

5DV008 20092411 t:04A sl:1 Irwin CSE431 PSU

5DV008
Computer Architecture

Umeå University
Department of Computing Science

These slides are mostly taken verbatim, or with minor
changes, from those prepared by

Mary Jane Irwin (www.cse.psu.edu/~mji)

of The Pennsylvania State University
[Adapted from Computer Organization and Design, 4th Edition,

Patterson & Hennessy, © 2008, MK]

Stephen J. Hegner

Topic 4: The Processor
Part A: Basic control

5DV008 20092411 t:4A sl:2 Hegner UU

Key to the Slides

q The source of each slide is coded in the footer on the
right side:
l Irwin CSE331 = slide by Mary Jane Irwin from the course

CSE331 (Computer Organization and Design) at
Pennsylvania State University.

l Irwin CSE431 = slide by Mary Jane Irwin from the course
CSE431 (Computer Architecture) at Pennsylvania State
University.

l Hegner UU = slide by Stephen J. Hegner at Umeå University.

5DV008 20092411 t:04A sl:3 Irwin CSE431 PSU

Review: MIPS (RISC) Design Principles

q Simplicity favors regularity
l fixed size instructions

l small number of instruction formats

l opcode always the first 6 bits

q Smaller is faster
l limited instruction set

l limited number of registers in register file

l limited number of addressing modes

q Make the common case fast
l arithmetic operands from the register file (load-store machine)

l allow instructions to contain immediate operands

q Good design demands good compromises
l three instruction formats

5DV008 20092411 t:04A sl:4 Irwin CSE431 PSU

q Our implementation of the MIPS is simplified
l memory-reference instructions: lw, sw

l arithmetic-logical instructions: add, sub, and, or, slt

l control flow instructions: beq, j

q Generic implementation
l use the program counter (PC) to supply

 the instruction address and fetch the
instruction from memory (and update the PC)

l decode the instruction (and read registers)

l execute the instruction

q All instructions (except j) use the ALU after reading the
registers

How? memory-reference? arithmetic? control flow?

The Processor: Datapath & Control

Fetch
PC = PC+4

DecodeExec

5DV008 20092411 t:04A sl:5 Irwin CSE431 PSU

Aside: Clocking Methodologies
q The clocking methodology defines when data in a state

element is valid and stable relative to the clock
l State elements - a memory element such as a register
l Edge-triggered � all state changes occur on a clock edge

q Typical execution
l read contents of state elements -> send values through

combinational logic -> write results to one or more state elements

State

element

1

State

element

2

Combinational

logic

clock

one clock cycle

q Assumes state elements are written on every clock
cycle; if not, need explicit write control signal
l write occurs only when both the write control is asserted and the

clock edge occurs

5DV008 20092411 t:04A sl:6 Irwin CSE431 PSU

Fetching Instructions
q Fetching instructions involves

l reading the instruction from the Instruction Memory

l updating the PC value to be the address of the next
(sequential) instruction

Read
Address

Instruction

Instruction
Memory

Add

PC

4

l PC is updated every clock cycle, so it does not need an
explicit write control signal just a clock signal

l Reading from the Instruction Memory is a combinational
activity, so it doesn�t need an explicit read control signal

Fetch
PC = PC+4

DecodeExec

clock

5DV008 20092411 t:04A sl:7 Irwin CSE431 PSU

Decoding Instructions
q Decoding instructions involves

l sending the fetched instruction�s opcode and function field
bits to the control unit

and

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

Control

Unit

l reading two values from the Register File

- Register File addresses are contained in the instruction

Fetch
PC = PC+4

DecodeExec

5DV008 20092411 t:04A sl:8 Irwin CSE431 PSU

Executing Load and Store Operations
q Load and store operations involves

l compute memory address by adding the base register (read from
the Register File during decode) to the 16-bit signed-extended
offset field in the instruction

l store value (read from the Register File during decode) written to
the Data Memory

l load value, read from the Data Memory, written to the Register
File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

overflow

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

Sign

Extend

MemWrite

MemRead

16 32

5DV008 20092411 t:04A sl:9 Irwin CSE431 PSU

Adding the Control
q Selecting the operations to perform (ALU, Register File

and Memory read/write)

q Controlling the flow of data (multiplexor inputs)

I-Type: op rs rt address offset

31 25 20 15 0

R-type:

31 25 20 15 5 0

op rs rt rd functshamt

10

q Observations
l op field always

in bits 31-26

l addr of registers
 to be read are
 always specified by the
 rs field (bits 25-21) and rt field (bits 20-16); for lw and sw rs is
the base register

l addr. of register to be written is in one of two places � in rt (bits 20-16)
for lw; in rd (bits 15-11) for R-type instructions

l offset for beq, lw, and sw always in bits 15-0

J-type:

31 25 0

op target address

5DV008 20092411 t:04A sl:10 Irwin CSE431 PSU

Single Cycle Datapath with Control Unit

Read
Address

Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
 -11]

Control

Unit
Instr[31-26]

Branch

5DV008 20092411 t:04A sl:11 Irwin CSE431 PSU

R-type Instruction Data/Control Flow

Read
Address

Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr
1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
 -11]

Control

Unit
Instr[31-26]

Branch

5DV008 20092411 t:04A sl:12 Irwin CSE431 PSU

Load Word Instruction Data/Control Flow

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
 -11]

Control

Unit
Instr[31-26]

Branch

5DV008 20092411 t:04A sl:13 Irwin CSE431 PSU

Load Word Instruction Data/Control Flow

Read
Address

Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
 -11]

Control

Unit
Instr[31-26]

Branch

5DV008 20092411 t:04A sl:14 Irwin CSE431 PSU

Branch Instruction Data/Control Flow

Read
Address

Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
 -11]

Control

Unit
Instr[31-26]

Branch

5DV008 20092411 t:04A sl:15 Irwin CSE431 PSU

Branch Instruction Data/Control Flow

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
 -11]

Control

Unit
Instr[31-26]

Branch

5DV008 20092411 t:04A sl:16 Irwin CSE431 PSU

Adding the Jump Operation

Read
Address

Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
 -11]

Control

Unit
Instr[31-26]

Branch

Shift

left 2

0

1

Jump

32

Instr[25-0]

26
PC+4[31-28]

28

5DV008 20092411 t:04A sl:17 Irwin CSE431 PSU

Instruction Times (Critical Paths)

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total

R-
type

load

store

beq

jump

q What is the clock cycle time assuming negligible
delays for muxes, control unit, sign extend, PC access,
shift left 2, wires, setup and hold times except:

l Instruction and Data Memory (200 ps)

l ALU and adders (200 ps)

l Register File access (reads or writes) (100 ps)

5DV008 20092411 t:04A sl:18 Irwin CSE431 PSU

Instruction Critical Paths

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total

R-
type

load

store

beq

jump

200 100 200 100 600

200 100 200 200 100 800

q What is the clock cycle time assuming negligible
delays for muxes, control unit, sign extend, PC access,
shift left 2, wires, setup and hold times except:

l Instruction and Data Memory (200 ps)

l ALU and adders (200 ps)

l Register File access (reads or writes) (100 ps)

200 100 200 200 700

200 100 200 500

200 200

5DV008 20092411 t:04A sl:19 Irwin CSE431 PSU

Single Cycle Disadvantages & Advantages

q Uses the clock cycle inefficiently � the clock cycle must
be timed to accommodate the slowest instruction
l especially problematic for more complex instructions like

floating point multiply

q May be wasteful of area since some functional units
(e.g., adders) must be duplicated since they can not be
shared during a clock cycle

but

q Is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2

5DV008 20092411 t:04A sl:20 Irwin CSE431 PSU

How Can We Make It Faster?

q Fetch (and execute) more than one instruction at a time

l Superscalar processing � stay tuned

q Start fetching and executing the next instruction before
the current one has completed
l Pipelining � (all?) modern processors are pipelined for

performance

l Remember the performance equation:
 CPU time = CPI * CC * IC

q Under ideal conditions and with a large number of
instructions, the speedup from pipelining is
approximately equal to the number of pipe stages
l A five stage pipeline is nearly five times as fast because the CC

is nearly five times as fast

5DV008 20092411 t:04A sl:21 Irwin CSE431 PSU

The Five Stages of Load Instruction

q IFetch: Instruction Fetch and Update PC

q Dec: Registers Fetch and Instruction Decode

q Exec: Execute R-type; calculate memory address

q Mem: Read/write the data from/to the Data Memory

q WB: Write the result data into the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WBlw

5DV008 20092411 t:04A sl:22 Irwin CSE431 PSU

A Pipelined MIPS Processor

q Start the next instruction before the current one has
completed
l improves throughput - total amount of work done in a given time

l instruction latency (execution time, delay time, response time -
time from the start of an instruction to its completion) is not
reduced

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WBlw

Cycle 7Cycle 6 Cycle 8

sw IFetch Dec Exec Mem WB

R-type IFetch Dec Exec Mem WB

- clock cycle (pipeline stage time) is limited by the slowest stage

- for some stages don�t need the whole clock cycle (e.g., WB)

- for some instructions, some stages are wasted cycles (i.e.,
nothing is done during that cycle for that instruction)

5DV008 20092411 t:04A sl:23 Irwin CSE431 PSU

Single Cycle versus Pipeline

lw IFetch Dec Exec Mem WB

Pipeline Implementation (CC = 200 ps):

IFetch Dec Exec Mem WBsw

IFetch Dec Exec Mem WBR-type

Clk

Single Cycle Implementation (CC = 800 ps):

lw sw Waste

Cycle 1 Cycle 2

q To complete an entire instruction in the pipelined case
takes 1000 ps (as compared to 800 ps for the single
cycle case). Why ?

q How long does each take to complete 1,000,000 adds ?

400 ps

5DV008 20092411 t:04A sl:24 Irwin CSE431 PSU

Pipelining the MIPS ISA

q What makes it easy
l all instructions are the same length (32 bits)

- can fetch in the 1st stage and decode in the 2nd stage

l few instruction formats (three) with symmetry across formats

- can begin reading register file in 2nd stage

l memory operations occur only in loads and stores

- can use the execute stage to calculate memory addresses

l each instruction writes at most one result (i.e., changes the
machine state) and does it in the last few pipeline stages (MEM
or WB)

l operands must be aligned in memory so a single data transfer
takes only one data memory access

5DV008 20092411 t:04A sl:25 Irwin CSE431 PSU

MIPS Pipeline Datapath Additions/Mods

q State registers between each pipeline stage to isolate them

IF:IFetch ID:Dec EX:Execute MEM:

MemAccess

WB:

WriteBack

Read
Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift

left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign

Extend

ID/EX EX/MEM

MEM/WB

System Clock

5DV008 20092411 t:04A sl:26 Irwin CSE431 PSU

MIPS Pipeline Control Path Modifications
q All control signals can be determined during Decode

l and held in the state registers between pipeline stages

Read
Address

Instruction
Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift

left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

ALU

cntrl

RegWrite

MemRead

MemtoReg

RegDst

ALUOp

ALUSrc

Branch

PCSrc

5DV008 20092411 t:04A sl:27 Irwin CSE431 PSU

Pipeline Control

q IF Stage: read Instr Memory (always asserted) and write
PC (on System Clock)

q ID Stage: no optional control signals to set

EX
Stage

MEM
Stage

WB
Stage

Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src

Brch Mem
Read

Mem
Write

Reg
Write

Mem
toReg

R 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

5DV008 20092411 t:04A sl:28 Irwin CSE431 PSU

Graphically Representing MIPS Pipeline

q Can help with answering questions like:
l How many cycles does it take to execute this code?

l What is the ALU doing during cycle 4?

l Is there a hazard, why does it occur, and how can it be fixed?

A
L

UIM Reg DM Reg

5DV008 20092411 t:04A sl:29 Irwin CSE431 PSU

Why Pipeline? For Performance!

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg
A

L
UIM Reg DM Reg

Once the
pipeline is full,
one instruction

is completed
every cycle, so

CPI = 1

Time to fill the pipeline

5DV008 20092411 t:04A sl:30 Irwin CSE431 PSU

Can Pipelining Get Us Into Trouble?

q Yes: Pipeline Hazards
l structural hazards: attempt to use the same resource by two

different instructions at the same time

l data hazards: attempt to use data before it is ready

- An instruction�s source operand(s) are produced by a prior
instruction still in the pipeline

l control hazards: attempt to make a decision about program
control flow before the condition has been evaluated and the
new PC target address calculated

- branch and jump instructions, exceptions

q Can usually resolve hazards by waiting
l pipeline control must detect the hazard

l and take action to resolve hazards

5DV008 20092411 t:04A sl:31 Irwin CSE431 PSU

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A Single Memory Would Be a Structural Hazard

Reading data from
memory

Reading instruction
from memory

q Fix with separate instr and data memories (I$ and D$)

5DV008 20092411 t:04A sl:32 Irwin CSE431 PSU

How About Register File Access?

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Inst 1

Inst 2

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

Fix register file
access hazard by
doing reads in the
second half of the
cycle and writes in

the first half

add $1,

add $2,$1,

clock edge that controls
register reading

clock edge that controls
loading of pipeline state
registers and writing

Revised sjh 20092411

5DV008 20092411 t:04A sl:33 Irwin CSE431 PSU

Register Usage Can Cause Data Hazards

I

n

s

t

r.

O

r

d

e

r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

q Dependencies backward in time cause hazards

q Read before write data hazard

5DV008 20092411 t:04A sl:34 Irwin CSE431 PSU

Register Usage Can Cause Data Hazards

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

q Dependencies backward in time cause hazards

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

q Read before write data hazard

5DV008 20092411 t:04A sl:35 Irwin CSE431 PSU

Loads Can Cause Data Hazards

I

n

s

t

r.

O

r

d

e

r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

q Dependencies backward in time cause hazards

q Load-use data hazard

5DV008 20092411 t:04A sl:36 Irwin CSE431 PSU

Branch Instructions Cause Control Hazards

I

n

s

t

r.

O

r

d

e

r

lw

Inst 4

Inst 3

beq

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

q Dependencies backward in time cause hazards

5DV008 20092411 t:04A sl:37 Irwin CSE431 PSU

Other Pipeline Structures Are Possible

q What about the (slow) multiply operation?
l Make the clock twice as slow or �

l let it take two cycles (since it doesn�t use the DM stage)

A
L

UIM Reg DM Reg

MUL

A
L

UIM Reg DM1 RegDM2

q What if the data memory access is twice as slow as
the instruction memory?
l make the clock twice as slow or �

l let data memory access take two cycles (and keep the same
clock rate)

5DV008 20092411 t:04A sl:38 Irwin CSE431 PSU

Other Sample Pipeline Alternatives

q ARM7

q XScale A
L

UIM1 IM2 DM1 Reg

DM2

IM Reg EX

PC update
IM access

decode
reg
 access

ALU op
DM access
shift/rotate
commit result
 (write back)

Reg SHFT

PC update
BTB access

start IM access

IM access

decode
reg 1 access

shift/rotate
reg 2 access

ALU op

start DM access
exception

DM write
reg write

5DV008 20092411 t:04A sl:39 Irwin CSE431 PSU

Summary

q All modern day processors use pipelining

q Pipelining doesn�t help latency of single task, it helps
throughput of entire workload

q Potential speedup: a CPI of 1 and fast a CC

q Pipeline rate limited by slowest pipeline stage
l Unbalanced pipe stages makes for inefficiencies

l The time to �fill� pipeline and time to �drain� it can impact
speedup for deep pipelines and short code runs

q Must detect and resolve hazards
l Stalling negatively affects CPI (makes CPI less than the ideal

of 1)

