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Key to the Slides

0 The source of each slide is coded in the footer on the
right side:

® |rwin CSE331 = slide by Mary Jane Irwin from the course
CSE331 (Computer Organization and Design) at
Pennsylvania State University.

® |rwin CSE431 = slide by Mary Jane Irwin from the course
CSE431 (Computer Architecture) at Pennsylvania State
University.

® Hegner UU = slide by Stephen J. Hegner at Umea University.
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Review: MIPS (RI Desian Principl

0 Simplicity favors regularity
® fixed size instructions
® small number of instruction formats
® opcode always the first 6 bits

0 Smaller is faster
® |imited instruction set
® |imited number of registers in register file
® |imited number of addressing modes

0 Make the common case fast
® arithmetic operands from the register file (load-store machine)
® allow instructions to contain immediate operands

0 Good design demands good compromises
® three instruction formats
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The Processor: Datapath & Control
0 Our implementation of the MIPS is simplified
® memory-reference instructions: 1w, sw

® arithmetic-logical instructions: add, sub, and, or, slt
® control flow instructions: beq, j

0 Generic implementation

® use the program counter (PC) to supply
the instruction address and fetch the
instruction from memory (and update the PC)

® decode the instruction (and read registers)

® execute the instruction

0 All instructions (except j) use the ALU after reading the
registers

How? memory-reference? arithmetic? control flow?
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0 The clocking methodology defines when data in a state
element is valid and stable relative to the clock
® State elements - a memory element such as a register
® Edge-triggered — all state changes occur on a clock edge
0 Typical execution

® read contents of state elements -> send values through
combinational logic -> write results to one or more state elements

State Combinational State
element logi element
logic
1 2
clock —l—l—l_

one clock cycle
0 Assumes state elements are written on every clock
cycle; if not, need explicit write control signal
® write occurs only when both the write control is asserted and the
clock edge occurs
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Fetching Instructions
0 Fetching instructions involves
® reading the instruction from the Instruction Memory

® updating the PC value to be the address of the next
(sequential) instruction

clock l l
l Instruction
) ‘ Memory
Exec Decode
o~ = Read Instruction—s

/Address

® PC is updated every clock cycle, so it does not need an
explicit write control signal just a clock signal

® Reading from the Instruction Memory is a combinational
activity, so it doesn’t need an explicit read control signal
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D ing Instruction

0 Decoding instructions involves
® sending the fetched instruction’s opcode and function field
bits to the control unit

( Fetch Q

frc=pCsd Unit

*E%

Addr 1

N Read
(—
Reglster pata 1
File
rite Addr Read|
Data 2|

Instruction

and

rite Data

® reading two values from the Register File
- Register File addresses are contained in the instruction
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Ex ing L n r ration
0 Load and store operations involves
©® compute memory address by adding the base register (read from
the Register File during decode) to the 16-bit signed-extended
offset field in the instruction
® store value (read from the Register File during decode) written to
the Data Memory
® |oad value, read from the Data Memory, written to the Register

File
RegWrite ALU control MemWrite

Read Addr 1

Road Saieter Data 1

Data

Instruction
Memory Read Datal

— File
Addr

\Write Data

f

MemRead
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Adding the Control
O Selecting the operations to perform (ALU, Register File
and Memory read/write)

0 Controlling the flow of data (multiplexor inputs)
31 25 20 15 10 5 0
R-type:l op I rs I rt Ird Ishamtl funct |
0

0 Observations 31 25 20 15
"Type:lop Irs Irt I address offset |

® op field always
in bits 31-26 31 25

target address

addr of registers J-type: | op |
to be read are
always specified by the
rs field (bits 25-21) and rt field (bits 20-16); for lw and sw rs is

the base register
addr. of register to be written is in one of two places — in rt (bits 20-16)
for lw; in rd (bits 15-11) for R-type instructions

® offset for beq, Iw, and sw always in bits 15-0
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h with

4
PCSrc
MemRead
Instr{}
ALUSrc
RegWrite
RegDst
¥
nstrf251211 R oag
Instruction Addrt e
Mem: PSt{2016} |Read e s Data 1 zero) pat
Read . ata
Instr[31-( 0 File Memory Read Datal
[Address Write Addr ALY v
\Write Data
instr{15”_ v Data 2
1 rite Data L
lnstr[15-0] Sign ALU
16 |Extend| 35 ontro|
Instr{5-0] T
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R- Instruction Data/Control Flow
4
PCSrc
Branch | ~~ 71 )
MemRead
Instr] VemioReg
ALUSIC
RegWrite
RegDst
¥
nstr{25121L [Reaq
Instruction 4 Ader/ Rea
Memol nstr{20116} 5, AR:gé?‘zerDa(a1 zero Dt
Read ata
L, Instr{31-0HH Memory Read Data h
[Address Wit Adtr ¥ v v {
Data 2 Write Data @
st Jvrite Data | r 7
Instr[15-0] Sign ALU
16 |Extend| %35 contro|
Instr{5-0]
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4
PCSrc
MemRead
Instr[B1-26 00""0' [
Unit |
LUSrc
RegWrite
[RegDst]
Ky
nstr{25121],
Instruction Addr 1 Read
Memory nsir[201161 | ARzgé?‘grData1 zerQ) Dat
Read ata
Instr[31-01H 0 File Memory Read Data
[Address ; Write Addr ) ALY 84
\Write Data
instr{1 ) Data 2]
1 —\Write Data N
Insir[15-0] Sign ALU
16 \Extend/ "33 control
Instr[5-0]
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Word Instr nD
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4
_Branch |
MemRead
Instr{} g
ALUSrc

RegWrite

RegDst o
o
Instr[25:21 1
Instruction Read A Read a4
Memo Register
Inst[20-16LRead Addr 2 Data 1 zero) Data M
Read .
Instr[31-( 0 File Memory Read Data
Address ~prwite Adde ALy v ‘B
- )
\Write Data
instr{15”_ i Data 2
1 rite Data _4 Py
Instr{15-0] Sign ALU
16 |Extend/ “3; control

Instr{5-0]
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Branch Instruction Data/Control Flow.

Add
PCsrc
Branch | ~7 71 )
MemRead

WMemioReg

Instr]

Al USrc

RegWrite

[RegDst
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G
nstr{25121) [Roag
Instruction Addr 1 Read
Memory Register
nstil20-16}Reaq Adr 2 Data 1 zero) o
ata
Read d
7 et s Memory Read Datal
[rdaress | Jwrie Adsr G ry
Write Data
Instr[1 . Data 2
“q) [tvrite Data L

Instr[15-6] Sign ALU
16 |Extend] 737 contro|
Instr[5-0]
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Branch Instruction D Control Flow
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4
—Branch |
MemRead
Instr] g
LUSrc
RegWrite
[RegDst]
¥
Inste(25213 R ead
Instruction Addr 1 Read <A
Memory Insir[20-16} |, AR,fgéf‘frDatm @' Dat
Read . ata
PCH—| Instr[31-0HH 0 File Memory Read Datal
(Address ; Write Addr FO ALY v
Instrl15” _J\write Data bata3 [rte Data
R
Instr{15-0] Sign ALU
\
16 |Extend] "33 control
Instr[5-0]
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Adding th m ration |
Instr[25-0] g - X
i
mﬂj) 28 32
PC+4[31-28] o
4
\
Branch |
MemRead
Instri i Control | ]
Unit |
ALUSIc
RegWrite
RegDst|
¥
nstr{25:21LRead
Instruction Addr T ad dd
Memory n trLD 161Read e Data 1 zero) Dat
Read i o
L, Instr{31-0}H ) File Memory Read Datal
/Address 4 \Write Addr AL i
B i
Data 2 \Write Data
|nst[[11” —HWrite Data | N r
Instr(15-0] Sign ALU
16 | Extend] %35 controf
Instr{5-0] f
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Instruction Tim ritical Path

0 What is the clock cycle time assuming negligible
delays for muxes, control unit, sign extend, PC access,
shift left 2, wires, setup and hold times except:

® |nstruction and Data Memory (200 ps)
® ALU and adders (200 ps)
® Register File access (reads or writes) (100 ps)

Instr. | | Mem [Reg Rd|ALU Op [ D Mem |Reg Wr| Total
R-
type
load

store

beq

jump

5DV008 20092411 t:04A s1:17 Irwin CSE431 PSU

Instruction Critical Path

0 What is the clock cycle time assuming negligible
delays for muxes, control unit, sign extend, PC access,
shift left 2, wires, setup and hold times except:

® |nstruction and Data Memory (200 ps)
® ALU and adders (200 ps)
® Register File access (reads or writes) (100 ps)

Instr.] Mem | RegRd | ALU Op | D Mem [Reg Wr| Total
R- 200 100 200 100 600
type

load 200 100 200 200 100 800
store | 200 100 200 200 700
beq 200 100 200 500
jump | 200 200

5DV008 20092411 :04A s1:18 Irwin CSE431 PSU




ingl le Di van Advan

0 Uses the clock cycle inefficiently — the clock cycle must
be timed to accommodate the slowest instruction

® especially problematic for more complex instructions like
floating point multiply

h Cycle 1 Cycle 2
Clk

| lw I SW Wastel

0 May be wasteful of area since some functional units
(e.g., adders) must be duplicated since they can not be
shared during a clock cycle

but
0 Is simple and easy to understand
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How Can We Make It Faster?

0 Start fetching and executing the next instruction before
the current one has completed
® Pipelining — (all?) modern processors are pipelined for
performance

® Remember the performance equation:
CPU time = CPI* CC *IC

0 Under ideal conditions and with a large number of
instructions, the speedup from pipelining is
approximately equal to the number of pipe stages

® A five stage pipeline is nearly five times as fast because the CC
is nearly five times as fast

0 Fetch (and execute) more than one instruction at a time

® Superscalar processing — stay tuned
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The Five Stages of Load Instruction
Cycle 1§Cycle 2 Cycle 3 Cycle 4§Cycle 5
T rere e r
Iw IFetch | Dec Exec | Mem | WB

0 IFetch: Instruction Fetch and Update PC

0 Dec: Registers Fetch and Instruction Decode

0 Exec: Execute R-type; calculate memory address

0 Mem: Read/write the data from/to the Data Memory

0 WB: Write the result data into the register file
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A Pipelined MIPS Pr or

0 Start the next instruction before the current one has
completed
® improves throughput - total amount of work done in a given time

@ instruction latency (execution time, delay time, response time -
tin&e fr(zjm the start of an instruction to its completion) is not
reduce

;Cycle 1 ;Cycle 2 Cycle :{ Cycle 4 Cycle 5 ;Cycle 6 éCycIe 7 ECycIe 8

T e rererer

1w | IFetchI Dec I Exec I Mem I WB |
sw | IFetchI Dec I Exec I Mem I WB |
R-type | IFetchI Dec I Execl Mem I WB |

- clock cycle (pipeline stage time) is limited by the slowest stage
- for some stages don’t need the whole clock cycle (e.g., WB)

- for some instructions, some stages are wasted cycles (i.e.,
nothing is done during that cycle for that instruction)
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inal le ver: Pipelin

Single Cycle Implementation (CC = 800 ps):
_ Cycle 1 Cycle 2
Clk —|—|—_| L

| 1w I sw iWast:

Pipeline Implementation (CC = 200 ps): 400 ps
1w IFetchI Dec I Exec I Mem I WB |
sw IFetcrl Dec I Exec I Mem I WB

R-type| IFetchI Dec I Exec I Mem WB |

0 To complete an entire instruction in the pipelined case
takes 1000 ps (as compared to 800 ps for the single
cycle case). Why ?

U How long does each take to complete 1,000,000 adds ?
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Pipelining the MIPS ISA

0 What makes it easy
@ all instructions are the same length (32 bits)
- can fetch in the 1¢ stage and decode in the 2® stage
® few instruction formats (three) with symmetry across formats
- can begin reading register file in 2" stage
® memory operations occur only in loads and stores
- can use the execute stage to calculate memory addresses

® each instruction writes at most one result (i.e., changes the
machine state) and does it in the last few pipeline stages (MEM
or WB)

® operands must be aligned in memory so a single data transfer
takes only one data memory access
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MIPS Pi

line D

h Additions/M

0 State registers between each pipeline stage to isolate them

IF:IFetch ID:Dec EX:Execute MEM: WB:
MemAccess  WriteBack
EXIMEM
4 — MEM/WB
L
" Read Addr 1
Instruction Register Read| | Data
s dMemary Read Addr Pata 1 Memory
(O] eal o
o H= File dd Read | |
|Address AJST Rog| | Data
Data 2 i
—s\Write Data _2@ > Write Data
Sign
> —
\E@’ 32
L L
System Clock I I
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MIPS Pipelin ntrol Path Modification

a All control signals can be determined during Decode
® and held in the state registers between pipeline stages
]
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PCSrc

IDIEX
1 EXIMEM
Control
IFID M I ¥
MEM/WB
ranch W/
RegWrite B‘ :’_‘D\
! _—l
Instruction Read Addr 1 Read Data
Memory Read Addr Data 1] | Memory | | |MemtoReg
Read File ALUSre Read | |
[Address [ {write Addr ool | | | Data
Data 2 i
(—#Write Data K [*|Vrite Data
ALY\ | I I ;
" et MemRead |
I 16 2 || L
ALUOp

Rogbst

Irwlm SE431|PSU

Pipeline Control

0 IF Stage: read Instr Memory (always asserted) and write
PC (on System Clock)

0 ID Stage: no optional control signals to set

EX MEM WB
Stage Stage Stage
Reg | ALU [ ALU | ALU | Brch [ Mem [ Mem | Reg | Mem
Dst | Op1 | OpO | Src Read | Write | Write | toReg
R 1 1 0 0 0 0 0 1 0
1w 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
begq| X 0 1 0 1 0 0 0 X

5DV008 20092411 :04A s1:27

Irwin CSE431 PSU




raphically Representing MIPS Pipelin

0 Can help with answering questions like:
® How many cycles does it take to execute this code?
® What is the ALU doing during cycle 4?
® |s there a hazard, why does it occur, and how can it be fixed?

5DV008 20092411 t:04A s1:28 Irwin CSE431 PSU

Why Pipeline? For Performance!

Time (clock cycles)

Once the
/| InstO i pipéline is full,
n i oneinstruction
s i iscompleted
+| Inst1 i every cycle, so
r. i CPlI=1
of Inst 2
’
d
e| Inst3
r

Inst4 .
Time to fill:the pi
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Can Pipelining Get Us Into Trouble?

0 Yes: Pipeline Hazards
® structural hazards: attempt to use the same resource by two
different instructions at the same time
® data hazards: attempt to use data before it is ready
- An instruction’s source operand(s) are produced by a prior
instruction still in the pipeline
® control hazards: attempt to make a decision about program
control flow before the condition has been evaluated and the
new PC target address calculated
- branch and jump instructions, exceptions

0 Can usually resolve hazards by waiting
® pipeline control must detect the hazard
® and take action to resolve hazards
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Would B r ral Hazar

Time (clock cycles)

A Single Mem
i 1w

n

f Inst 1

r.

o| Inst2

K

d

el Inst3

;

Inst 4 Reafding ifstruction
from membry

gReading dazla from
imemeéry i

0 Fix with separate instr and data memories (I1$ and D$)
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ister File A 2

Time (clock cycles)

add $1, |E|

S ~0n 3 —~

Inst 2

add $2,51,

S=oa~0

clock edge that controls

register reading
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Reaister.

Inst 1 @

! Fix fegister file
accessihazard by
dping r¢ads in the
second:half of the
cyicle arid writes in

i the first half

clo-ck edée that. controls
loading of pipeline state
registers and writing ol SSE 851 25

n D Hazar

0 Dependencies backward in time cause hazards

add $1,

sub $4,51,8$5

S ~0n 3 —

and $6,51,$7

or $8,51,%9

So Q=0

xor $4,%1,85

[

0 Read before write data hazard
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Register

n D Hazar

0 Dependencies backward in time cause hazards

add $1, E

sub $4,%51,8$5
and $6,51,$7
or $8,51,%9

xor $4,31,85

0 Read before write data hazard
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S ~0n 3 —~

S0 Q=0

L n
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D Hazar

0 Dependencies backward in time cause hazards

lw $1,4($2)[m |

sub $4,51,$5
and $6,51,$7
or $8,51,%9

xor $4,$1,8%5

0 Load-use data hazard
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S ~0n 3 —

~o Q>0
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Branch Instruction ntrol Hazar
0 Dependencies backward in time cause hazards

beq [:]

1w
Inst 3

Inst 4
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her Pipelin r res Are P ibl

0 What about the (slow) multiply operation?
® Make the clock twice as slow or ...
® |et it take two cycles (since it doesn’t use the DM stage)

0 What if the data memory access is twice as slow as
the instruction memory?

® make the clock twice as slow or ...
® |et data memory access take two cycles (and keep the same

clock rate)
i s E
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her Sample Pipeline Alternativ

0 ARM7
Y
PC update  decode ALU op
IM access reg DM access
access  shift/rotate
commit result
(write back)
0 XScale
1ol o By
DM3
PC update decode DM write
BTB access reg 1 access ALU op reg write
start IM access shiftirotate start DM access
IM access reg 2 access  exception
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§u mmary

0 All modern day processors use pipelining

0 Pipelining doesn’t help latency of single task, it helps
throughput of entire workload

0 Potential speedup: a CPI of 1 and fasta CC
0 Pipeline rate limited by slowest pipeline stage

® Unbalanced pipe stages makes for inefficiencies

® The time to “fill” pipeline and time to “drain” it can impact
speedup for deep pipelines and short code runs

0 Must detect and resolve hazards

® Stalling negatively affects CPI (makes CPI less than the ideal
of 1)
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