
Transaction Processing
and

Concurrency Control

· It is often the case that a database system will be
accessed by many users simultaneously.

· If this access is read-only, then there are no
serious integrity problems; only ones of
performance.

· If the access includes writing the database, then
serious problems will arise if the interaction is not
regulated.

Trans:20061127: slides17: 1 of 36

Example: Simplified bank transactions: Suppose
that we have two users u1 and u2, who issue
transactions:
· T1: Compound 10% on account 15.
· T2: Withdraw 2000 from account 15.

· Let Ri and Wi
 be local variables for transaction Ti.

· Read_Bal (Y) means read the balance of account
Y into a local variable Ri for that transaction:

Ri  Bal(Y)

· Write_Bal(Y) means write the value of the local
variable WI to the balance record of account Y.

Bal(Y)  Wi

· Compound(X) means add X% interest to the local
account variable.

Wi  Ri  ((100 + X) / 100)

· Withdraw(X) means subtract X dollars from local
account variable Wi.

Wi  Ri  X

Trans:20061127: slides17: 2 of 36

· Represent T1 as:
 Begin transaction
 Read_Bal (15);
 Compound(10);
 Write_Bal(15);
 End transaction

· Represent T2 as:
 Begin transaction
 Read_Bal(15);

Withdraw(2000);
 Write_Bal(15);
End transaction

Trans:20061127: slides17: 3 of 36

Both of the following schedules work just fine:

T1: T2: Bal(15):
Read_Bal (15):
 R1  BAL(15)

10000

Compound(10):
 W1  R1  (110 / 100);

10000

Write_Bal(15):
Bal(15)  W1

11000

Read_Bal (15):
 R2  Bal(15)

11000

Withdraw(2000):
 W2  R2  2000;

11000

Write_Bal(15):
 Bal(15)  W2

 9000

T1: T2: Bal(15):
Read_Bal (15):
 R2  Bal(15)

10000

Withdraw(2000):
 W2  R2  2000;

10000

Write_Bal(15):
 Bal(15)  W2

 8000

Read_Bal (15):
 R1  BAL(15)

 8000

Compound(10):
 W1  R1  (110 / 100);

 8000

Write_Bal(15):
Bal(15)  W1

 8800

Notice that they do not produce the same result,
though!

Trans:20061127: slides17: 4 of 36

The Lost Update Problem:

· Suppose that the two transactions now interleave
their operations.

· It is then possible that the result of one
transaction will overwrite that of the other.

· This is called a lost update.

· The following example illustrates.

Trans:20061127: slides17: 5 of 36

T1: T2: Bal(15):
Read_Bal (15):
 R1  BAL(15)

10000

Compound(10):
 W1  R1  (110 / 100);

10000

Read_Bal (15):
 R2  Bal(15)

10000

Withdraw(2000):
 W2  R2  2000;

10000

Write_Bal(15):
 Bal(15)  W2

 8000

Write_Bal(15):
Bal(15)  W1

11000

T1: T2: Bal(15):
Read_Bal (15):
 R2  Bal(15)

10000

Withdraw(2000):
 W2  R2  2000;

10000

Read_Bal (15):
 R1  BAL(15)

10000

Compound(10):
 W1  R1  (110 / 100);

10000

Write_Bal(15):
Bal(15)  W1

11000

Write_Bal(15):
 Bal(15)  W2

 8000

Trans:20061127: slides17: 6 of 36

The Dirty Read Problem:

· If a transaction proceeds partway, but aborts
before completion, another transaction may make
use of the discarded results.

· This is known as a dirty read.

Example:

Suppose that the following two transactions run
concurrently:

· T1: Add 10% to accounts 1, 2, and 3.
· T2: Withdraw 2000 from account 2.

· Suppose further that T1 aborts after compounding
the interest on accounts 1 and 2, yet T2 has used
this information.

Trans:20061127: slides17: 7 of 36

This is illustrated in the following.

T1: T2: Bal(1,2,3):
Read_Bal (1):
 R1  BAL(1)

10000
10000
10000

Compound(10):
 W1  R1  (110 / 100);

Unchanged

Write_Bal(1):
Bal(1)  W1

11000
10000
10000

Read_Bal (2):
 R1  BAL(2)

Unchanged

Compound(10):
 W1  R1  (110 / 100);

Unchanged

Write_Bal(2):
Bal(2)  W1

11000
11000
10000

Read_Bal (2):
 R2  Bal(2)

Unchanged

Withdraw(2000):
 W2  R2  2000;

Unchanged

Abort and Restore!! 10000
10000
10000

Write_Bal(2):
 Bal(2)  W2

10000
 9000
10000

Trans:20061127: slides17: 8 of 36

The Unrepeatable Read Problem:

· Another update problem occurs when a
transaction writes its results in stages, and
another transactions reads between these writes.

· This is called an unrepeatable read, because it
happens only by chance ordering of the
operations.

Example:

· T1: Sums the balances of accounts 1, 2, and 3,
and just writes this result to a display. This
transaction performs no writes of the database.

· T2: Transfers 2000 from account 1 to account 2.
It does this by first performing a withdrawal on
account 1, and then a deposit to account 2.

Trans:20061127: slides17: 9 of 36

T1: T2: Bal(1,2,3):
Read_Bal (1):
 R2  Bal(1)

10000
10000
10000

Withdraw(2000):
 W2  R2  2000;

Unchanged

Write_Bal(1):
 Bal(1)  W2

8000
10000
10000

Read_Bal (1):
 R1  BAL(1)

Unchanged

Update Sum:
 W1  R1

Unchanged

Read_Bal (2):
 R1  BAL(2)

Unchanged

Update Sum:
 W1  W1 + R1

Unchanged

Read_Bal (3):
 R1  BAL(3)

Unchanged

Update Sum:
 W1  W1 + R1

Unchanged

Write_Sum:
 Write(W1)

Unchanged

Read_Bal (2):
 R2  Bal(2)

Unchanged

Deposit(2000):
 W2  R2 + 2000;

Unchanged

Write_Bal(2):
 Bal(2)  W2

8000
12000
10000

The sum displayed is 2000 low!

Trans:20061127: slides17: 10 of 36

Schedules:

A schedule is a specification of the order in which
the operations of a set of transactions are to be
performed. Let us be more formal.

A transaction T = t1, t2, .., tn is a finite sequence of
steps, with each step ti either a read action
(denoted r(x)) or a write action (denoted w(x)).
Here x is the database object which is read or
written. It is usually assumed that a given object is
read and written at most once in any transaction.

Example: T = r(x) w(x) r(y) is a transaction.

A schedule for a set of transactions is a
specification of the order in which the steps will be
executed. Formally, let T = {T1, T2, .., Tm} be a
finite set of transactions, with

Ti = ti1, ti2, .., tini.

A schedule S for T = {T1, T2, .., Tm} is any total
ordering S of the set

{tij
 | 1  i  m and 1  j  nI}

with the property that tij S tik whenever j  k; (i.e.
the order of elements within each TI is preserved.)

Trans:20061127: slides17: 11 of 36

A schedule S for T = {T1, T2, .., Tm} is serial if there

is an ordering  of T with the property that if Ti Tj,
then all elements of Ti occur before any element of
Tj in S.

Example: Let T1 = r1(x) r1(y) w1(x) w1(y)
 T2 = r2(z) w2(z) w2(y)
 T3 = r3(z) w3(z) r3(x) w3(x)
Then

r2(z) w2(z) w2(y) r3(z) w3(z) r3(x) w3(x) r1(x) r1(y) w1(x)
w1(y)

is the serial schedule corresponding to
T2 < T3 < T1, while

r1(x) r1(y) r3(z) w3(z) r2(z) w1(x) w1(y) w2(z) w2(y) r3(x)
w3(x)

is a non-serial schedule.

Trans:20061127: slides17: 12 of 36

Serializability:

· A serial schedule is a “correct” one, in the sense
that there is no undesirable intertwining of actions
of different transactions.

· Allowing only serial schedules is very restrictive,
and prohibits any sort of concurrency whatever.
· Performance may be compromised greatly,

particularly in systems with real-time human
input.

· The solution is to allow serializable schedules;
that is, ones which are operationally equivalent to
serial schedules. In this fashion:
· Parallelism is allowed.
· The correctness of the transactions is not

compromised.

· The obvious question is then, how one defines
“serializable.”

· It turns out that there are (at least) two
reasonable definitions.

Trans:20061127: slides17: 13 of 36

View Serializability: In view serializability, it is
ensured that reads and subsequent writes occur in
the same order as in some serial schedule.

Let T = {T1, T2, .., Tm} be a set of transactions, and

let S be a schedule for T. Let ri(x) occur in Ti and
let wj(x) occur in Tj.

· It is said that ri(x) reads from wj(x) in S if
wj(x) S ri(x) and there is no k  j for which
wj(x) S wk(x) S ri(x).

· It is said that ri(x) is an initial read if there is
there is no k for which wk(x) S ri(x).

· It is said that wj(x) is a final write (of x) in S
if there is no k  j for which wj(x) S wk(x).

Example: In

r1(x) r1(y) r3(z) w3(z) r2(z) w1(x) w1(y) w2(z) w2(y) r3(x)
w3(x)

· r2(z) reads from w3(z).
· r3(x) reads from w1(x).
· r1(x), r1(y), and r3(z) are initial reads.
· w2(z), w2(y), and w3(x) are final writes.

Trans:20061127: slides17: 14 of 36

Let S and S be schedules for T = {T1, T2, .., Tm}. S
and S are said to be view equivalent, written

S v S

if the following conditions hold:

1. Every read action of the form ri(x) is either an
initial read or else reads from the same write
action wj(x) in both schedules.

2. Both schedules have the same final write
steps.

Example: The following two schedules are view
equivalent:

r1(x) r1(y) r3(z) w3(z) r2(z) w1(x) w1(y) w2(z) w2(y) r3(x)
w3(x)

r1(x) r1(y) r3(z) w1(x) w1(y) w2(y) w3(z) r2(z) w2(z) r3(x)
w3(x)

The following schedule is not view equivalent to
either:

r1(x) r1(y) r3(z) w3(z) r3(x) r2(z) w1(x) w1(y) w2(z) w2(y)
w3(x)

A schedule S for a set T of transactions is said to
be view serializable if there is a serial schedule S
for T such that S v S.

Trans:20061127: slides17: 15 of 36

· The motivation for condition 1 above is quite
clear.

· The motivation for 2 (same final writes) is less
clear. Here is an example which will help to
clarify.

· T1 = w1(x) w1(y)
· T2 = w2(x) w2(y)

· Note that, for any serial schedule, the first
transaction has no effect.

· Note further that, since there are no reads, no
schedule can violate condition 1.

· The following schedule is not equivalent to a
serial schedule; it violates only condition 2. T1

final-writes y, while T2 final-writes x.

w1(x) w2(x) w2(y) w1(y)

Complexity Problem: The problem of deciding
whether or not an arbitrary schedule is view
serializable is NP-complete. This means that the
best known algorithm has exponential complexity in
the worst case.

Question: Is there an alternative notion of
serializability?

Trans:20061127: slides17: 16 of 36

Conflict Serializability: In conflict serializability, it is
ensured that “conflicting steps” occur in the same
order.

Formally, let T = {T1, T2, .., Tm} be a set of

transactions, and let S be a schedule for T. Two
steps p and q from S are said to be in conflict if the
following conditions hold:

· They are from distinct transactions.
· They operate on the same database object.
· At least one is a write.

Now let S and S each be schedules for T. They are
said to be conflict equivalent, denoted

S c S

If for each pair (p,q) of conflicting elements,

(p S q)  (p S q)

In other words, conflicting elements occur in the
same order in each schedule.

A schedule S for T is said to be conflict serializable

if there is a serial schedule S for T with the
property that S c S.

Trans:20061127: slides17: 17 of 36

Complexity: There is a simple test for conflict
serializability.

For a schedule S, define the conflict graph to be the
directed graph which has transactions as nodes,
with an edge from Ti to Tj precisely in the case that
a step p in Ti is in conflict with a step q in Tj, with p
preceding q in S.

Example:

The conflict graph for both of the schedules

r1(x) r1(y) r3(z) w3(z) r2(z) w1(x) w1(y) w2(z) w2(y) r3(x)
w3(x)

r1(x) r1(y) r3(z) w1(x) w1(y) w2(y) w3(z) r2(z) w2(z) r3(x)
w3(x)

is

Trans:20061127: slides17: 18 of 36

T1

T3

T2

The conflict graph for the schedule

r1(x) r1(y) r3(z) w3(z) r3(x) r2(z) w1(x) w1(y) w2(z) w2(y)
w3(x)

is

This provides a computationally tractable test for
conflict serializability:

Theorem: The schedule S is conflict serializable iff
its conflict graph is acyclic. 

Trans:20061127: slides17: 19 of 36

T1

T3

T2

The Relationship between View Serializability and
Conflict Serializability:

Theorem: If a schedule S is conflict serializable,
then it is also view serializable. However, the
converse is not the case. 

Example:
 T1 = r1(x) w1(x) T2 = w2(x) T3 = w3(x)

The schedule

S = r1(x) w2(x) w1(x) w3(x)

is not conflict serializable, since the conflict graph is

However, S is clearly view equivalent to

S = r1(x) w1(x) w2(x) w3(x),

and so it is view serializable.

· Schedules which are view but not conflict
serializable involve so-called blind writes, in which
a value is written but never read.

· Even though it is overly restrictive, conflict
serializability is often used because of the
simplicity of the conflict-graph test.

Trans:20061127: slides17: 20 of 36

T1 T2T3

Other types of serializability:

· Other formalizations of serializability may be
found in the literature.

· Perhaps the most frequently seen is final-state
serializability.

· These are studied mostly from a theoretical point
of view to motivate the need for either view
serializability or else conflict serializability, since
these alternatives have drawbacks which make
them undesirable.

· They will not be discussed here.

Trans:20061127: slides17: 21 of 36

Two-Phase Locking:

Given that conflict-free schedules are an acceptable
compromise, it remains to determine how to
generate them. One of the most popular strategies
is known as two-phase locking.

Assumptions:

· For a transaction to use a database object, it
must request and be granted an appropriate lock
on that object.

· There are two kinds of locks:

· A write lock permits a transaction both to read
and to write a database object. Only one
transaction may hold a write lock on a given
object at any point in time.

· A read lock permits a transaction to read a
database object, but not to write it. Any
number of transactions may hold simultaneous
read locks on an object, but read and write
locks may not coexist on the same object.

Trans:20061127: slides17: 22 of 36

· The following operations exist:

· rlock(x): Request a read lock on object x. This
request may be granted provided there are no
current write locks on x.

· wlock(x): Request a write lock on x. This
request may be granted only in the case that
there are no locks on x, save that the
transaction requiring the lock may already have
a read lock on x.

· upgrade(x): Convert a read lock to a write lock.
This request may only be granted in the case
that the requesting transaction already holds a
read lock on x, and no other transaction holds
such a lock on x.

· downgrade(x): Convert a write lock to a read
lock. This request may only be granted in the
case that the requesting transaction already
holds a write lock on x.

· unlock(x): Dissolve all locks on x. This request
dissolves any lock which the requesting
transaction holds on object x.

Trans:20061127: slides17: 23 of 36

· The following constraints exist on transactions:

· Before an object is read, a lock (read or write)
must be requested and granted.

· Before an object is written, a write lock must be
requested and granted.

· All reads must be performed before the
corresponding lock is released.

· All writes must be performed before the
corresponding write lock is downgraded or
released.

· It is also generally assumed that transactions
do not request redundant locks. (This makes
analyses simpler.)

A scheduler operates according to a locking
protocol just in case these conventions are
followed.

Trans:20061127: slides17: 24 of 36

Example: r1(y) r3(z) w3(z) r2(z) w1(x) w1(y) w2(z) w2(y)
r3(x) w3(x)
Here is one possible lock schedule:

Schedule Lock x Lock y Lock z
Rlock1(y) R1
r1(y) R1
Wlock3(z) R1 W3
r3(z) R1 W3
w3(z) R1 W3
Unlock3(z) R1
Rlock2(z) R1 R2
r2(z) R1 R2
Wlock1(x) W1 R1 R2
w1(x) W1 R1 R2
Unlock1(y) W1 R2
Wlock1(y) W1 W1 R2
w1(y) W1 W1 R2
Upgrade2(z) W1 W1 W2
w2(z) W1 W1 W2
Unlock1(y) W1 W2
Wlock2(y) W1 W2 W2
w2(y) W1 W2 W2
Downgrade1(x) R1 W2 W2
Rlock3(x) R1 R3 W2 W2
r3(x) R1 R3 W2 W2
Unlock1(x) R3 W2 W2
Unlock3(x) W2 W2
Wlock3(x) W3 W2 W2
w3(x) W3 W2 W2
Unlock3(x) W2 W2
Unlock2(y) W2
Unlock2(z)

Trans:20061127: slides17: 25 of 36

The two-phase locking protocol (2PL) requires that
the following condition be met:

· For each transaction, after the first downgrade or
unlock operation, no subsequent rlock, wlock, or
upgrade operations are allowed.

This situation may be envisioned graphically as
follows:

Note that the preceding schedule is not 2PL.

Theorem: Every schedule produced by a 2PL
scheduler is conflict-serializable. 

Theorem: Every serial schedule may be (trivially)
converted to a 2PL schedule. 

Trans:20061127: slides17: 26 of 36

Time

Locks
held
by Ti

Shrinking
phase

Constant
phase

Growing
phase

Some common restrictions of 2PL:

In conservative 2PL, all locks must be requested at
the beginning of a transaction:

In rigorous 2PL, all locks must be held until the end
of the transaction:

In strict 2PL, all write locks must be held until the
end of the transaction:

Each of these strategies has a use, as we shall see.

Trans:20061127: slides17: 27 of 36

Time

Locks
held
by Ti

Shrinking
phase

Constant
phase

Time

Locks
held
by Ti

Constant
phase

Growing
phase

Deadlock Detection and Prevention:

· General schedules produced by 2PL are subject
to deadlock.

Example: T1 = r(x) r(y) w(x)
T2 = r(y) r(x) w(y)

Suppose we adopt the following schedule:

T1 T2 Status
Rlock(x)
r(x)

Rlock(y)
r(y)

Rlock(y)
r(y)

Rlock(x)
r(x)

Wlock(x) (wait) Wlock(y) (wait) Deadlock!!

· Then each transaction must wait for the other to
release something with which it is not finished.

· This is a deadlock.
· It might be the case that one of the transactions

can release the needed resource, but the
scheduler cannot know this, so it must respect
the lock requests!

· Such early releases may also be inconsistent with
recovery protocols. (More later).

Trans:20061127: slides17: 28 of 36

Dealing with Deadlock:

There are two fundamental ways to deal with
deadlock:

Pessimistic strategy: Use a scheduling algorithm
which ensures that deadlock cannot occur.

Optimistic strategy: Take no measures to prevent
deadlock. When deadlock is detected, execute a
“repair” strategy.

The choice of strategy depends upon the kinds of
transactions and the type of performance required.

Trans:20061127: slides17: 29 of 36

Deadlock-free Scheduling:

Use a conservative 2PL locking strategy:

· It is clear that deadlock cannot occur, since a
transaction must lock all resources which it needs
at the time which it commences.

· Deadlock can only occur when a transaction
locks a resource, and later requests a second
resource which another process holds.

Trans:20061127: slides17: 30 of 36

Time

Locks
held
by Ti

Shrinking
phase

Constant
phase

Another way to schedule transactions in a
deadlock-free fashion is with

Timestamping:

· Each transaction is assigned a unique time-
stamp.

· There are two main strategies:

Wait-Die:
If Ti requests a resource held by Tj

 then if Ti is older than Tj

 then allow Ti to wait
 else abort Ti, allowing Tj to continue.

Wound-Wait:
If Ti requests a resource held by Tj

 then if Ti is older than Tj

 then abort Tj, allowing Ti to continue
 else allow Ti to wait.

To understand why this strategy works, we
introduce a new concept.

· The wait-for graph has an edge from a

transaction holding a given resource, to one
requesting the same resource.

· If it contains a cycle, there is a deadlock situation.

Trans:20061127: slides17: 31 of 36

Previous example: T1 = r(x) r(y) w(x)
T2 = r(y) r(x) w(y)

T1 T2 Status
Rlock(x)
r(x)

Rlock(y)
r(y)

Rlock(y)
r(y)

Rlock(x)
r(x)

Wlock(x) (wait) Wlock(y) (wait) Deadlock!!

Here is the wait-for graph.

Cycles cannot occur when either the wait-die or the
wound-wait strategy is implemented:

· In wait-die, there cannot be an edge from an
older transaction to a younger one.

· In wound-wait, there cannot be an edge from a
younger transaction to an older one.

Trans:20061127: slides17: 32 of 36

T1 T2

· Remember that these strategies do not look for
cycles in the graph, but only for edges whose
nodes have particular forms of time stamps.

· The graph need not be and is not constructed!

Remark:

· The wait-for graph is complicated somewhat with
read locks, since several transactions may hold
such a lock on the same resource.

· In this situation, one must work with sets of
transactions. The details are straightforward but
omitted.

Livelock:

· Livelock occurs when a transaction is repeatedly
aborted because of a deadlock situation.

· Livelock may be avoided with wait-die and
wound-wait, provided that an aborted transaction
is restarted with its original timestamp, and not a
new one.

Trans:20061127: slides17: 33 of 36

Deadlock Detection:

· To implement an optimistic deadlock-handling
protocol, a method for detecting deadlock must
be in place.

· The wait-for graph may be used.

· Cycle-detection algorithms for directed graphs
are well-known, and reasonably efficient.

Trans:20061127: slides17: 34 of 36

Optimistic and Pessimistic Concurrency
Control:

· Optimistic and pessimistic strategies have been
identified for deadlock management.

· These terms apply more generally to
concurrency-control strategies.

· A pessimistic strategy is one which attempts to
avoid scheduling problems before they happen.
· This strategy is appropriate when conflicts

are likely to occur frequently.
· Implies a higher overhead of producing

acceptable schedules.

· An optimistic strategy is one lets scheduling
proceed rather freely, and then “repairs”
situations in which conflicts occur.
· This strategy is appropriate when conflicts

are not likely to occur frequently.
· Implies a lower overhead for producing

acceptable schedules, but a higher overhead
of detecting and correcting problems.

· There are numerous other strategies which
embrace these principles.

Trans:20061127: slides17: 35 of 36

Locking Granularity:

The size of an object to be locked by a single lock
request is open to decision:

· A field of a tuple or record.
· A single tuple or record.
· A physical disk block.
· An entire relation.
· An entire database.

Generally, the larger the object to be locked:
· The less the possible concurrency.
· The easier it is to manage the concurrency.

· Access locks 2Kb. physical blocks.

Trans:20061127: slides17: 36 of 36

