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Key to the Slides

q The source of each slide is coded in the footer on the 
right side:
l Irwin CSE331 = slide by Mary Jane Irwin from the course 

CSE331 (Computer Organization and Design) at 
Pennsylvania State University.

l Irwin CSE431 = slide by Mary Jane Irwin from the course 
CSE431 (Computer Architecture) at Pennsylvania State 
University.

l Hegner UU = slide by Stephen J. Hegner at Umeå University.
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Review:  Pipeline Hazards
q Structural hazards

l Design pipeline to eliminate structural hazards

q Data hazards � read before write
l Use data forwarding inside the pipeline

l For those cases that forwarding won�t solve (e.g., load-use) 
include hazard hardware to insert stalls in the instruction stream

q Control hazards � beq, bne,j,jr,jal
l Stall � hurts performance

l Move decision point as early in the pipeline as possible � reduces 
number of stalls at the cost of additional hardware

l Delay decision (requires compiler support) � not feasible for 
deeper pipes requiring more than one delay slot to be filled

l Predict � with even more hardware, can reduce the impact of 
control hazard stalls even further if the branch prediction (BHT) is 
correct and if the branched-to instruction is cached (BTB)
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Extracting Yet More Performance
q Increase the depth of the pipeline to increase the clock 

rate � superpipelining
l The more stages in the pipeline, the more forwarding/hazard 

hardware needed and the more pipeline latch overhead (i.e., the 
pipeline latch accounts for a larger and larger percentage of the 
clock cycle time)

q Fetch (and execute) more than one instructions at one 
time (expand every pipeline stage to accommodate 
multiple instructions) � multiple-issue
l The instruction execution rate, CPI, will be less than 1, so 

instead we use IPC:  instructions per clock cycle

- E.g., a 6 GHz, four-way multiple-issue processor can execute at a 
peak rate of 24 billion instructions per second with a best case CPI 
of 0.25  or a best case IPC of 4

l If the datapath has a five stage pipeline, how many instructions 
are active in the pipeline at any given time?
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Types of Parallelism
q Instruction-level parallelism (ILP) of a program � a 

measure of the average number of instructions in a 
program that a processor might be able to execute at the 
same time
l Mostly determined by the number of true (data) dependencies 

and procedural (control) dependencies in relation to the number 
of other instructions

q Data-level parallelism (DLP) DO  I = 1  TO  100

   A[I] = A[I] + 1

CONTINUE
q Machine parallelism of a                                            

processor � a measure of the ability of the processor to 
take advantage of the ILP of the program
l Determined by the number of instructions that can be fetched 

and executed at the same time

q To achieve high performance, need both ILP and 
machine parallelism
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Multiple-Issue Processor Styles

q Static multiple-issue processors (aka VLIW)
l Decisions on which instructions to execute simultaneously are 

being made statically (at compile time by the compiler)

l E.g., Intel Itanium and Itanium 2 for the IA-64 ISA � EPIC 
(Explicit Parallel Instruction Computer)

- 128-bit �bundles� containing three instructions, each 41-bits plus a 
5-bit template field (which specifies which FU each instruction 
needs)

- Five functional units (IntALU, Mmedia, Dmem, FPALU, Branch)

- Extensive support for speculation and predication

q Dynamic multiple-issue processors (aka superscalar)
l Decisions on which instructions to execute simultaneously (in 

the range of 2 to 8)  are being made dynamically (at run time by 
the hardware)

l E.g., IBM Power series, Pentium 4, MIPS R10K, AMD Barcelona
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Multiple-Issue Datapath Responsibilities

q Must handle, with a combination of hardware and software 
fixes, the fundamental limitations of 
l How many instructions to issue in one clock cycle � issue slots

l Storage (data) dependencies � aka data hazards

- Limitation more severe in a SS/VLIW processor due to (usually) low 
ILP

l Procedural dependencies � aka control hazards

- Ditto, but even more severe

- Use dynamic branch prediction to help resolve the ILP issue

l Resource conflicts � aka structural hazards

- A SS/VLIW processor has a much larger number of potential 
resource conflicts

- Functional units may have to arbitrate for result buses and register-
file write ports

- Resource conflicts can be eliminated by duplicating the resource or 
by pipelining the resource
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Speculation
q Speculation is used to allow execution of future instr�s that 

(may) depend on the speculated instruction
l Speculate on the outcome of a conditional branch (branch 

prediction)

l Speculate that a store (for which we don�t yet know the address) 
that precedes a load does not refer to the same address, allowing 
the load to be scheduled before the store (load speculation)

q Must have (hardware and/or software) mechanisms for
l Checking to see if the guess was correct

l Recovering from the effects of the instructions that were executed 
speculatively if the guess was incorrect

q Ignore and/or buffer exceptions created by speculatively 
executed instructions until it is clear that they should really 
occur
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Static Multiple Issue Machines (VLIW)

q Static multiple-issue processors (aka VLIW) use the 
compiler (at compile-time) to statically decide which 
instructions to issue and execute simultaneously
l Issue packet � the set of instructions that are bundled together 

and issued in one clock cycle � think of it as one large 
instruction with multiple operations

l The mix of instructions in the packet (bundle) is usually 
restricted � a single �instruction� with several predefined fields

l The compiler does static branch prediction and code scheduling 
to reduce (control) or eliminate (data) hazards

q VLIW�s have
l Multiple functional units

l Multi-ported register files

l Wide program bus
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An Example: A VLIW MIPS

q Consider a 2-issue MIPS with a 2 instr bundle

ALU Op (R format)
or

Branch (I format)

Load or Store (I format)

64 bits

q Instructions are always fetched, decoded, and issued in 
pairs
l If one instr of the pair can not be used, it is replaced with a noop

q Need 4 read ports and 2 write ports and a separate 
memory address adder
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A MIPS VLIW (2-issue) Datapath

Instruction
Memory

Add

P
C

4

Write Data

Write Addr

Register
File

ALU

Add

Data

Memory

Sign

Extend

Add

Sign
Extend

q No hazard hardware (so 
no load use allowed)

5DV008 20092311 t:4C sl:12 Irwin CSE431 PSU

Code Scheduling Example

q Consider the following loop code

lp: lw $t0,0($s1)   # $t0=array element

addu $t0,$t0,$s2  # add scalar in $s2

sw $t0,0($s1)   # store result

addi $s1,$s1,-4   # decrement pointer

bne $s1,$0,lp    # branch if $s1 != 0

q Must �schedule� the instructions to avoid pipeline stalls
l Instructions in one bundle must be independent

l Must separate load use instructions from their loads by one 
cycle

l Notice that the first two instructions have a load use 
dependency, the next two and last two have data dependencies 

l Assume branches are perfectly predicted by the hardware
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The Scheduled Code (Not Unrolled)

ALU or branch Data transfer CC

lp: 1

2

3

4

5
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The Scheduled Code (Not Unrolled)

q Four clock cycles to execute 5 instructions for a
l CPI of 0.8 (versus the best case of 0.5)

l IPC of 1.25 (versus the best case of 2.0)

l noops don�t count towards performance !!

ALU or branch Data transfer CC

lp: lw  $t0,0($s1) 1

addi  $s1,$s1,-4 2

addu  $t0,$t0,$s2 3

bne   $s1,$0,lp sw  $t0,4($s1) 4

ALU or branch Data transfer CC

lp: 1

2

3

4

5
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Loop Unrolling

q Loop unrolling � multiple copies of the loop body are 
made and instructions from different iterations are 
scheduled together as a way to increase ILP

q Apply loop unrolling (4 times for our example) and then 
schedule the resulting code
l Eliminate unnecessary loop overhead instructions

l Schedule so as to avoid load use hazards

q During unrolling the compiler applies register renaming to 
eliminate all data dependencies that are not true data 
dependencies
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Unrolled Code Example

lp: lw $t0,0($s1)    # $t0=array element

lw $t1,-4($s1)   # $t1=array element

lw $t2,-8($s1)   # $t2=array element

lw $t3,-12($s1)  # $t3=array element

addu $t0,$t0,$s2   # add scalar in $s2

addu $t1,$t1,$s2   # add scalar in $s2

addu $t2,$t2,$s2   # add scalar in $s2

addu $t3,$t3,$s2   # add scalar in $s2

sw $t0,0($s1)    # store result

sw $t1,-4($s1)   # store result

sw $t2,-8($s1)   # store result

sw $t3,-12($s1)  # store result

addi $s1,$s1,-16   # decrement pointer

bne $s1,$0,lp     # branch if $s1 != 0
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The Scheduled Code (Unrolled)

q Eight clock cycles to execute 14 instructions for a
l CPI of 0.57 (versus the best case of 0.5)

l IPC of 1.8 (versus the best case of 2.0)

ALU or branch Data transfer CC

lp: addi  $s1,$s1,-16 lw  $t0,0($s1) 1

lw  $t1,12($s1) 2

addu  $t0,$t0,$s2 lw  $t2,8($s1) 3

addu  $t1,$t1,$s2 lw  $t3,4($s1) 4

addu  $t2,$t2,$s2 sw  $t0,16($s1) 5

addu  $t3,$t3,$s2 sw  $t1,12($s1) 6

sw  $t2,8($s1) 7

bne   $s1,$0,lp sw  $t3,4($s1) 8

5DV008 20092311 t:4C sl:18 Irwin CSE431 PSU

Predication

q Predication can be used to eliminate branches by making the 
execution of an instruction dependent on a �predicate�, e.g.,

if (p) {statement 1} else {statement 2}

  would normally compile using two branches.  With predication 
it would compile as

  (p) statement 1

(~p) statement 2

q The use of (condition) indicates that the instruction is 
committed only if condition is true

q Predication can be used to speculate as well as to eliminate 
branches
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Compiler Support for VLIW Processors

q The compiler packs groups of independent instructions 
into the bundle
l Done by code re-ordering (trace scheduling)

q The compiler uses loop unrolling to expose more ILP 

q The compiler uses register renaming to solve name 
dependencies and ensures no load use hazards occur

q While superscalars use dynamic prediction, VLIW�s 
primarily depend on the compiler for branch prediction
l Loop unrolling reduces the number of conditional branches

l Predication eliminates if-the-else branch structures by replacing 
them with predicated instructions

q The compiler predicts memory bank references to help 
minimize memory bank conflicts
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VLIW Advantages & Disadvantages

q Advantages
l Simpler hardware (potentially less power hungry)

l Potentially more scalable

- Allow more instr�s per VLIW bundle and add more FUs

q Disadvantages
l Programmer/compiler complexity and longer compilation times

- Deep pipelines and long latencies can be confusing (making peak 
performance elusive)

l Lock step operation, i.e., on hazard all future issues stall until 
hazard is resolved (hence need for predication)

l Object (binary) code incompatibility

l Needs lots of program memory bandwidth

l Code bloat

- Noops are a waste of program memory space 

- Loop unrolling to expose more ILP uses more program memory 
space
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Dynamic Multiple Issue Machines (SS)

q Dynamic multiple-issue processors (aka SuperScalar) use 
hardware at run-time to dynamically decide which 
instructions to issue and execute simultaneously

q Instruction-fetch and issue � fetch instructions, decode 
them, and issue them to a FU to await execution
l Defines the Instruction lookahead capability � fetch, decode and 

issue instructions beyond the current instruction

q Instruction-execution � as soon as the source operands 
and the FU are ready, the result can be calculated
l Defines the processor lookahead capability � complete execution 

of issued instructions beyond the current instruction

q Instruction-commit � when it is safe to, write back results 
to the RegFile or D$ (i.e., change the machine state)
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In-Order vs Out-of-Order

q Instruction fetch and decode units are required to issue 
instructions in-order so that dependencies can be 
tracked

q The commit unit is required to write results to registers 
and memory in program fetch order so that
l if exceptions occur the only registers updated will be those 

written by instructions before the one causing the exception

l if branches are mispredicted, those instructions executed after 
the mispredicted branch don�t change the machine state (i.e., we 
use the commit unit to correct incorrect speculation)

q Although the front end (fetch, decode, and issue) and 
back end (commit) of the pipeline run in-order, the FUs 
are free to initiate execution whenever the data they 
need is available � out-of-(program) order execution
l Allowing out-of-order execution increases the amount of ILP
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Out-of-Order Execution

q With out-of-order execution, a later instruction may 
execute before a previous instruction so the hardware 
needs to resolve both  read before write   and   write 
before write  data hazards

l If the lw write to $t0 occurs after the addu write, then the sub 
gets an incorrect value for $t0

l The addu has an output dependency on the lw � write before 
write

- The issuing of the addu might have to be stalled if its result could 
later be overwritten by an previous instruction that takes longer to 
complete

   lw $t0,0($s1)

addu $t0,$t1,$s2

. . .

sub $t2, $t0, $s2
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Antidependencies

q Also have to deal with antidependencies � when a later 
instruction (that executes earlier) produces a data value 
that destroys a data value used as a source in an earlier 
instruction (that executes later)

R3 := R3 * R5

R4 := R3 + 1

R3 := R5 + 1

q The constraint is similar to that of true data 
dependencies, except reversed

l Instead of the later instruction using a value (not yet) produced 
by an earlier instruction (read before write), the later instruction 
produces a value that destroys a value that the earlier instruction 
(has not yet) used (write before read)

Antidependency
True data dependency
Output dependency
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Dependencies Review

q Each of the three data dependencies
l True data dependencies (read before write)

l Antidependencies (write before read)

l Output dependencies (write before write)

   manifests itself through the use of registers (or other 
storage locations)

q True dependencies represent the flow of data and 
information through a program

q Anti- and output dependencies arise because the limited 
number of registers mean that programmers reuse 
registers for different computations leading to storage 
conflicts

storage conflicts
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Storage Conflicts and Register Renaming
q Storage conflicts can be reduced (or eliminated) by 

increasing or duplicating the troublesome resource
l Provide additional registers that are used to reestablish the 

correspondence between registers and values

- Allocated dynamically by the hardware in SS processors

q Register renaming � the processor renames the original 
register identifier in the instruction to a new register (one 
not in the visible register set)

R3b := R3a * R5a

R4a := R3b + 1

R3c := R5a + 1

l The hardware that does renaming assigns a �replacement� 
register from a pool of free registers and releases it back to the 
pool when its value is superseded and there are no outstanding 
references to it

R3 := R3 * R5

R4 := R3 + 1

R3 := R5 + 1
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Summary:  Extracting More Performance
q To achieve high performance, need both machine 

parallelism and instruction level parallelism (ILP) by
l Superpipelining

l Static multiple-issue (VLIW)

l Dynamic multiple-issue (superscalar)

q A processor�s instruction issue and execution policies 
impact the available ILP
l In-order fetch, issue, and commit and out-of-order execution

- Pipelining creates true dependencies (read before write)

- Out-of-order execution creates antidependencies (write before read)

- Out-of-order execution creates output dependencies (write before 
write)

- In-order commit allows speculation (to increase ILP) and is required to 
implement precise interrupts

q Register renaming can solve these storage dependencies
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SimpleScalar Structure

q sim-outorder: supports out-of-order execution (with 
in-order commit) with a Register Update Unit (RUU)
l Uses a RUU for register renaming and to hold the results of 

pending instructions.  The RUU (aka reorder buffer (ROB)) 
retires (i.e., commits) completed instructions in program order 
to the RegFile

l Uses a LSQ for store instructions not ready to commit and 
load instructions waiting for access to the D$

l Loads are satisfied by either the memory or by an earlier 
store value residing in the LSQ if their addresses match

- Loads are issued to the memory system only when addresses of 
all previous loads and stores are known
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SS Pipeline Stage Functions
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FETCH DECODE & 
ISSUE

EXECUTE WRITE
BACK

RESULT
COMMIT

In Order In OrderOut of OrderIn Order

ruu_fetch()

ruu_dispatch()

ruu_issue()

lsq_refresh()

ruu_writeback()

ruu_commit()
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Simulated SimpleScalar Pipeline

q ruu_fetch():  fetches instr�s from one I$ line, puts them 
in the fetch queue, probes the cache line predictor to 
determine the next I$ line to access in the next cycle

- fetch:ifqsize<size>: fetch width (default is 4)

- fetch:speed<ratio>: ratio of the front end speed to the execution core 
(<ratio> times as many instructions fetched as decoded per cycle)

- fetch:mplat<cycles>: branch misprediction latency (default is 3)

q ruu_dispatch():  decodes instr�s in the fetch queue, 
puts them in the dispatch (scheduler) queue, enters and 
links instr�s into the RUU and the LSQ, splits memory 
access instructions into two separate instr�s (one to 
compute the effective addr and one to access the 
memory), notes branch mispredictions

- decode:width<insts>: decode width (default is 4)
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SimpleScalar Pipeline, con�t
q ruu_issue()and lsq_refresh():  locates and marks 

the instr�s ready to be executed by tracking register and 
memory dependencies, ready loads are issued to D$ 
unless there are earlier stores in LSQ with unresolved 
addr�s, forwards store values with matching addr to ready 
loads

- issue:width<insts>: maximum issue width (default  is 4)

- ruu:size<insts>: RUU capacity in instr�s (default is 16, min is 2)

- lsq:size<insts>: LSQ capacity in instr�s (default is 8, min is 2)

   and handles instr�s execution � collects all the ready 
instr�s from the scheduler queue (up to the issue width), 
check on FU availability, checks on access port 
availability, schedules writeback events based on FU 
latency (hardcoded in fu_config[]) 

- res:ialu | imult | memport | fpalu | fpmult<num>: number of FU�s 
(default is 4 | 1 | 2 | 4 | 1)
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SimpleScalar Pipeline, con�t

q ruu_writeback():  determines completed instr�s,  
does data forwarding to dependent waiting instr�s, 
detects branch misprediction and on misprediction rolls 
the machine state back to the checkpoint and discards 
erroneously issued instructions

q ruu_commit():  in-order commits results for instr�s 
(values copied from RUU to RegFile or LSQ to D$), 
RUU/LSQ entries for committed instr�s freed; keeps 
retiring instructions at the head of RUU that are ready to 
commit until the head instr is one that is not ready
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CISC vs RISC vs SS vs VLIW

CISC RISC Superscalar VLIW

Instr size variable size fixed size fixed size fixed size (but 
large)

Instr format variable 
format

fixed format fixed format fixed format

Registers few, some 
special

Limited # of 
ports

Many GP

Limited # of 
ports

GP and 
rename (RUU)

Many ports

many, many 
GP

Many ports

Memory 
reference

embedded in 
many instr�s

load/store load/store load/store

Key Issues decode 
complexity

data 
forwarding, 
hazards

hardware 
dependency 
resolution

(compiler) 
code 
scheduling
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Evolution of Pipelined, SS Processors

Year Clock 
Rate

# Pipe 
Stages

Issue 
Width

OOO? Cores
/Chip

Power

Intel 486 1989 25 MHz 5 1 No 1 5 W

Intel Pentium 1993 66 MHz 5 2 No 1 10 W

Intel Pentium 
Pro

1997 200 MHz 10 3 Yes 1 29 W

Intel Pentium 
4 Willamette

2001 2000 MHz 22 3 Yes 1 75 W

Intel Pentium 
4 Prescott

2004 3600 MHz 31 3 Yes 1 103 W

Intel Core 2006 2930 MHz 14 4 Yes 2 75 W

Sun USPARC 
III

2003 1950 MHz 14 4 No 1 90 W

Sun T1 
(Niagara)

2005 1200 MHz 6 1 No 8 70 W


