
Transaction Processing
and

Concurrency Control

· It is often the case that a database system will be 
accessed by many users simultaneously.

· If this access is read-only, then there are no 
serious integrity problems; only ones of 
performance.

· If the access includes writing the database, then 
serious problems will arise if the interaction is not 
regulated.
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Example: Simplified bank transactions: Suppose 
that we have two users u1 and u2, who issue 
transactions:
· T1: Compound 10% on account 15.
· T2: Withdraw 2000 from account 15.

· Let Ri and Wi
 be local variables for transaction Ti.

· Read_Bal (Y) means read the balance of account 
Y into a local variable Ri for that transaction:

Ri  Bal(Y)

· Write_Bal(Y) means write the value of the local 
variable WI to the balance record of account Y.

Bal(Y)  Wi

· Compound(X) means add X% interest to the local 
account variable.  

Wi  Ri  ((100 + X) / 100)

· Withdraw(X) means subtract X dollars from local 
account variable Wi. 

Wi  Ri  X
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· Represent T1 as:
      Begin transaction
            Read_Bal (15);
            Compound(10);
            Write_Bal(15);
      End transaction

· Represent T2 as:
   Begin transaction
       Read_Bal(15);

Withdraw(2000);
    Write_Bal(15);
End transaction
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Both of the following schedules work just fine:

T1: T2: Bal(15):
Read_Bal (15):
   R1  BAL(15)

10000

Compound(10):
   W1  R1  (110 / 100);

10000

Write_Bal(15):
Bal(15)  W1

11000

Read_Bal (15):
   R2  Bal(15)

11000

Withdraw(2000):
   W2  R2  2000;

11000

Write_Bal(15):
    Bal(15)  W2

  9000

T1: T2: Bal(15):
Read_Bal (15):
   R2  Bal(15)

10000

Withdraw(2000):
   W2  R2  2000;

10000

Write_Bal(15):
    Bal(15)  W2

  8000

Read_Bal (15):
   R1  BAL(15)

  8000

Compound(10):
   W1  R1  (110 / 100);

  8000

Write_Bal(15):
Bal(15)  W1

  8800

Notice that they do not produce the same result, 
though!
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The Lost Update Problem:

· Suppose that the two transactions now interleave 
their operations. 

· It is then possible that the result of one 
transaction will overwrite that of the other.

· This is called a lost update.

· The following example illustrates.
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T1: T2: Bal(15):
Read_Bal (15):
   R1  BAL(15)

10000

Compound(10):
   W1  R1  (110 / 100);

10000

Read_Bal (15):
   R2  Bal(15)

10000

Withdraw(2000):
   W2  R2  2000;

10000

Write_Bal(15):
    Bal(15)  W2

  8000

Write_Bal(15):
Bal(15)  W1

11000

T1: T2: Bal(15):
Read_Bal (15):
   R2  Bal(15)

10000

Withdraw(2000):
   W2  R2  2000;

10000

Read_Bal (15):
   R1  BAL(15)

10000

Compound(10):
   W1  R1  (110 / 100);

10000

Write_Bal(15):
Bal(15)  W1

11000

Write_Bal(15):
    Bal(15)  W2

  8000
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The Dirty Read Problem:

· If a transaction proceeds partway, but aborts 
before completion, another transaction may make 
use of the discarded results.

· This is known as a dirty read.

Example:

Suppose that the following two transactions run 
concurrently:

· T1: Add 10% to accounts 1, 2, and 3.
· T2: Withdraw 2000 from account 2.

· Suppose further that T1 aborts after compounding 
the interest on accounts 1 and 2, yet T2 has used 
this information.
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This is illustrated in the following.

T1: T2: Bal(1,2,3):
Read_Bal (1):
   R1  BAL(1)

10000
10000
10000

Compound(10):
 W1  R1  (110 / 100);

Unchanged

Write_Bal(1):
Bal(1)  W1

11000
10000
10000

Read_Bal (2):
   R1  BAL(2)

Unchanged

Compound(10):
 W1  R1  (110 / 100);

Unchanged

Write_Bal(2):
Bal(2)  W1

11000
11000
10000

Read_Bal (2):
   R2  Bal(2)

Unchanged

Withdraw(2000):
   W2  R2  2000;

Unchanged

Abort and Restore!! 10000
10000
10000

Write_Bal(2):
    Bal(2)  W2

10000
  9000
10000
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The Unrepeatable Read Problem:

· Another update problem occurs when a 
transaction writes its results in stages, and 
another transactions reads between these writes.

· This is called an unrepeatable read, because it 
happens only by chance ordering of the 
operations.

Example:

· T1: Sums the balances of accounts 1, 2, and 3, 
and just writes this result to a display.  This 
transaction performs no writes of the database.

· T2: Transfers 2000 from account 1 to account 2. 
It does this by first performing a withdrawal on 
account 1, and then a deposit to account 2.
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T1: T2: Bal(1,2,3):
Read_Bal (1):
   R2  Bal(1)

10000
10000
10000

Withdraw(2000):
   W2  R2  2000;

Unchanged

Write_Bal(1):
    Bal(1)  W2

8000
10000
10000

Read_Bal (1):
   R1  BAL(1)

Unchanged

Update Sum:
     W1  R1 

Unchanged

Read_Bal (2):
   R1  BAL(2)

Unchanged

Update Sum:
    W1  W1 + R1 

Unchanged

Read_Bal (3):
   R1  BAL(3)

Unchanged

Update Sum:
    W1  W1 + R1

Unchanged

Write_Sum:
    Write(W1)

Unchanged

Read_Bal (2):
   R2  Bal(2)

Unchanged

Deposit(2000):
   W2  R2 + 2000;

Unchanged

Write_Bal(2):
    Bal(2)  W2

8000
12000
10000

The sum displayed is 2000 low!
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Schedules:

A schedule is a specification of the order in which 
the operations of a set of transactions are to be 
performed.  Let us be more formal.

A transaction T = t1, t2, .., tn is a finite sequence of 
steps, with each step ti  either a read action 
(denoted r(x)) or a write action (denoted w(x)). 
Here x is the database object which is read or 
written.  It is usually assumed that a given object is 
read and written at most once in any transaction.

Example:  T = r(x) w(x) r(y) is a transaction.

A schedule for a set of transactions is a 
specification of the order in which the steps will be 
executed.  Formally, let  T = {T1, T2, .., Tm}  be a 
finite set of transactions, with

Ti = ti1, ti2, .., tini.

A schedule S for  T = {T1, T2, .., Tm} is any total 
ordering S of the set 

{tij
 | 1  i  m  and  1  j  nI}

with the property that  tij S tik  whenever  j  k; (i.e. 
the order of elements within each TI is preserved.)
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A schedule S for  T = {T1, T2, .., Tm} is serial if there 

is an ordering  of T with the property that if Ti Tj, 
then all elements of Ti occur before any element of 
Tj in S.

Example: Let  T1 = r1(x) r1(y) w1(x) w1(y)
                       T2 = r2(z) w2(z) w2(y)
                      T3 = r3(z) w3(z) r3(x) w3(x)
Then

r2(z) w2(z) w2(y) r3(z) w3(z) r3(x) w3(x) r1(x) r1(y) w1(x) 
w1(y)

is the serial schedule corresponding to 
T2 < T3 < T1, while

r1(x) r1(y) r3(z) w3(z) r2(z) w1(x) w1(y) w2(z) w2(y) r3(x) 
w3(x)

is a non-serial schedule.
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Serializability:

· A serial schedule is a “correct” one, in the sense 
that there is no undesirable intertwining of actions 
of different transactions.

· Allowing only serial schedules is very restrictive, 
and prohibits any sort of concurrency whatever.
· Performance may be compromised greatly, 

particularly in systems with real-time human 
input.

· The solution is to allow serializable schedules; 
that is, ones which are operationally equivalent to 
serial schedules.  In this fashion:
· Parallelism is allowed.
· The correctness of the transactions is not 

compromised.

· The obvious question is then, how one defines 
“serializable.”

· It turns out that there are (at least) two 
reasonable definitions.
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View Serializability: In view serializability, it is 
ensured that reads and subsequent writes occur in 
the same order as in some serial schedule. 

Let  T = {T1, T2, .., Tm}  be a set of transactions, and 

let S be a schedule for T.  Let ri(x) occur in Ti and 
let wj(x) occur in Tj. 

· It is said that  ri(x)  reads from  wj(x)  in S  if 
wj(x) S ri(x)  and there is no  k  j  for which 
wj(x) S wk(x) S ri(x).

· It is said that  ri(x) is an initial read if there is 
there is no k for which  wk(x) S ri(x).

· It is said that  wj(x)  is a final write (of x) in S 
if there is no k  j  for which wj(x) S wk(x).

Example:  In

r1(x) r1(y) r3(z) w3(z) r2(z) w1(x) w1(y) w2(z) w2(y) r3(x) 
w3(x)

· r2(z) reads from w3(z).
· r3(x) reads from w1(x).
· r1(x), r1(y), and r3(z) are initial reads.
· w2(z), w2(y), and w3(x) are final writes.
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Let S and S be schedules for T = {T1, T2, .., Tm}.  S 
and S are said to be view equivalent, written

S v S

if the following conditions hold:

1.  Every read action of the form ri(x) is either an 
initial read or else reads from the same write 
action wj(x) in both schedules.

2. Both schedules have the same final write 
steps.

Example: The following two schedules are view 
equivalent:

r1(x) r1(y) r3(z) w3(z) r2(z) w1(x) w1(y) w2(z) w2(y) r3(x) 
w3(x)

r1(x) r1(y) r3(z) w1(x) w1(y) w2(y) w3(z) r2(z) w2(z) r3(x) 
w3(x)

The following schedule is not view equivalent to 
either:

r1(x) r1(y) r3(z) w3(z) r3(x) r2(z) w1(x) w1(y) w2(z) w2(y) 
w3(x)

A schedule S for a set T of transactions is said to 
be view serializable if there is a serial schedule S 
for T such that S v S.
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· The motivation for condition 1 above is quite 
clear.

· The motivation for 2 (same final writes) is less 
clear.  Here is an example which will help to 
clarify.

· T1 = w1(x) w1(y)
· T2 = w2(x) w2(y)

· Note that, for any serial schedule, the first 
transaction has no effect.

· Note further that, since there are no reads, no 
schedule can violate condition 1.

· The following schedule is not equivalent to a 
serial schedule; it violates only condition 2.  T1 

final-writes y, while T2 final-writes x.

w1(x) w2(x) w2(y) w1(y)

Complexity Problem: The problem of deciding 
whether or not an arbitrary schedule is view 
serializable is NP-complete.  This means that the 
best known algorithm has exponential complexity in 
the worst case.

Question: Is there an alternative notion of 
serializability?
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Conflict Serializability: In conflict serializability, it is 
ensured that “conflicting steps” occur in the same 
order.

Formally, let  T = {T1, T2, .., Tm}  be a set of 

transactions, and let S be a schedule for T.  Two 
steps p and q from S are said to be in conflict if the 
following conditions hold:

· They are from distinct transactions.
· They operate on the same database object.
· At least one is a write.

Now let S and S each be schedules for T.  They are 
said to be conflict equivalent, denoted 

S c S

If for each pair (p,q) of conflicting elements, 
 

(p S q)   (p S q)

In other words, conflicting elements occur in the 
same order in each schedule.

A schedule S for T is said to be conflict serializable 

if there is a serial schedule S for T with the 
property that S c S.
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Complexity: There is a simple test for conflict 
serializability.

For a schedule S, define the conflict graph to be the 
directed graph which has transactions as nodes, 
with an edge from Ti to Tj precisely in the case that 
a step p in Ti is in conflict with a step q in Tj, with p 
preceding q in S.

Example:

The conflict graph for both of the schedules

r1(x) r1(y) r3(z) w3(z) r2(z) w1(x) w1(y) w2(z) w2(y) r3(x) 
w3(x)

r1(x) r1(y) r3(z) w1(x) w1(y) w2(y) w3(z) r2(z) w2(z) r3(x) 
w3(x)

is 
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The conflict graph for the schedule

r1(x) r1(y) r3(z) w3(z) r3(x) r2(z) w1(x) w1(y) w2(z) w2(y) 
w3(x)

is

This provides a computationally tractable test for 
conflict serializability:

Theorem: The schedule S is conflict serializable iff 
its conflict graph is acyclic. 

Trans:20061127: slides17:  19 of 36

T1

T3

T2



The Relationship between View Serializability and 
Conflict Serializability:

Theorem: If a schedule S is conflict serializable, 
then it is also view serializable.  However, the 
converse is not the case. 

Example:
  T1 = r1(x) w1(x)     T2 = w2(x)         T3 = w3(x)

The schedule  

S = r1(x) w2(x) w1(x) w3(x)

is not conflict serializable, since the conflict graph is 

However, S is clearly view equivalent to 

S = r1(x) w1(x) w2(x) w3(x),

and so it is view serializable.

· Schedules which are view but not conflict 
serializable involve so-called blind writes, in which 
a value is written but never read.

· Even though it is overly restrictive, conflict 
serializability is often used because of the 
simplicity of the conflict-graph test.
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Other types of serializability:

· Other formalizations of serializability may be 
found in the literature.

· Perhaps the most frequently seen is final-state 
serializability.

· These are studied mostly from a theoretical point 
of view to motivate the need for either view 
serializability or else conflict serializability, since 
these alternatives have drawbacks which make 
them undesirable.

· They will not be discussed here.
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Two-Phase Locking: 

Given that conflict-free schedules are an acceptable 
compromise, it remains to determine how to 
generate them.  One of the most popular strategies 
is known as two-phase locking.

Assumptions:

· For a transaction to use a database object, it 
must request and be granted an appropriate lock 
on that object.

· There are two kinds of locks:

· A write lock permits a transaction both to read 
and to write a database object.  Only one 
transaction may hold a write lock on a given 
object at any point in time.

· A read lock permits a transaction to read a 
database object, but not to write it.  Any 
number of transactions may hold simultaneous 
read locks on an object, but read and write 
locks may not coexist on the same object.
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· The following operations exist:

· rlock(x): Request a read lock on object x.  This 
request may be granted provided there are no 
current write locks on x.

· wlock(x): Request a write lock on x.  This 
request may be granted only in the case that 
there are no locks on x, save that the 
transaction requiring the lock may already have 
a read lock on x.

· upgrade(x): Convert a read lock to a write lock. 
This request may only be granted in the case 
that the requesting transaction already holds a 
read lock on x, and no other transaction holds 
such a lock on x.

· downgrade(x): Convert a write lock to a read 
lock.  This request may only be granted in the 
case that the requesting transaction already 
holds a write lock on x.

· unlock(x): Dissolve all locks on x.  This request 
dissolves any lock which the requesting 
transaction holds on object x.
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· The following constraints exist on transactions:

· Before an object is read, a lock (read or write) 
must be requested and granted.

· Before an object is written, a write lock must be 
requested and granted.

· All reads must be performed before the 
corresponding lock is released.

· All writes must be performed before the 
corresponding write lock is downgraded or 
released.

· It is also generally assumed that transactions 
do not request redundant locks.  (This makes 
analyses simpler.)

A scheduler operates according to a locking 
protocol just in case these conventions are 
followed.
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Example: r1(y) r3(z) w3(z) r2(z) w1(x) w1(y) w2(z) w2(y) 
r3(x) w3(x)
Here is one possible lock schedule:

Schedule Lock x Lock y Lock z
Rlock1(y) R1
r1(y) R1
Wlock3(z) R1 W3
r3(z) R1 W3
w3(z) R1 W3
Unlock3(z) R1
Rlock2(z) R1 R2
r2(z) R1 R2
Wlock1(x) W1 R1 R2
w1(x) W1 R1 R2
Unlock1(y) W1 R2
Wlock1(y) W1 W1 R2
w1(y) W1 W1 R2
Upgrade2(z) W1 W1 W2
w2(z) W1 W1 W2
Unlock1(y) W1 W2
Wlock2(y) W1 W2 W2
w2(y) W1 W2 W2
Downgrade1(x) R1 W2 W2
Rlock3(x) R1 R3 W2 W2
r3(x) R1 R3 W2 W2
Unlock1(x) R3 W2 W2
Unlock3(x) W2 W2
Wlock3(x) W3 W2 W2
w3(x) W3 W2 W2
Unlock3(x) W2 W2
Unlock2(y) W2
Unlock2(z)
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The two-phase locking protocol (2PL) requires that 
the following condition be met:

· For each transaction, after the first downgrade or 
unlock operation, no subsequent rlock, wlock, or 
upgrade operations are allowed.

This situation may be envisioned graphically as 
follows:

Note that the preceding schedule is not 2PL.

Theorem: Every schedule produced by a 2PL 
scheduler is conflict-serializable. 

Theorem: Every serial schedule may be (trivially) 
converted to a 2PL schedule. 
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Some common restrictions of 2PL:

In conservative 2PL, all locks must be requested at 
the beginning of a transaction:

In rigorous 2PL, all locks must be held until the end 
of the transaction:

In strict 2PL, all write locks must be held until the 
end of the transaction:

Each of these strategies has a use, as we shall see.
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Deadlock Detection and Prevention:

· General schedules produced by 2PL are subject 
to deadlock.

Example: T1 = r(x) r(y) w(x) 
T2 = r(y) r(x) w(y) 

Suppose we adopt the following schedule:

T1 T2 Status
Rlock(x)
r(x)

Rlock(y)
r(y)

Rlock(y)
r(y)

Rlock(x)
r(x)

Wlock(x) (wait) Wlock(y) (wait) Deadlock!!

· Then each transaction must wait for the other to 
release something with which it is not finished.

· This is a deadlock.
· It might be the case that one of the transactions 

can release the needed resource, but the 
scheduler cannot know this, so it must respect 
the lock requests!  

· Such early releases may also be inconsistent with 
recovery protocols. (More later). 
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Dealing with Deadlock:

There are two fundamental ways to deal with 
deadlock:

Pessimistic strategy: Use a scheduling algorithm 
which ensures that deadlock cannot occur.

Optimistic strategy: Take no measures to prevent 
deadlock.  When deadlock is detected, execute a 
“repair” strategy.

The choice of strategy depends upon the kinds of 
transactions and the type of performance required.

Trans:20061127: slides17:  29 of 36



Deadlock-free Scheduling:

Use a conservative 2PL locking strategy:

· It is clear that deadlock cannot occur, since a 
transaction must lock all resources which it needs 
at the time which it commences.

· Deadlock can only occur when a transaction 
locks a resource, and later requests a second 
resource which another process holds.
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Another way to schedule transactions in a 
deadlock-free fashion is with

Timestamping:

· Each transaction is assigned a unique time-
stamp.

· There are two main strategies:

Wait-Die: 
If Ti requests a resource held by Tj

   then if Ti is older than Tj

     then allow Ti to wait
     else  abort Ti, allowing Tj to continue.

Wound-Wait:
If Ti requests a resource held by Tj

   then if Ti is older than Tj

     then abort Tj, allowing Ti to continue
     else allow Ti to wait.

To understand why this strategy works, we 
introduce a new concept.
 
· The wait-for graph has an edge from a 

transaction holding a given resource, to one 
requesting the same resource.

· If it contains a cycle, there is a deadlock situation.
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Previous example: T1 = r(x) r(y) w(x) 
T2 = r(y) r(x) w(y) 

T1 T2 Status
Rlock(x)
r(x)

Rlock(y)
r(y)

Rlock(y)
r(y)

Rlock(x)
r(x)

Wlock(x) (wait) Wlock(y) (wait) Deadlock!!

Here is the wait-for graph.

Cycles cannot occur when either the wait-die or the 
wound-wait strategy is implemented:

· In wait-die, there cannot be an edge from an 
older transaction to a younger one.

· In wound-wait, there cannot be an edge from a 
younger transaction to an older one.
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· Remember that these strategies do not look for 
cycles in the graph, but only for edges whose 
nodes have particular forms of time stamps.

· The graph need not be and is not constructed!

Remark: 

· The wait-for graph is complicated somewhat with 
read locks, since several transactions may hold 
such a lock on the same resource.  

· In this situation, one must work with sets of 
transactions.  The details are straightforward but 
omitted.

Livelock:

· Livelock occurs when a transaction is repeatedly 
aborted because of a deadlock situation.

· Livelock may be avoided with wait-die and 
wound-wait, provided that an aborted transaction 
is restarted with its original timestamp, and not a 
new one.
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Deadlock Detection:

· To implement an optimistic deadlock-handling 
protocol, a method for detecting deadlock must 
be in place.

· The wait-for graph may be used.

· Cycle-detection algorithms for directed graphs 
are well-known, and reasonably efficient.
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Optimistic and Pessimistic Concurrency 
Control:

· Optimistic and pessimistic strategies have been 
identified for deadlock management.

· These terms apply more generally to 
concurrency-control strategies.

· A pessimistic strategy is one which attempts to 
avoid scheduling problems before they happen.
· This strategy is appropriate when conflicts 

are likely to occur frequently.
· Implies a higher overhead of producing 

acceptable schedules.

· An optimistic strategy is one lets scheduling 
proceed rather freely, and then “repairs” 
situations in which conflicts occur.
· This strategy is appropriate when conflicts 

are not likely to occur frequently.
· Implies a lower overhead for producing 

acceptable schedules, but a higher overhead 
of detecting and correcting problems.

· There are numerous other strategies which 
embrace these principles.  
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Locking Granularity:

The size of an object to be locked by a single lock 
request is open to decision:

· A field of a tuple or record.
· A single tuple or record.
· A physical disk block.
· An entire relation.
· An entire database.

Generally, the larger the object to be locked:
· The less the possible concurrency.
· The easier it is to manage the concurrency.

· Access locks 2Kb. physical blocks.
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