

e Dependence upon the compiler.

e Dependence upon the DB vendor for executable
modules.

e Difficulty to integrate calls to databases from distinct
vendors in the same program.

I 2: There Is no true standard for this approach.

CLI and ODBC

e CLI = Call Level Interface
e ODBC = Open Data Base Connectivity
e These are parallel standards.
e The architecture is shown on the next slide.
Features:
I’5: The solution is independent of the DB vendor.

I'E: There is a standard for the API’s.

I’=: Multiple vendors are supported seamlessly.

I'=: New vendors and/or databases may be added
without altering anything regarding existing ones.

I’=: The solution is independent of the programming
environment.

. Some functionality of vendor-specific features may
be sacrificed.

I 2: There may be a small performance penalty over
configurations which are more vendor specific.

The Architecture of ODBC

e Shown below is a typical architecture for a single client.

Program-
ODBC Devel% ment Oracle
API Library =10p ODBC Driver
Environment

T I PostgreSQL)
ser i

ODBC ODBC Driver,
ODBC Manager

Mapping
Microsoft
ODBC Driver

Network

e Color code:
Supplied by the user

Installed in the operating system
Part of the development environment
Supplied by the system vendor

Handles in ODBC

e Just as file-access programs in a typical OS employ file
handles, ODBC employs a number of types of handles.

Environment handles: To each ODBC program is
associated an environment handle, which is used to
connect to the overall ODBC subsystem.

Connection handles: To each database with which the
ODBC program is to communicate is associated a
connection handle.

Statement handles: To each SQL statement which is to
be compiled and shipped to a database via ODBC is
associated a statement handle.

Descriptor handles:

e are pointers to data storage areas containing
metadata which describe attributes of an SQL query,
or the results of such a query;

e are typically allocated automatically by the system
for most purposes;

e may be allocated manually for advanced operations.

The API’s of ODBC

e ODBC contains over 80 API call definitions.

e Some representative calls are shown below.

API call Description

SQLAI | ocHandl e Allocate a handle.
SQLFr eeHandl e Release a handle

SQLConnect Connect to a database

SQLDI sconnect Disconnect from a database

SQLPrepare Compile an SQL query

SQLExecut e Execute a complied SQL query

Data-type mapping in ODBC

e Although ODBC is fundamentally
programming-language independent, it is usually
associated with C or C++.

e Shown below are some representative data mappings for
these languages.

e These are defined in an include file which is usually
named sqgl ext . h.

e These are used in C programs with ODBC calls to make
a proper correspondence between the types of C and the
corresponding ODBC structures.

Examples of ODBC <> type C associations:

ODBC type C type

SQLCHAR char
SQLI NTECGER | ong I nt

SQLREAL fl oat

SQLDATE a large st ruct

e There are also numerical encodings for the types of C
and SQL, which are used only as arguments to ODBC
API’s.

CLI and ODBC — History and Motivation

e CLI began as an effort in parallel with SQL-92 by the
SQL-Access Group, to develop a vendor-independent
callable interface for SQL.

e At about the same time, Microsoft also developed a
callable SQL interface, named ODBC.

e Although there are minor differences, Microsoft has
always modelled its interface after CLI.

e Both have evolved greatly over the past decade.

e To switch between the two standards, usually all that is
required is a change of header files.

e [t seems that in the “real world,” ODBC is found more
frequently than CLI, even on UNIX/Linux systems.

JDBC — A PL-Specific Alternative

e JDBC is a Java-specific alternative to ODBC.

e Like ODBC, it accommodates a variety of database
vendors, who must supply JDBC drivers.

e Like ODBC, it is specific to the relational model.

e Unlike ODBC, it is tied to a single programming
language.

e Unlike CLI (upon which ODBC is based), it is not an
open standard, but rather a tightly controlled trademark of
Sun Microsystems.

The Future — Independence and Interoperability
beyond the Relational Model

Question: Why is interoperability limited to the relational
model?

Answer: More modern models, such as object-oriented
data models, have not matured to the point at which there
IS a standard query language.

Question: What about CORBA?

Answer:

e CORBA is an architecture for the brokering of objects.
e |t is not specific to the database world.

e While it would be a significant player in any sort of
extension of ODBC to the object-oriented world, it is
not in itself such an extension.

For Further Information

e The course web page for Databasteknik contains:

[1 An annotated series of example programs written in
C which perform ODBC calls.

[1 Slides which describe how to configure a client for
proper ODBC operation.

e Consult the slides for 2002 for information on
Unix/Linux clients which access the database system
PostgreSQL.

e Consult the slides for 2001 for information on Microsoft
Windows clients which access the database system
Microsoft Access.

