Object-Relational
Concepts

These slides take a closer look as some of the
features of SQL:1999 and SQL:2003.

o SQL:1999 (also called SQL3): A relatively new
standard which embodies some ideas of the
object-oriented philosophy.

« SQL:2003 (also called SQL:200n,SQL4): The
latest standard, which adds XML support and a
few other features to SQL:1999..

Both standards provide nearly full backward
compatibility with SQL2 (SQL-92), the “purely
relational” standard.

20061206: slides22: 1 of 17

Row types:
SQL:1999 supports the ideaof a row type:

Here is how to recapture a structure such asthe
following:

Name | SSN| BDate IAddr‘ess Sex | Salary | SuperSSN | DNO

Frame | Minit | LName msme Zip

CREATE ROW TYPE EmployeeType

(

Name NameType,

SSN Char(9) NOTNULL,
BDate Date,

Address AddressType,

Sex Char,

Salary Dedmal(10,2),

SuperSSN Char(9);

DNO Int NOT NULL

);

CREATE ROW TYPE NameType,
(

LName Varchar(15),

FName Char,

Minit Varchar(15)

);

20061206: slides22: 2 of 17

CREATE ROW TYPE AddressType,

(
Street Varchar(15),

City Varchar(15),
State Char(2),
Zip Char(5)

);

CREATE TABLE Employee
OF TYPE EmployeeType
(PRIMARY KEY SSN);

Example query (note use of ..):

SELECT Name..LName, SSN,
FROM Employee
WHERE Address..State = ‘NH’;

or

SELECT Employee.Name..LName,
Employee.SSN,

FROM Employee

WHERE Employee.Address..State = ‘NH’;

20061206: slides22: 3 of 17

Collection Types:

o SQL:1999 supports only the ARRAY collection

type.

o SQL:2003 supports MULTISET as well, which is
not a mathematical multiset,but just an ordinary

set.

The SQL declarations below are used to recapture
a table with the following format:

Department
Dname Dnumber MGRSSN MGR- DLocations
Startdate

Research o) 333445555 1998-05-22| {Bellaire,
Sugarland,
Houston}

Administration 4 987654321 1995-01-01| Stafford

Headquarters 1 888665555 1981-06-19| Houston

CREATE ROW TYPE DepartmentType,

(

DName Varchar(15),
DNumber Int,

MgrSSN Char(9),
MgrStartDate Date,

DLocations Varchar(15) Multiset
);

20061206: slides22: 4 of 17

CREATE TABLE Department
OF TYPE DepartmentType,
(PRIMARY KEY DNumber);

To find the locations of the Research department:
SELECT L.DLocation

FROM Department D, TABLE(D.DLocations) L
WHERE D.DName = ‘Research’;

To count the locations of each department:
SELECT DName, COUNT(DLocations)

FROM Department
GROUP BY DName;

Comments:

« There are operationsfor union, intersection, list
concatenation, and the like.

« Reference types are not allowed as values (see
below).

20061206: slides22: 5 of 17

Reference Types:

Object identity is recaptured viathe notion of a
reference type.

Example: Instead of using foreign keys, itis possible
(and perhaps more natural) to use reference types:

Here is an example, using some types defined
previously
(Address_Type, EmployeeType, DepartmentType):

CREATE ROW TYPE EmployeeType

(

Name NameType,

SSN Char(9) NOTNULL,

BDate Date

Address AddressType,

Sex Char,

Salary Dedmal(10,2),

Supervisor Ref(Employeelype),

DeptRef Ref(DepartmentType) NOTNULL

);
CREATE TABLE Employee

OF TYPE EmployeeType,
(PRIMARY KEY SSN);

20061206: slides22: 6 of 17

To access reference types, a C-style notation is
used.

The following delivers a list of employee lastnames,
the name of the department, and the lastname of
the supervisor.

SELECT Name..LName,
DeptRef->Dname,

Supervisor->Name..lIName
FROM Employee;

20061206: slides22: 7 of 17

With reference types,the need for explicitkeys in
constructed types becomes less clear.

CREATE ROW TYPE ProjectType,

(

PName Varchar(15) NOT NULL,
PNumber Int NOT NULL,
PLocation Varchar(15),

DNum Int

);

CREATE TABLE Project
OF ProjectType,
(PRIMARY KEY Pnumber);

CREATE ROW TYPE WorksOnType,

(

EmployeeRef Ref(EmployeeTlype) NOT NULL,
ProjectRef Ref(ProjectType) NOT NULL,
Hours Decimal(3,1)

);

CREATE TABLE Works_On
OF WorksOnType,
(PRIMARY KEY EmployeeRef, ProjectRef);

20061206: slides22: 8 of 17

Even in SQL:2003, multisets of reference types are
not allowed.

Example: Supposeit is desired to collect the set of
dependents for each employee as an attribute of the
dependent relationship. Sadly, the following does
not work.

CREATE ROW TYPE DependentType

(
EmployeeRef Ref(EmployeeType) NOT NULL,

DependentName NameType; NOT NULL,
Sex Char;
BDate Date,

Relationship Varchar(8)
);

CREATE TABLE Dependent
OF DependentType,
(PRIMARY KEY EmployeeRef, DependentName);

CREATE ROW TYPE EmployeeType

(

Name NameType,

... <other declarations here, same as before>
DeptRef Ref(DepartmentType) NOT NULL,
Dependents Set(Ref(Deperdent))

);
CREATE TABLE Employee

OF TYPE EmployeeType,
(PRIMARY KEY SSN);

20061206: slides22: 9 of 17

One could do the following:

CREATE ROW TYPE EmployeeType

(

Name NameType,

... <other declarations here, same asbefore>
DeptRef Ref(DepartmentType) NOT NULL,
Dependents DependentType Multiset

);

CREATE TABLE Employee
OF TYPE EmployeeType,
(PRIMARY KEY SSN);

However, now the Employee relationcontains actual
sets of tuples, rather than referencesto tuples which
presumably live in the Dependentrelation. This
leads to two options.

1. Do away with the Dependent relation entirely.

« This leads to navigation problems simiar to
those encountered inthe legacy hierarchical
model.

» To process all dependents, one must traverse
the employee relation and then examinethe
Dependents attribute of each tuple.

2. Keep both the Dependent relation and the set of
dependents in the Employee relation.
« This leads to an update and consistency
nightmare, since there are nowtwo copies of
each dependent tuple.

20061206: slides22: 10 of 17

Explicit identity:

In object-oriented programming languages,it is
usually the case that objectidentity is hidden. In
object-oriented database situations, this need not be
the case.

Here is an example in which an explicit primary key
and object identifier called ID is generated by the
system:

CREATE ROW TYPE EmployeeType
(

ID Ref(EmployeeType) NOT NULL,
Name NameType,

SSN Char(9); NOTNULL,
BDate Date;

Address AddressType,

Sex Char;

Salary Dedmal(10,2),
Supervisor Ref(Employeelype),
DeptRef Ref(DepartmentType) NOT NULL

);

CREATE TABLE Employee

OF TYPE EmployeeType
VALUES FORID ARE SYSTEM GENERATED;
(PRIMARY KEY ID);

20061206: slides22: 11 of 17

Subtypes and Inheritance:

Example: Define a specdial type of Employee called
Manager. Atuple of manager type hasall of the
fields of a tuple of EmployeeType, plus the field
DeptSupervised.

CREATE ROW TYPE EmployeeType

(
ID Ref(Employeelype) NOT NULL,

);

CREATE ROW TYPE ManagerType
UNDER EmployeeType

(
DeptSupervised DepartmentType;

);

CREATE TABLE Employee

OF TYPE EmployeeType
VALUES FORID ARE SYSTEM GENERATED;
(PRIMARY KEY ID);

.eptRef Ref(DepartmentType) NOTNULL

CREATE TABLE Manager
OF TYPE ManagerType
UNDER Employee;

20061206: slides22: 12 of 17

Behavior of subtypes and inheritance:
Insertion:

 Insertion into the Manager tableautomatically
inserts into the Employee table.

« Insertion into the Employee tablehas no effect on
the Managertable.

Deletion:

o Deletion from the Manager tableautomatically
deletes the correspondingtuple from the
Employee table as wel!!!

« Deletion from the Employeetable also deletes any
corresponding tuples from the Managertable.

Update:

« Any update of an attribute other than
DeptSupervised affects both tables.

« An update to DeptSupervised afects only the
Manager table.

20061206: slides22: 13 of 17

Consequences:
o How does one promote Lou to be a manager?

« How does one remove Lou as amanager, while
leaving him as an employee?

Answers:

It is necessary to deletethe “Lou” tuple from the
old relation(s), and then insert anew tuple.

The utility of this construct is thus not very clear.

20061206: slides22: 14 of 17

User-Defined Types:

« Row types are not encapsulated. Any operators
may manipulate them.

o SQL:1999 also supports encapsulated types, with
associated functions (methods).

» Values for attributes maynot be altered, or even
read, except by using the methods.

Example: A name type with a function which returns
the whole name as one string:

CREATE TYPE NameADT
(
LName Varchar(15),
FName Varchar(15),
Minit Char,
NameLFM FnLFM,
NameFML FnFML,
FUNCTION NameLFM(:n NameADT)
RETURNS Varchar(35);
:s VarChar(31);
BEGIN
:s := STRCATI(:n.FName, *);
:s := STRCAI(:s, :n.Minit);
s ;= STRCAI(:s, ‘.);
s ;= STRCAIT(:s, :n.LName);
RETURN(:s);
END;
);

20061206: slides22: 15 of 17

The type also includes certain builtin functions:

« A constructorfunction which generates a new, null
object of this type.

« One observerfunction for each attribute, which
allows one to examine the valwe of that attribute.
These typically have the A.B format, for
compatibility with other SQL data types.

o One mutator function for each attribute, which
allows one to change the value of that attribute.

Privileges may be granted to thesefunctions, so that,
for example, some users may beable to look at the
values of attributes without changing them.

The privilege scheme follows the grantirevoke
format.

o External functions (written in some other
programming language) are also possibe.

20061206: slides22: 16 of 17

Other SQL:1999 features:

Recursive queries (e.g., Ancestor);

Triggers (one action forces the exeaution of another)
New data types:

o Boolean

« CLOB (Character large object)

« BLOB (Binary Large Object)

User-defined subtypes

« Example: Weight as a subtype of Int
o Problem: A very ugly and strict typecastng system.

Other SQL:2003 features:

SQL/XML
New data types:

e Bigint

o Multiset

e XML
Table functions
CREATE TABLE LIKE
Merge

Sequence generators

20061206: slides22: 17 of 17

	Object-Relational Concepts

