
Functional Dependencies 
and Normalization

· There are many forms of constraints on relational 
database schemata other than key 
dependencies.

· Undoubtedly most important is the functional 
dependency.

· A functional dependency, or FD, is a constraint on 
a single relation schema.

· Basically, it is a key constraint on a subset of the 
set of all attributes.

Formally:

Definition:  Let R[A] be a relation schema, and let 

X, Y  A.  The constraint  X  Y is defined as 
follows:

For any tuples t1[A], t2[A], 
t1[X] = t2[X]   t1[Y] = t2[Y]

Observe: The functional dependency  X  Y  is 
satisfied iff  X  is a superkey for  XY(R[A]).

· In words, the FD X  Y  is satisfied iff X is a 
superkey for the projection onto the attributes 
XY.

20061120:slides13:  1 of 48



Example:

Rail_Schedule

Engineer Train Date Departure Platform

{Train}  {Departure}
{Engineer, Date, Departure}  {Train}
{Train, Date}  {Engineer, Platform}

20061120:slides13:  2 of 48



Semantic Consequence:

It is often the case that if certain FD’s hold, then 
others must hold as well.

Examples:
If {Train, Date}  {Engineer, Platform}  and
  {Engineer, Date, Departure}  {Train} hold
    then so does
{Engineer, Date, Departure}   {Platform}.

If {Train}  {Departure} holds
   then so does 

          {Train, Engineer}  {Departure}.

Formally, let A be a set of attributes, and let 

F1, F2, .., Fn, and G be FD’s over A.  G is a semantic 
consequence of {F1, F2, .., Fn}, written

{F1, F2, .., Fn}   G

if the FD G holds whenever all of the elements of 
{F1, F2, .., Fn} do.  (This applies to any relation 
whatever on the attribute set A.)
If  {G1, G2, .., Gm } is a set of FD’s, then 

{F1, F2, .., Fn}   {G1, G2, .., Gm }
means that {F1, F2, .., Fn}   GI  for each i, 1  i  m.

20061120:slides13:  3 of 48



Examples:
{{Train, Date}  {Engineer, Platform}  
 {Engineer, Date, Departure}  {Train}}
 
 {Engineer, Date, Departure}   {Platform} 

{{Train}  Departure}}
 {Train, Engineer}  {Departure}.

Closure: The set G of all FD’s for which 
{F1, F2, .., Fn}   G holds is called the (semantic) 
closure of {F1, F2, .., Fn}, and is denoted
{F1, F2, .., Fn}+.  Two sets of FD’s  F and  G  are said 
to be equivalent  if  F+ = G+.

Exterior: The set G of all FD’s for which 
{F1, F2, .., Fn}   G does not hold, written 

{F1, F2, .., Fn}  / G
is called the (semantic) exterior of {F1, F2, .., Fn}, 
and is denoted {F1, F2, .., Fn}.

Example: 
{{Train}  {Departure}
 {Engineer, Date, Departure}  {Train}
 {Train, Date}  {Engineer, Platform}
}  /
     {Departure}  {Train}.

20061120:slides13:  4 of 48



Question: How is the relation    
determined?

· Purely semantic approaches are possible, but 
impractical.  (Compare truth tables in 
propositional logic.)

· Syntactic inference system: A syntactic inference 
system is a collection of rules which allows us to 
conclude new assertions (i.e., FD’s) from existing 
ones.

Example:  FD’s obey a transitive rule.  If  A  B 
and  B  C  both hold (for any attributes A, B, and C 
whatever), then so too does  A  C.  Thus, we 
might include such a rule in a syntactic system.

For an inference system, the symbol which is 
typically used is  .  Thus,

{F1, F2, .., Fn}  G

means that G can be deduced from 
{F1, F2, .., Fn} by application of the extant system of 
syntactic rules.  (Alternately, there is a proof of G 
from {F1, F2, .., Fn}.)

Example: A possible rule is
                  { A  B, B  C}  A  C.

20061120:slides13:  5 of 48



A Syntactic Proof System:

In the following rules, let A be a set of attributes, 

and let W, X, Y, and Z be arbitrary subsets of A.

A1 (Reflexivity):  { Y  X }   X  Y.

A2 (Augmentation): { X  Y }  XZ   YZ.

A3 (Additivity) :  { X  Y, X  Z }  X  YZ.

A4 (Projectivity):  { X  YZ }  X  Y.

A5 (Transitivity): { X  Y, Y  Z }  X  Z.

A6 (Pseudotransitivity): 
                    { X  Y, YZ  W }  XZ  W.

Contrary to the assertion in the text, we cannot 
“prove” these rules.  However, it can be established 
that they have certain fundamental logical 
properties.  But first, we must be clear about what is 
meant by an inference.

20061120:slides13:  6 of 48



Definition:  Let    be an inference relation, and let 
1, 2, ..., n,  and    be assertions.  A proof  of   
from  {1, 2, ..., n}  is a sequence of assertions 

1, 2, .., i, i+1, .., k-1, k

with the property that 

1.  The final element in the list is the conclusion 

which is sought; i.e., k = .

2. Every element in the list is either one of the I’s 
or else a consequence, via , of some of the 
preceding elements in the list.  Formally, for each 

i, 1  i  k, either  i  {1, 2, ..., n}  or else    

i   for some     {1, 2, .., i-1}.

20061120:slides13:  7 of 48



Example: Prove
 {Engineer, Date, Departure}   {Platform}
from the axioms of the earlier example.

1. {Train}  {Departure}  
(Given)

       
2. {Engineer, Date, Departure}  {Train}

(Given)

3. {Train, Date}  {Engineer, Platform}
(Given)

4. {Engineer, Date, Departure}  {Train, Date}
(A2: Augmentation of 2)

5. {Engineer, Date, Departure}  {Engineer, 
Platform}

(A5: Transitivity on 4 and 3)

6. {Engineer, Date, Departure}   {Platform}.
 (A4: Projectivity on 5)

20061120:slides13:  8 of 48



Formal properties of inference systems:

· Soundness: Everything which can be proven is 
true.  Formally, If {1, 2, ..., n}  , then  
{1, 2, ..., n}  .  

· Completeness:  Everything which is true can be 
proven.  Formally, if  {1, 2, ..., n}  , then 
{1, 2, ..., n}  .

· Decidability: There is an algorithm which can 
apply the proof rules and determine whether or 
not there is a proof of the desired conclusion from 
the axioms.  (The process cannot loop forever in 
a search.)

Fact: The axioms A1-A6 are sound and complete, 
and possess a decidable inference algorithm.

(It is easy to see that things are decidable in this 
context.  Why?)

Fact: The subset consisting of  just A1 (Reflexivity), 
A2 (Augmentation), and A6 (Pseudotransitivity) is 
complete.

20061120:slides13:  9 of 48



A more intuitive inference system for FD’s:

The following system is based upon directed acyclic 
graphs (DAG):

· Reduce all FD’s to those with only one attribute 
on the right-hand side (RHS).

Example: {Train, Date}  {Engineer, Platform}
becomes:
{Train, Date}  {Engineer}
{Train, Date}  { Platform}
Clearly, these two FD’s are equivalent to the one 
above.  Call such an FD simple.

· Represent each simple FD by a DAG in which the 
nodes are attributes and the edges run from left-
hand side (LHS) attributes to right-hand side 
(RHS) attributes.

Example: The FD {Train, Date}  {Engineer} is 
represented as follows.

20061120:slides13:  10 of 48

Train

Date

Engineer



Derivations are represented by gluing these graphs 
together.   For example, here is a derivation of 
{Engineer, Date, Departure}   {Platform}.

This graph embodies the FD’s 
{Engineer, Date, Departure}  {Train}
{Train, Date}  {Platform}
as axioms.  It derives the FD
{Engineer, Date, Departure}   {Platform}
because
· The LHS attributes are the initial nodes of the 

graph.
· All RHS attributes are named in nodes which are 

connected to these initial nodes.

Fact: This DAG procedure is sound and complete 
for inference on FD’s. (D. Maier, The Theory of 
Relational Databases, Computer Science Press, 
1983.)

20061120:slides13:  11 of 48

Train

Date

Platform

Engineer

Departure



Normalization:

· Schemata constrained by arbitrary sets of FD’s 
have certain anomalies which make them 
undesirable.  To remedy this situation, there have 
been quite a number of normal forms proposed 
which deal with these issues.

· There are two approaches to normalization:

· In the decomposition approach, one starts with 
a relational database schema with perhaps only 
one or a very few relations, and decomposes 
the relations (using projection) into smaller 
ones in an effort to remove the problems. 

· In the synthetic approach, one starts with a set 
of FD’s, and then attempts to construct a 
relational database schema which embodies 
those FD’s while avoiding any anomalies.

· Each approach as its advantages and 
disadvantages.  However, the synthetic approach 
has the more serious drawbacks, so we will focus 
on the much more common decomposition 
approaches.

· First, we need to consider some normal forms.

20061120:slides13:  12 of 48



Normal Forms:

· In early papers, E. F. Codd, who is credited with 
“inventing” the relational model, introduced three 
normal forms.

First Normal Form:

 This just says that domains consist of atomic 
values, and may not themselves be structured.  In 
most modern work, this property is built into the 
model.

20061120:slides13:  13 of 48



Second Normal Form:

Consider a slight modification of the Rail Schedule 
example.

Rail_Schedule

Engineer Train Date Departure Platform

{Train}  {Departure, Platform}
{Engineer, Date, Departure}  {Train}
{Train, Date}  {Engineer}

A train now must depart from the same platform 
every day. There is a so-called anomaly in this 
schema.

· Note that the values of Departure and Platform 
are determined by the value of the attribute Train 
alone, and so many tuples replicate this 
information.

Rail_Schedule

Engineer Train Date Departure Platform
Ola 12 23 0800 4
Kari 12 24 0800 4
Ola 12 25 0800 4
Renée 13 23 0930 5
René 13 24 0930 5
Renée 13 25 0930 5

20061120:slides13:  14 of 48



· If the platform or departure time for a train are to 
be changed, they must be changed in every tuple 
associated with that train.  (Update anomaly)

· To insert a new train, we must have information 
on a date for that train, and for an engineer for 
each such date.  (Insertion anomaly)

· If no information for any date is available for a 
train, its departure and platform information are 
lost.  (Deletion anomaly)

20061120:slides13:  15 of 48



· These problems may be (partially) remedied by 
decomposing the relation into two pieces.

· In the following solution, the single relation is 
broken into two as follows.  Now, the update 
anomalies have disappeared.

Train Departure Platform
12 0800 4
13 0930 5

Engineer Train Date
Ola 12 23
Kari 12 24
Ola 12 25
Renée 13 23
René 13 24
Renée 13 25

20061120:slides13:  16 of 48



 Formalization of 2NF:

Let R[A] be a relation schema, and let F  be a set of 

FD’s on R[A].  Assume, without loss of generality, 
that all FD’s in F  have only a single element on the 
RHS.  Then F is said to be in 2NF if for each FD  
X  {B}  F  with B X, the following condition is 
satisfied:

If 
· There is a candidate key K such that

X  K; and
· There is no candidate key L such that

B  L (i.e., B is not a prime attribute);
Then
· X = K.

· In this case, it is said that B is fully dependent, or 
irreducibly dependent, upon each candidate key, 
because there can be no proper subset of such a 
key upon which B depends.

· So, a schema is in 2NF if each nonprime attribute 
is fully dependent upon each candidate key.

· The original single-relation schema violates 2NF. 

20061120:slides13:  17 of 48



· The candidate keys of the original single-relation 
schema are 
{Train, Date} and {Engineer, Date, Departure}.

· The dependency {Train}  {Platform} violates 
the conditions of 2NF, since Train is a prime 
attribute  which is not a candidate key, while 
Platform is not a prime attribute.

· Verify that the decomposed schema is in 2NF:

{Train}  {Departure, Platform}
{Engineer, Date, Departure}  {Train}
{Train, Date}  {Engineer}

Train Departure Platform

Engineer Train Date

· This is trivial since each relation contains only 
one of the original FDs, and the left-hand side of 
each of those FDs is a key for that relation.
·

· Note that the second FD is no longer recaptured 
by a relation!  (The decomposition is not 
dependency preserving.  More on this later.)

20061120:slides13:  18 of 48



Here is an alternate solution which is also in 2NF:

Train Departure Platform
12 0800 4
13 0930 5

Engineer Train Date Departure
Ola 12 23 0800
Kari 12 24 0800
Ola 12 25 0800
Renée 13 23 0930
René 13 24 0930
Renée 13 25 0930

· Note that an update anomaly remains.

20061120:slides13:  19 of 48



Verify that it is in 2NF:

{Train}  {Departure, Platform}
{Engineer, Date, Departure}  {Train}
{Train, Date}  {Engineer}

Train Departure Platform

Engineer Train Date Departure

· The first relation is trivially in 2NF, since 
{Train}  {Departure, Platform} is its only FD.

· In the second relation, the candidate keys are 
{Engineer, Date, Departure} and 
{Train, Date}.

· Note that all atributes in the second relation are 
prime; therefore, it must be in 2NF.

· Note that each FD is embodied in at least one of 
the relations.  (The decomposition is 
dependency preserving.  More on this later.)

20061120:slides13:  20 of 48



Third Normal Form:

Now let us modify the schema a bit further, adding a 
new attribute Loco (for Locomotive), and add the 
assumption that an engineer always drives the 
same locomotive, and a locomotive is only used for 
one train.  The constraints then become:

Rail_Schedule

Engineer Loco Train Date Departure Platform

{Train}  {Departure, Platform}
{Engineer}  {Loco}
{Loco}   {Train}
{Train, Date}  {Engineer}

Example instance:

Rail_Schedule

Engineer Loco Train Date Departure Platform
Ola A12 12 23 0800 4
Kari A12 12 24 0800 4
Ola A12 12 25 0800 4
Renée A22 13 23 0930 5
René A22 13 24 0930 5
Renée A22 13 25 0930 5

20061120:slides13:  21 of 48



· This schema is not even in 2NF.

· The candidate keys are {Train, Date}, 
{Loco, Date}, and  {Engineer, Date}.

· Platform is not a prime attribute, so 
{Train}  {Platform} violates 2NF.

20061120:slides13:  22 of 48



The decomposition

Train Departure Platform
12 0800 4
13 0930 5

Engineer Loco Train
Ola A12 12
Kari A12 12
Renée A22 13
René A22 13

Engineer Train Date
Ola 12 23
Kari 12 24
Ola 12 25
Renée 13 23
René 13 24
Renée 13 25

is easily verified to be in 2NF.  

· Yet, there is an anomaly because of the
 {Loco}  {Train}  relationship in the second 
relation.

20061120:slides13:  23 of 48



· A set of FD’s is said to be in third normal form 
(3NF) with respect to a set F of FD’s if for every 
X  Y  F  with Y  X, either X is a superkey, or 
else Y \ X  consists entirely of prime attributes.

· Equivalently, in a form which parallels that for 
2NF:

Let R[A] be a relation schema, and let F  be a set of 

FD’s on R[A].  Assume, without loss of generality, 
that all FD’s in F  have only a single element on the 
RHS.  Then F is said to be in 3NF if for each FD  
X  {B}  F  with B X, the following condition is 
satisfied:

If 
·  There is a candidate key K such that

X  K; and
· There is no candidate key L such that

B  L (i.e., B is not a prime attribute);
Then
· X = K is a superkey.
.

· Note that {Loco}  {Train} violates this condition 
in the second relation of the decomposition, since 
Engineer is the only key.

20061120:slides13:  24 of 48



· The following decomposition resolves the 
problem, providing a 3NF decomposition.

Train Departure Platform
12 0800 4
13 0930 5

Engineer Train Date
Ola 12 23
Kari 12 24
Ola 12 25
Renée 13 23
René 13 24
Renée 13 25

Engineer Loco Loco Train
Ola A12 A12 12
Kari A12 A22 13
Renée A22
René A22

20061120:slides13:  25 of 48



Fact:  3NF  2NF (trivially).

Why is 3NF strictly stronger than 2NF?

· In 2NF, it is possible to have an FD  X  A in 
which none of  the elements of X nor the 
attribute A are members of any candidate key.  

· In 3NF, if X is not a superkey, then A must be a 
member of a candidate key.

We can verify that, for the example, all 
dependencies are embodied in one of the relations, 
so the decomposition is dependency preserving.

{Train}  {Departure, Platform}
{Engineer}  {Loco}
{Loco}   {Train}
{Train, Date}  {Engineer}

Train Departure Platform

Engineer Train Date

Engineer Loco Loco Train

20061120:slides13:  26 of 48



Boyce-Codd Normal Form:

Return to the example used in 2NF.  

Rail_Schedule

Engineer Train Date Departure Platform

{Train}  {Departure, Platform}
{Engineer, Date, Departure}  {Train}
{Train, Date}  {Engineer}

Train Departure Platform
12 0800 4
13 0930 5

Engineer Train Date Departure
Ola 12 23 0800
Kari 12 24 0800
Ola 12 25 0800
Renée 13 23 0930
René 13 24 0930
Renée 13 25 0930

· It is easy to see that this schema is in 3NF

·  {Train}  {Departure} does not violate 3NF in 
the second relation, since Departure is a prime 
attribute.

20061120:slides13:  27 of 48



3NF says:

· If the RHS of an FD is not a member of a 
candidate key, then the LHS must be a 
superkey.

· If the RHS of an FD is a member of a 
candidate key, then there is no restriction on 
the LHS.

· Boyce-Codd normal form remedies this situation 
by strengthening the condition:

· A set of FD’s is said to be in Boyce-Codd normal 
form (BCNF) with respect to a set F of FD’s if for 
every  X  Y  F  with Y  X, X is a superkey, 
regardless of whether or not Y consists entirely of 
prime attributes.

· The example schema is not in BCNF.

20061120:slides13:  28 of 48



· The first decomposed schema from the 2NF 
example is in BCNF:

{Train}  {Departure, Platform}
{Engineer, Date, Departure}  {Train}
{Train, Date}  {Engineer}

Train Departure Platform

Engineer Train Date

· However, this decomposition is not dependency 
preserving, since the dependency 
          {Engineer, Date, Departure}  {Train} 
is not embedded in any of the component 
schemata.

· In general, it is not possible to decompose a 
schema into BCNF without incurring this sort of 
loss of embedded dependencies.

· On the other hand, it is always possible to 
decompose a schema into 3NF without such loss.

· While BCNF is “better” than 3NF in terms of 
avoiding update anomalies, it is worse in that 
dependencies may be lost, or at least FD’s may 
need to be verified by checking several relations.

20061120:slides13:  29 of 48



· Sometimes, BCNF can be achieved without loss 
of dependencies, as in the 3NF example given 
previously.

{Train}  {Departure, Platform}
{Engineer}  {Loco}
{Loco}   {Train}
{Train, Date}  {Engineer}

Train Departure Platform

Engineer Train Date

Engineer Loco Loco Train

· The concepts of lossless and dependency-
preserving decompositions are next examined 
more formally, and in greater detail.

20061120:slides13:  30 of 48



Minimal covers for a set of FDs:

● There is a number of ways in which a set of 
FDs may be redundant.

● Example:

F = { A  BC,  B  C,  AB D,  AC  D }

● Redundant FD:  AC  D
● Implied by   { A  BC,   AB D }

● Reducible LHS FD:  AC  D
● May be replaced by  A  D

● Reducible RHS FD:   A  BC
● May be replaced by  A  B.

· In each case, the remaining set of FDs has the 
same closure as the original set.

· The issue of a reducible RHS can be removed by 
requiring that all FDs  have a single attribute on 
the RHS.

· Then two types of redundancy remain:

· An entire FD can be removed.

· An attribute can be removed from the LHS of 
a dependency.

20061120:slides13:  31 of 48



The algorithm to minimize a set F of FDs 
proceeds in three steps:

1.  Decompose each FD with more than one 
attribute on the RHS to a set of FDs with the 
same LHS and exacly one attribute on the 
RHS.

2.  Remove unnecessary attributes from the LHS 
of each FD.  (May not be unique.)

3. For each remaining FD f in the set, 
 if F+ = F \ { f }+, then set F := F \ { f }.
(May not be unique.)

● The steps must be performed in this order.

Example from above:
      F = { A  BC,  B  C,  AB D,  AC  D }

Step 1: 
    F = { A  B,  A  C,  B  C,  AB D, AC  D }

Step 2:
   F = { A  B,  A  C,  B  C,  A D, A  D } = 
        { A  B,  A  C,  B  C,  A D}

Step 3:
   F = { A  B,  B  C,  A  D }

since { A   B,  B   C }    A   C.

20061120:slides13:  32 of 48



A more complex example:

F = { A  B,  ABCD  E,  EF  GH,  ACDF EG }

Step 1:
F = { A  B,  ABCD  E,  EF  G,  EF  H, 
ACDF E,  ACDF G }

Step 2:
F = { A  B,  ACD  E,  EF  G,  EF  H, 
ACD E,  ACDF G } = 
{ A  B,  ACD  E,  EF  G,  EF  H, 
ACDF G }

Step 3:
{ ACD  E, EF  G }  ACDF G  so
F  = { A  B,  ACD  E,  EF  G,  EF  H }

● In general, Steps 2 and 3 can be very complex, 
but they can usually be solved by inspection for 
small examples.

● This process is also described in Algorithm 
10.2 of the textbook (Algorithm 14.2 in the third 
edition).

20061120:slides13:  33 of 48



Dependency-Preserving Decompositions:

· Let R[A] be a relation schema, and let F be a set 

of FD’s on A.  Let B  A.  The full projection of F 
onto B, denoted B(F+), is the set of all elements 

X  Y  F+ for which XY  B.

· Let R[A] be a relation schema, and let F be a set 

of FD’s on A.  Let 

D = {R1[A1], R2[A2],.., Rn[An]}

be a decomposition of R[A] into projections.  The 
decomposition D is said to be dependency 
preserving if:
 

((F+)  (F+)  …  (F+))+ = F+

· Reexamine the examples.

20061120:slides13:  34 of 48



Finding a dependency-preserving 3NF 
decomposition of an arbitrary schema 
constrained by FD’s:

Algorithm: Input: A single relation schema R[A], 

together with a set F  of FD’s on A.

1. Find a minimal cover C  for F. 

2. Group the FD’s in C  by LHS.
G1 = {X1  A1j | 1  j   m1}
G2 = {X2  A2j | 1  j   m2}


Gn = {Xn  Anj | 1  j   mn}

3. For each group   Gi = {XI  Aij | 1  j   mi}, let

Yi = Xi  { Aij | 1  j   mi}.

Include in the decomposition the relation schema 

[R], together with the constraints in (F+).

4. If  Y1  Y2  ..  Yn  A, include a relation 
schema, with no nontrivial dependencies,  on 
attributes A \ (Y1  Y2  ..  Yn).

20061120:slides13:  35 of 48



· It is clear that this produces a dependency-
preserving schema, since every FD is embodied 
in one of the constructed relations.

· It is less clear that this produces a 3NF 
decomposition; this will not be proven here.

· If there is already more than one relation in the 
schema to be decomposed, decompose each 
separately.  As long as the input is a 3NF 
schema, so too will be the output.

· Examples: The running examples of these slides 
are fairly trivial for this algorithm, since the 
dependencies already form a minimal cover of 
themselves, and each has a distinct LHS.

20061120:slides13:  36 of 48



Other examples:
 

Consider the very simple example R[ABC], with F 
= {A  B, B  C, A  C }.  

· The full schema is not in 3NF, since B is not a 
superkey and C is not prime. (Hence B  C is 
a “problem” dependency.)

· The decomposition algorithm produces:

 R1[AB] with FD  set {A  B}  and 
 R2[BC] with FD  set  {B  C}.  

· Note that the original set of dependencies is 
not a minimal cover of itself; A  C is 
redundant.  If we had included A  C  in the 
algorithm, the (non-3NF) decomposition

R1[ABC] with FD set  {A  B, A  C} and 
R2[BC] with FD set  {B  C}

would have been obtained.

· Thus, the process of finding a minimal cover is 
essential.

20061120:slides13:  37 of 48



Consider next the simple example R[ABC] with F = 
{A  B}.

· The algorithm constructs the schema 

    R1[AB] with FD set {A  B},

· It then adds the schema

 R2[C] with empty FD set .

 to achieve attribute preservation.

· This is a “bad” decomposition, since C may 
depend upon A and B in other ways.  There is no 
way that we can recover the original relation on 
R[ABC] from the projections R1[AB] and R2[C].

· This is not the case with the previous example; 
there the original relation could be recovered from 
the projections.

20061120:slides13:  38 of 48



Lossless Decompositions:

· Let R[A] be a relation schema, and let F be a set 

of FD’s on A.  Let 

D = {R1[A1], R2[A2],.., Rn[An]}

be a decomposition of R[A] into projections.  The 
decomposition D is said to be lossless if for any 
relation  r  Sat(R[A],F), 

(r)  (r)  …  (r) = r.

· It is difficult to envision a situation in which a lossy 
decomposition would be acceptable.

To repair the algorithm for 3NF decomposition, the 
following step is added.

5. If none of the resulting schemata contains a key 
of the original relation, create one additional 
relation which consists of such a (minimal) key.

To repair the example on the previous slide, add a 
key. It is easy to see that AC is the only candidate 
key, so add the relation schema R2[AC].  The old 
schema R2[C] may be removed, since it is 
subsumed by R2[AC].

20061120:slides13:  39 of 48



General Ideas Regarding Lossless 
Decompositions:

Fact: Let R[A] be a relation schema, and let F be a 

set of FD’s on A. Let 

D = {R1[A1], R2[A2]}

be a decomposition of R[A] into two projections. 
Then D is lossless if and only if at least one of the 
following conditions is satisfied.

· The FD  A1
  A2   A1

 \ A2
   F+.

· The FD  A1
  A2   A2

 \ A1  F+.
In words, the common attributes must form a key for 
at least one of the two relations.

Unfortunately, this condition does not extend to the 
case of a decomposition into three or more 
relations.
   
Example:  The relation schema R[ABCD] with FD 

set {A  C, B  D} has the following lossless 
decomposition:

R1[AB] with FD set .
R2[ACD] with FD set {A  C}.
R3[BCD] with FD set { B  D}.

· However, the above conditions are not satisfied 
for any two of the relations.

· Furthermore it is not the case that joining just two 
of the projections will yield the original relation, 
even though all of the attributes are covered.

20061120:slides13:  40 of 48



There is a general theory of lossless 
decompositions.  The highlights:

· Instead of working with FD’s, one may work 
directly with “decomposition dependencies:”

· multivalued dependencies
· join dependencies

· Niceness is related to a property called 
“acyclicity,” which roughly corresponds to the idea 
that losslessness may be verified by checking the 
underlying schemata “two at a time.”

· This “niceness” is related to many other 
“desirable” properties of database schemata, 
including efficient query processing and 
management of distributed databases.

20061120:slides13:  41 of 48



Dependency-preserving BCNF decompositions:

· It is not always possible to decompose an 
arbitrary relation schema, constrained by FD’s, 
into a BCNF relational schema, while preserving 
dependencies.

· In this sense, BCNF is not “better” – it cannot 
always be realized!

Algorithm to realize BCNF (may not be dependency 
preserving):

Input: A single relation schema R[A], together 

with a set F  of FD’s on A.

1. Set   Decomp  {R[A]}.

2. While there is an S  Decomp which is not in 
BCNF do:
· Choose an S[B]  Decomp which is not in 

BCNF.
· Choose an FD  X  Y  B(F+) which is not a 

“BCNF FD;” i.e., the LHS is not a superkey 
for S[B].  Let B1 = XY, and let B2 = B \ Y.

· Decompose S[B] into S1[B1] and S2[B2].

Just as in the case of the 3NF algorithm:

     3. If none of the resulting schemata contains a 
key of the original relation, create one additional 
relation which consists of such a (minimal) key.

20061120:slides13:  42 of 48



Example:

Rail_Schedule

Engineer Train Date Departure Platform

{Train}  {Departure, Platform}
{Engineer, Date, Departure}  {Train}
{Train, Date}  {Engineer}

· The candidate keys are:
{Engineer, Date, Departure}
{Train, Date} 

· Thus, 
{Train}  {Departure, Platform}

    is a non-BCNF FD.

The new schema is

Train Departure Platform

Engineer Train Date

Which is the schema obtained earlier.  Note that it is 
not dependency preserving, since
       {Engineer, Date, Departure}  {Train}
is lost.

· This schema is in BCNF.

20061120:slides13:  43 of 48



A more complex example:

· R[CSJDPQV]  { JP  C,  SD   P,  J   S }

· Note that  { SD   P,  J   S }    JD   P.

· The set of FDs is already minimal.

· Unque key: JDQV 

· 3NF decomposition via the algorithm: 
     R[JPC], R[SDP], R[JS], R[JDQV]

· To find a BCNF decomposition, it may be 
necessary to consider several decomposition 
trees:

· The above 3NF is also BCNF, and it is 
dependency preserving.  Here is a decomposition 
tree:

20061120:slides13:  44 of 48

CSJDPQV

CJP SJDPQV

SDP SJDQV

SJ JDQV

JPC

SDP

JS



· The folllowing two decompositions are in BCNF 
but are not dependency preserving because
SD   P  is not preserved:

20061120:slides13:  45 of 48

CSJDPQV

JS CJDPQV

CJP JDPQV

JDP JDQV

JS

JPC

JDP

CSJDPQV

CJP SJDPQV

JS JDPQV

JDP JDQV

JPC

JS

JDP



Question: Given a single relation schema R[A], 

together with a set F  of FD’s on A and a minimal 
cover G of  F, if there is a dependency-preserving 
BCNF decomposition of this schema, will the 3NF 
decomposition algorithm always yield a BCNF 
decomposition?

Answer: No.

Example: R[ABCDE],  
     F =   { A   BC,  BC   A,  BCD   E,  E   C  }

● F is already a minimal cover of itself.

● The 3NF decomposition algorithm yields      
{ R[ABC], R[BCDE], R[CE] }, 

which is not BCNF since  E   C is a violating 
dependency in R[BCDE].

● The alternate decomposition 
{ R[ABC], R[ADE], R[CE] }

is BCNF and dependency preserving.

Reason:

· { A   BC,  AD   E,  E   C  }  is an alternative 
minimal cover for F which yields this 
decomposition upon applying the 3NF 
decomposition algorithm.

· If there is a dependency-preserving BCNF 
decomposition, it will arise from the 3NF 
algorithm applied to some minimal cover of F.

20061120:slides13:  46 of 48



Final observations on decomposition:

· Note that most commercial DBMS’s effectively 
force BCNF with respect to FD’s, because they 
only allow key constraints.

· Thus, in situations in which no dependency-
preserving BCNF decomposition is possible, 
there will be constraints which are not 
represented in the schema.

· They also allow foreign keys, which are 
recaptured via inclusion dependencies.  The 
theory is complex and not very satisfactory, so we 
shall not pursue it here.

An alternative: the synthetic approach:

· Advantages:
· Need not start out with a schema in which 

arbitrary design decisions are incorporated.

· Disadvantages:
· Loss of non-FD associations.

20061120:slides13:  47 of 48



Problems with the projection of FD’s:

Here is an interesting example:

R[ABCD] with FD set 
         F = {A  D, B  D, CD  A}.

The view is the projection onto ABC: R1[ABC].

Facts: 

· There is no set of FD’s which expresses the 
constraints on R1[ABC].

· For any integer n, there is a relation r1 on 
attributes AB, containing exactly n tuples, with the 
property that it is not a projection of any relation
                   r  Sat(R[ABCD],F)
yet any relation obtained by deleting one or more 
tuples from r is a projection of a legal relation in 
Sat(R[ABC],F).

· Thus, for no n is it “n-easy” to check the 
constraints on R1[ABC].

· The constraints on R1[ABC] are nonetheless of 
the ()..() variety.

20061120:slides13:  48 of 48


