5DV008 Computer Architecture Umeå University Department of Computing Science Stephen J. Hegner

Topic 2: Instructions Part A: Basic Concepts

These slides are mostly taken verbatim, or with minor changes, from those prepared by

Mary Jane Irwin (www.cse.psu.edu/~mji)

of The Pennsylvania State University [Adapted from *Computer Organization and Design, 4th Edition,* Patterson & Hennessy, © 2008, MK]

5DV008 20101109 t:2A sl:1

Key to the Slides

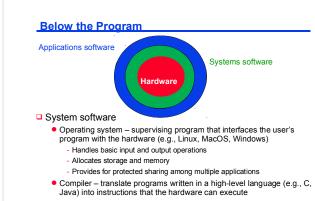
- The source of each slide is coded in the footer on the right side:
 - Invin CSE331 PSU = slide by Mary Jane Irwin from the course CSE331 (Computer Organization and Design) at Pennsylvania State University.
 - Invin CSE431 PSU = slide by Mary Jane Irwin from the course CSE431 (Computer Architecture) at Pennsylvania State University.
 - Hegner UU = slide by Stephen J. Hegner at Umeå University.

5DV008 20101109 t:2A sl:2

Computer Organization and Design

This course is all about how computers work

- □ But what do we mean by a computer?
 - Different types: embedded, laptop, desktop, server, supercomputer
 - Different uses: robotics, graphics, finance, genomics,...
 - Different manufacturers: Intel, IBM, AMD, ARM, Freescale, Fujitsu, TI, Sun (Oracle), MIPS, NEC, ...
 - Different underlying technologies and different costs !


Best way to learn:

- Focus on a *specific* instance and learn how it works
- While learning general principles and historical perspectives

Irwin CSE331 PSU

~ 1111

er UU

5DV008 20101109t:2A sl:4

Irwin CSE331 PSU

Advantages of High-Level Languages ?

Higher-level languages

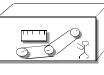
As a result, very little programming is done today at the assembler level

5DV008 20101109t:2A sl:5

Advantages of High-Level Languages ?

Higher-level languages

- Allow the programmer to think in a more natural language and for their intended use (Fortran for scientific computation, Cobol for business programming, Lisp for symbol manipulation, Java for web programming, ...)
- Improve programmer productivity more understandable code that is easier to debug and validate
- Improve program maintainability
- Allow programs to be independent of the computer on which they are developed (compilers and assemblers can translate high-level language programs to the binary instructions of any machine)
- Emergence of optimizing compilers that produce very efficient assembly code optimized for the target machine
- As a result, very little programming is done today at the assembler level


5DV008 20101109t:2A sl:6

Irwin CSE331 PSU

Machine Organization

- Capabilities and performance characteristics of the principal Functional Units (FUs)
 - e.g., register file, arithmetic-logic unit (ALU), multiplexors, memories, ...
- The ways those FUs are interconnected
 e.g., buses
- Logic and means by which information flow between FUs

is controlled

□ The machine's Instruction Set Architecture (ISA)

5DV008 20101109t:2A sl:7

Irwin CSE331 PSU

Irwin CSE331 PSU

Instruction Set Architecture (ISA)

- □ ISA, or simply architecture the abstract interface between the hardware and the lowest level software that encompasses all the information necessary to write a machine language program, including instructions, registers, memory access, I/O, ...
 - Enables implementations of varying cost and performance to run identical software
- The combination of the basic (user portion of the) instruction set (the ISA) and the operating system interface is called the application binary interface (ABI)
 - Defines a standard for binary portability across computers.

5DV008 20101109t:2A sl:8

Two Kev Principles of Machine Design

- 1. Instructions are represented as numbers and, as such, are indistinguishable from data
- 2. Programs are stored in alterable memory (that can be read or written to) just like data Memory

Stored-program (von Neumann) concept

- Programs can be shipped as files of binary numbers – binary compatibility
- Computers can inherit ready-made software provided they are compatible with an existing ISA – leads industry to align around a small number of ISAs

5DV008 20101109t:2A sl:9

Memory	
Accounting prg (machine code)	
C compiler (machine code)	
Payroll data	
Source code in C for Acct program	

Assembly Language Instructions

- The language of the machine
 - Want an ISA that makes it easy to build the hardware and the compiler (whose job it is to translate programs written in a high level language (like C) to assembly code) while maximizing performance and minimizing cost

Our target: the MIPS ISA

similar to other ISAs developed since the 1980's
used by Broadcom, Cisco, NEC, Nintendo, Sony, ...

Design goals: maximize performance, minimize cost, reduce design time (time-to-market), minimize power consumption, maximize reliability

5DV008 20101109t:2A sl:10

Irwin CSE331 PSU

Irwin CSE331 PSU

RISC - Reduced Instruction Set Computer

RISC philosophy

- fixed instruction lengths
- Ioad-store instruction sets
- limited number of addressing modes
- limited number of operations

□ MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC ...

Instruction sets are measured by how well compilers can use them as opposed to how well assembly language programmers can use them

CISC (C for complex), e.g., Intel x86

5DV008 20101109t:2A sl:11

The Four RISC Design Principles

- 1. Simplicity favors regularity.
- 2. Smaller is faster.
- 3. Make the common case fast.
- 4. Good design demands good compromises.

5DV008 20101109t:2A sl:12

MIPS (RISC) Design Principles

- Simplicity favors regularity
 - fixed size instructions
 - small number of instruction formats
 - opcode always the first 6 bits

□ Smaller is faster

- limited instruction set
- limited number of registers in register file
- limited number of addressing modes

Make the common case fast

- arithmetic operands from the register file (load-store machine)
- allow instructions to contain immediate operands
- Good design demands good compromises
 - three instruction formats

5DV008 20101109t:2A sl:13

Irwin CSE331 PSU

MIPS Arithmetic Instruction

MIPS assembly language arithmetic statement

add \$t0, \$s1, \$s2

sub \$t0, \$s1, \$s2

Each arithmetic instruction performs only one operation
 Each arithmetic instruction specifies exactly three operands

destination \leftarrow source1 op source2


Operand order is fixed (the destination is specified first)

□ The operands are contained in the datapath's register file (\$t0, \$s1, \$s2)

5DV008 20101109t:2A sl:14

MIPS Arithmetic Instruction

MIPS assembly language arithmetic statement add \$t0, \$s1, \$s2

Each arithmetic instruction performs only one operation

■ Each arithmetic instruction specifies exactly three operands destination ← source1 op source2

Operand order is fixed (the destination is specified first)
 The operands are contained in the datapath's register file (\$t0, \$s1, \$s2)

Irwin CSE331 PSU

Compiling More Complex Statements

□ Assuming variable b is stored in register \$s1, c is stored in \$s2, and d is stored in \$s3 and the result is to be left in \$s0, what is the assembler equivalent to the C statement h = (b - c) + d

5DV008 20101109t:2A sl:16

Irwin CSE331 PSU

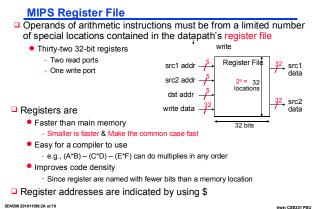
Compiling More Complex Statements

□ Assuming variable b is stored in register \$s1, c is stored in \$s2, and d is stored in \$s3 and the result is to be left in \$s0, what is the assembler equivalent to the C statement h = (b - c) + d

sub \$t0, \$s1, \$s2
add \$s0, \$t0, \$s3

5DV008 20101109t:2A sl:17

MIPS Register File


- Operands of arithmetic instructions must be from a limited number of special locations contained in the datapath's register file
 - Thirty-two 32-bit registers
 - Two read ports
 - One write port

Registers are

- Faster than main memory
 - Smaller is faster & Make the common case fast
- Easy for a compiler to use
- e.g., (A*B) (C*D) (E*F) can do multiplies in any order
- Improves code density
- Since register are named with fewer bits than a memory location
- Register addresses are indicated by using \$

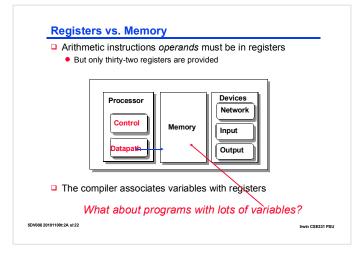
5DV008 20101109t:2A sl:18

Irwin CSE331 PSU

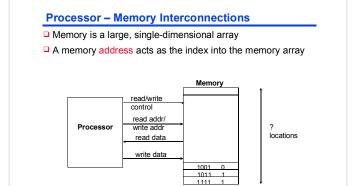
5DV00

Nick Name	Register Number	Usage	Preserve on call?
\$zero	0	constant 0 (hardware)	n.a.
\$at	1	reserved for assembler	n.a.
\$v0 - \$v1	2-3	returned values	no
\$a0 - \$a3	4-7	arguments	yes
\$t0 - \$t7	8-15	temporaries	no
\$s0 - \$s7	16-23	saved values	yes
\$t8 - \$t9	24-25	temporaries	no
\$k0 - \$k1	26-27	reserved for OS	n.a.
\$gp	28	global pointer	yes
\$sp	29	stack pointer	yes
\$fp	30	frame pointer	yes
\$1522A \$1:20	31	return addr (hardware)	yes,

Registers vs. Memory

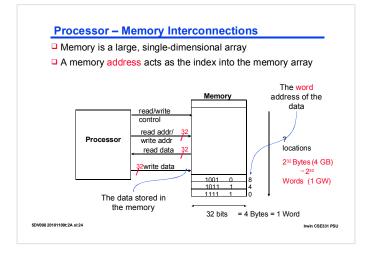

• Arithmetic instructions *operands* must be in registers But only thirty-two registers are provided


Processor		Devices
Control	Memory	Input
Datapath		Output

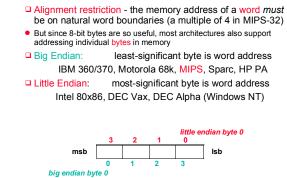

The compiler associates variables with registers What about programs with lots of variables?

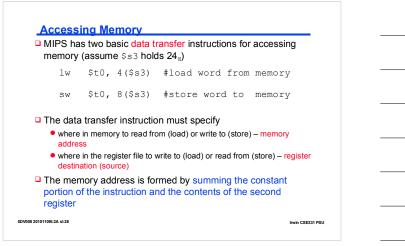
Irwin CSE331 PSU

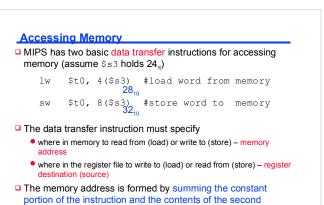
5DV008 20101109t:2A sl:21



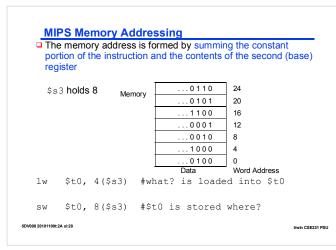
5DV008 20101109t:2A sl:23


32 bits

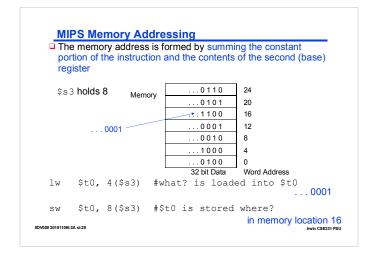



Word Addresses vs Byte Addresses

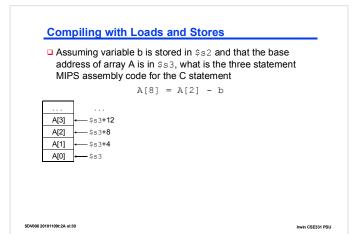
5DV008 20101109t:2A sl:25


Invia CSE331 PSU





register

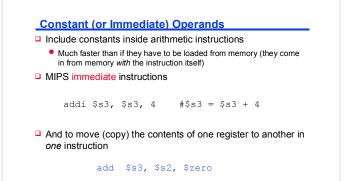

5DV008 20101109t:2A sl:27

Compiling with Loads and Stores

address of array A MIPS assembly co	is in \$s3, de for the	d in \$s2 and that the base what is the three stateme C statement A[2] - b	
A[3] + \$\$\$3+12 A[2] + \$\$\$3+8 A[1] + \$\$\$3+4 A[0] + \$\$\$3	sub	<pre>\$t0, 8(\$s3) \$t0, \$t0, \$s2 \$t0, 32(\$s3)</pre>	
5DV008 20101109t:2A sl:31			Irwin CSE331 PSU

 A[3] ← A[2] ←	 — \$s4+1 — \$s4 +8	12	in regi in \$s1	ning that the base address of array A is ister \$s4, and variables b, c, and i are ., \$s2, and \$s3, respectively, complete IPS assembly code for the C statement
A[1] ← A[0] ←	— \$s4 +4 — \$s4	1		c = A[i] - b
add	\$t1,	\$s3,	\$s3	#array index i is in \$s3
add	\$t1,	\$t1,	\$t1	<pre>#temp reg \$t1 holds 4*i</pre>

A[2] ← A[1] ←	 \$s4+ \$s4+ \$s4+ \$s4	12 8	in regi in \$s1	hing that the base address of array A is ster \$s4, and variables b, c, and i are , \$s2, and \$s3, respectively, complete PS assembly code for the C statement c = A[i] - b
add	\$±1.	Se3.	\$s3	#array index i is in \$s3
add				#temp reg \$t1 holds 4*i
				#addr of A[i] now in \$t1
aaa				
lw	\$t0,	0(\$t	1)	

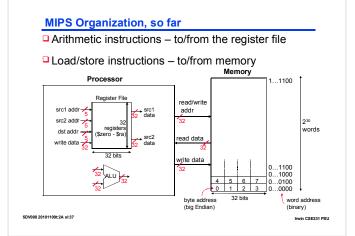

Dealing with Constants

- Small constants are used quite frequently (50% of operands in many common programs)
 e.g., A = A + 5;
 - A = A + 5; B = B + 1; C = C - 18;
 - 0 0 10,
- Solutions? Why not?
 - Create hard-wired registers (like \$zero) for constants like 1, 2, 4, 10, ...
 - Put "typical constants" in memory and load them
 - ...
- How do we make this work? How do we Make the common case fast !

5DV008 20101109t:2A sl:34

Irwin CSE331 PSU

Irwin CSE331 PSU


There is no subi instruction, can you guess why not?

5DV008 20101109t:2A sl:35

MIPS Instructions. so far

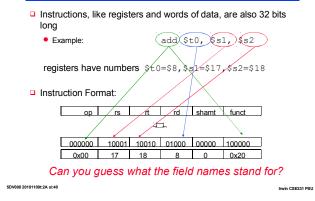
Category	Instr	Example	Meaning
Arithmetic	add	add \$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3
	subtract	sub \$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3
	add immediate	addi \$s1, \$s2, 4	\$s1 = \$s2 + 4
Data transfer	load word	lw \$s1, 32(\$s2)	\$s1 = Memory(\$s2+32)
	store word	sw \$s1, 32(\$s2)	Memory(\$s2+32) = \$s1

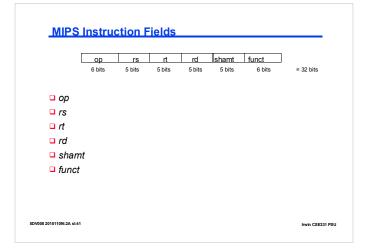
5DV008 20101109t:2A sl:36

Hex	Binary	Decimal	ary Representation
0x00000000	00000	0	
0x00000001	00001	1	
0x00000002	00010	2	2 ³¹ 2 ³⁰ 2 ²⁰ 2 ³ 2 ² 2 ¹ 2 ⁰ bit weight
0x0000003	00011	3	31 30 29 3 2 1 0 bit position
0x00000004	00100	4	
0x0000005	00101	5	111 1111 bit
0x0000006	00110	6	
0x0000007	00111	7	1000 0000 - 1
0x0000008	01000	8	
0x0000009	01001	9	
			2 ³² - 1
0xFFFFFFFC	11100	2 ³² - 4	
0xFFFFFFD	11101	2 ³² - 3	
0xFFFFFFFE	11110	2 ³² - 2	
OXEFEFFFFF	11111	2 ³² - 1	Irwin CSF3

- Instructions, like registers and words of data, are also 32 bits long
 - Example: add \$t0, \$s1, \$s2

registers have numbers \$t0=\$8,\$s1=\$17,\$s2=\$18

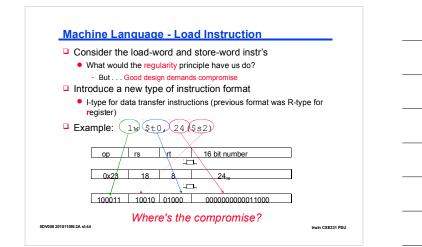

Instruction Format:

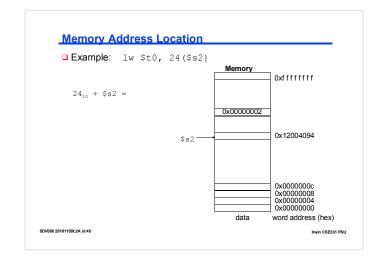


000000 10001 10010 01000 00000 100000

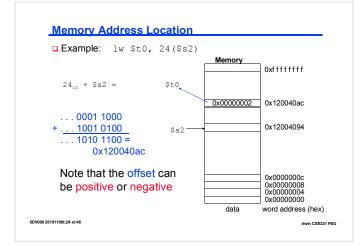
Can you guess what the field names stand for?

Machine Language - Arithmetic Instruction

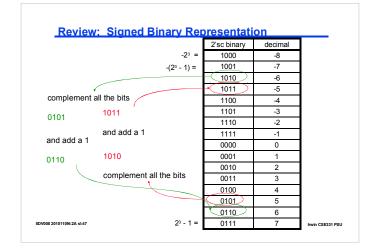


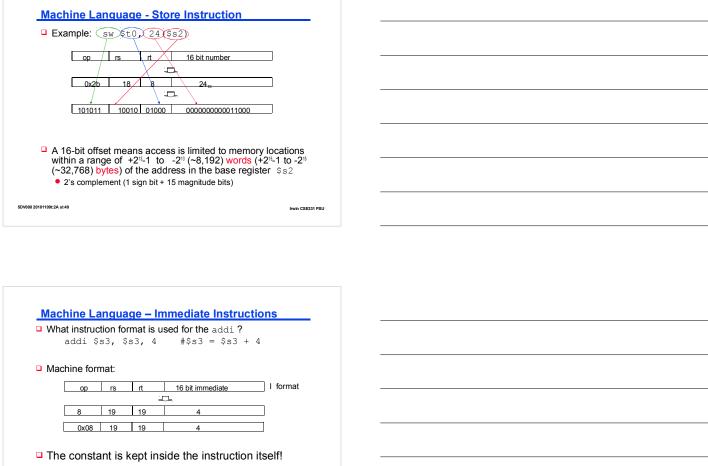


L	OD 6 bits	rs 5 bits	rt 5 bits	rd 5 bits	shamt	funct	= 32 bits	
	0 013	5 615	0 013	5 615	0 013	0 010	- 52 Dits	
🗆 ор	opco	de indi	cating o	peratio	n to be p	performed	ł	
□ rs	regis	ter file a	address	of the	first <mark>s</mark> ou	rce opera	and	
🗖 rt	regis	register file address of the second source operand						
🗖 rd	regis	ter file a	address	of the	result's	destinatio	n	
shamt	shift	amoun	t (for sh	ift instru	uctions)			
funct								


Machine Language - Load Instruction


Wach		quay	- LUC		
• W	hat would t But Go duce a no	the regulation the regulation of the regulation	arity princ demands of instru	store-word instr's iple have us do? compromise uction format ons (previous format was F) tupo for
	gister)			chevious ionnut was i	(type for
	nple: lw	\$t0,	24(\$s2	2)	
]	0D	rs	rt	16 bit number	
		10			
]	0x23	18	8	24	
			Ь.	L.	_
[100011	10010	01000	000000000011000	
5DV008 20101109t:2A sl:43		Whe	ere's the	compromise?	Irwin CSE331 PSU



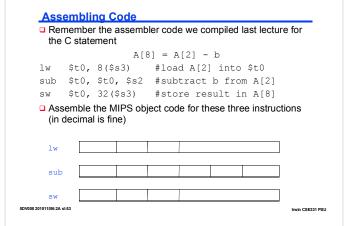


Mach	ine Lan	quage	e - Stoi	re Instruction	
Exa Exa	mple: sw	\$t0,	24(\$s	2)	
	ор	rs	rt	16 bit number	
	0x2b	18	8	24 ₁₀	
	101011	10010	01000	000000000011000	
with (~32	in a range 2,768) <mark>byt</mark>	e of +2 <mark>es</mark>) of t	¹³ -1 to he addro	s is limited to memor -2 ¹³ (~8,192) words (ess in the base regis 5 magnitude bits)	+215-1 to -215
5DV008 20101109t:2A sl:48					Irwin CSE331 PSU

Irwin CSE331 PSU

- So must use the I format Immediate format
- Limits immediate values to the range +2¹⁵-1 to -2¹⁵

5DV008 20101109t:2A sl:50

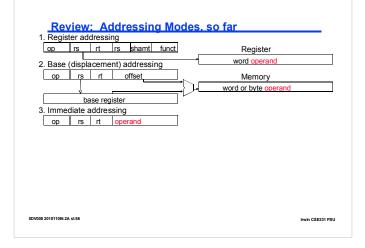

What	t instructio	on format is	used for th	e addi ?		
Ģ	addi \$s	3 p $(3 p)$) #\$s3	= \$s3 +	4	
		\setminus /	$\langle \rangle$			
Mach	nine forma	at:				
Γ	op	rs rt	16 bit im	mediate	I forn	nat
		7 \ .				
[8	19 19	4			
Г	0x08	19 19	4			
-						
🗆 The	constan	t is kept ir	nside the	instruction	n itselfl	
		e the I form				
- 5	o must us	e the i torm	at – Immed	liate format		
• Li	mits imme	ediate value	es to the rar	1ge +2 ¹⁵ −1	to -215	

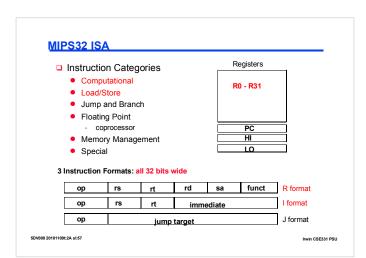

Instruction Format Encoding, so far

- □ Can reduce the complexity with multiple formats by keeping them as similar as possible
- First three fields are the same in R-type and I-type
- $\hfill\square$ Each format has a distinct set of values in the op field

Instr	Frmt	ор	rs	rt	rd	shamt	funct	address
add	R	0	reg	reg	reg	0	32 _{ten}	NA
sub	R	0	reg	reg	reg	0	34 _{ten}	NA
addi	Ι	8 _{ten}	reg	reg	NA	NA	NA	constant
lw	Ι	35 _{ten}	reg	reg	NA	NA	NA	address
sw	Ι	43 _{ten}	reg	reg	NA	NA	NA	address

5DV008 20101109t:2A sl:52




Review: MIPS Instructions. so far

Category	Instr	Op Code	Example	Meaning	
Arithmetic (R format)	add	0 & 20 _{hex}	add \$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3	
	subtract	0 & 22 _{hex}	sub \$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3	
Arithmetic (I format)	add immediate	8 _{hex}	addi \$s1, \$s2, 4	\$s1 = \$s2 + 4	
Data transfer (I format)	load word	23 _{hex}	lw \$s1, 100(\$s2)	\$s1 = Memory(\$s2+100)	
	store word	2b _{hex}	sw \$s1, 100(\$s2)	Memory(\$s2+100) = \$s1	

5DV008 20101109t:2A sl:55

Irwin CSE331 PSU

. . .