
Three types of information systems:

 Information-Retrieval Systems (IR)
 Search large bodies of information which are not

specifically formatted as formal data bases.
 Web search engine
 Keyword search of a text base

 Typically read-only

 Database Management Systems (DBMS)
 Relatively small schema
 Large body of homogeneous data
 Minor or no deductive capability
 Extensive formal update capability
 Shared use for both read and write

 Knowledge-Base Systems (KBS)
 Relatively small body of heterogeneous information
 Significant deductive capability
 Typical use: support of an intelligent application.

20061029: slides 1 of 12

Key DBMS issues:

 Efficiency issues:
 Databases can be very large. Efficient access must

be provided despite the size.

 Simplicity issues:
 Many potential users are not sophisticated

programmers, and so simple means of access must
be available.

 Means of more sophisticated access must also be
available.

 Multi-user issues:
 Concurrency

 Several users may have simultaneous access to
the database.

 Access via views
 Each user has a limited “window” through which

the appropriate part of the database is viewed.
 Authorization

 The access privileges of each user will be limited
in a specific way.

 Robustness issues:
 Deadlock must be avoided.
 A means of recovery from crashes, with minimal loss

of data, must be available.

20061029: slides 2 of 12

Data Model Evolution:

Model Devel. Use Properties Analogy
File management 1950’s – 1970’s 1950’s- Low-level interaction. No data independence. Assembly

language
Navigational
models

1950’s – 1960’s1960’s - Some data independence, but the model invites
dependence. Requires procedural queries.

Procedural
languages

Relational model 1970’s - Late
1980’s -

Simple, easy to use for non-experts. Strong data
independence. Standard nonprocedural query
language (SQL). Excellent implementations exist.
Limited expressive capability.

Declarative
languages

Object-oriented
models

1980’s - 1990’s - Powerful expressive capability, but require substantial
expertise for use. Popular in niche applications.
Standardization not imminent.

Object-oriented
languages

Object-relational
models

1990’s 1990’s - Attempt to integrate the simplicity of the relational
model with the advanced features of the object-
oriented approach. A new standardized query
language (SQL:1999) is available, with SQL:20xx on
the way. Many “high-end” commercial relational
systems embody object-relational features.

?

Semi-structured
models

1990's 2000's - Attempt to integrate data management with markup
languages, principally via XML.

?

20061029: slides 3 of 12

The course focuses on the relational
model. Why?

 The relational model is very widely used.

 The relational model provides a flexible interface
which has components appropriate for users at all
levels.

 A standard query language, SQL, is used with
virtually all commercial products. Thus,
applications have a high degree of portability.

 The relational model provides strong data
independence: the external product is relatively
independent of the internal implementation.

 The relational model is dominant on
microcomputers running Windows operating
systems:

 Office suites:
 Microsoft Office: Access
 Lotus SmartSuite: Approach
 Corel Suite: Paradox

 Other microcomputer products:
 dBase

 All have proprietary graphical interfaces, and
provide programming-style queries as well.

20061029: slides 4 of 12

 The relational model has also been dominant on
mainframe database servers, including but not
limited to UNIX systems.

 Recently, many of these systems have become
available for the PC UNIX system Linux. (Some
are free!)
 Oracle
 Interbase 7 (Inprise, formerly Borland)
 Sybase Adaptive Server Enterprise
 Informix (now owned by IBM)
 IBM DB2
 PostgreSQL 7.4, 8.1 (public domain, very good)

 There are even some products from Sweden:
 MySQL (GPL)
 Mimer SQL (Upright Database Technology)

20061029: slides 5 of 12

In the past, this course had used Microsoft Access.

Since 2002, PostgreSQL has been be used.

Why?

 The dialect of SQL which is supported under
Access is much more limited than the dialects
of comprehensive systems.

 PostgreSQL has matured greatly in the past
few years.

 The Department of Computing Science has an
SQL server, which is administered by the
support staff.

The following system will also be used:

 Leap
 A simple relational database system which uses

the relational algebra as a query language.
 Although not of commercial importance, use of

this alternate query language is very beneficial
pedagogically.

 Students are still free to use Microsoft Access,
although it will not be discussed in class.

 All final versions of SQL assignments must run
under PostgreSQL.

20061029: slides 6 of 12

Database access models:

 SQL is the standard query language for the
relational model.

 There are many access models which are built
around SQL.

 Direct SQL: Write and send SQL queries directly
to the database system.

 Hosting SQL within a programming language:

 Embedded SQL: SQL statements are
embedded in a host programming language,
such as C. Generally requires preprocessing.

 Proprietary hosting languages: (e.g., Oracle
PL/SQL).

 Proprietary hosting systems: (e.g., within
Microsoft VBA).

 SQL / CLI ODBC: A vendor- and OS-
independent call-interface system (in principle)
for SQL. Embedding may be in any of a
variety of languages (C, C++ are the most
common.)

 In this course, we will use both direct SQL and
ODBC.

20061029: slides 7 of 12

A Rough Course Outline:

 Introduction to DBMS’s

 Knowledge Representation for DBMS's (10%)
 Entity-Relationship Modelling
 The Relational Model

 Query Processing and Constraints (40%)
 Query Languages

 Relational Algebra
 Relational Calculus
 SQL

 Views
 Database Programming and the CLI/ODBC

Interface
 Dependencies and Normalization

 Implementation Issues (40%)
 Physical Database Design
 Database System Architecture
 Query Optimization
 Transaction Processing and Concurrency Control
 Recovery
 Security and Authorization

 Special Topics (10%)
 Object-Oriented and Object-Relational

Approaches

20061029: slides 8 of 12

Database System Architecture:

 Early approach: one-level

 The user interacted directly with the storage model.
 Analogy: assembly-language programming
 Disadvantages:
 Impossible to use for non-experts.
 Difficult to use and error-prone even for experts.
 Evolution of storage model, or migration to a new

architecture, requires a total rebuild of all
application programs.

20061029: slides 9 of 12

A more modern approach: two-level

 Advantages:
 Internal model and/or target architecture may

be changed without requiring a rebuild of
applications.

 Analogy: A high-level programming language.

 Disadvantages:
 There is a single external model for all.

20061029: slides 10 of 12

External
Data Model

Internal
Storage
Model

External/
Internal
mapping

The ANSI/SPARC three-level architecture:

 Advantages:
 Provides two levels of independence:
 The internal storage model is isolated

from the conceptual component, as in
the two-level architecture.

 Many external views are possible.
 The conceptual model may be re-

designed without requiring rebuilds of
application programs.

20061029: slides 11 of 12

Conceptual
Data Model

Internal
Storage
Model

Conceptual/
Internal
mapping

External
Data Model

1

External
Data Model

n
. . .

External/
Conceptual

mapping

Data independence:

 Data independence refers to the idea that a more
internal level of a database system may be re-
engineered, or moved to a different architecture,
without requiring a total rebuild of the more
external layers.

 The ANSI/SPARC architecture provides two levels
of data independence.

 It is often, however, something of an ideal, even
with the systems of today.

 Usually, in a relational system, both the conceptual
schema and the external schemata are relational.

 Still, the conceptual schema is often designed
using a more general tool than the relational
model.

20061029: slides 12 of 12

	Model
	Devel.
	Use
	Properties
	Analogy
	Database access models:

