5DV008 Computer Architecture Umeå University Department of Computing Science Stephen J. Hegner

Topic 1: Introduction

These slides are mostly taken verbatim, or with minor changes, from those prepared by

Mary Jane Irwin (www.cse.psu.edu/~mji)

of The Pennsylvania State University [Adapted from *Computer Organization and Design, 4th Edition,* Patterson & Hennessy, © 2008, MK]

5DV008 20091107 ch:01 sl:1

Hegner UU

Key to the Slides

- The source of each slide is coded in the footer on the right side:
 - Irwin CSE331 = slide by Mary Jane Irwin from the course CSE331 (Computer Organization and Design) at Pennsylvania State University.
 - Irwin CSE431 = slide by Mary Jane Irwin from the course CSE431 (Computer Architecture) at Pennsylvania State University.
 - Hegner UU = slide by Stephen J. Hegner at Umeå University.

Hegner UU

Quote for the Day

"I got the idea for the mouse while attending a talk at a computer conference. The speaker was so boring that I started daydreaming and hit upon the idea."

Doug Engelbart

http://en.wikipedia.org/wiki/Douglas_Engelbart

5DV008 20091107 ch:01 sl:3

5DV008 20091107 ch:01 sl:2

Irwin CSE331 PSU

Intel 4004 Microprocessor

Technology scaling road map (ITRS)

Year	2004	2006	2008	2010	2012
Feature size (nm)	90	65	45	32	22
Intg. Capacity (BT)	2	4	6	16	32

Fun facts about 45nm transistors

- 30 million can fit on the head of a pin
- You could fit more than 2,000 across the width of a human hair
- If car prices had fallen at the same rate as the price of a single transistor has since 1968, a new car today would cost about 1 cent

Irwin CSE331 PSU

5DV008 20091107 ch:01 sl:7

Ē	Another	Example of Moore's Law Impact
		DRAM capacity growth over 3 decades
	10000000	16
	1000000	256M
pacity	100000	64M 512W
bit cap	10000	4M 16M
¥	1000	
	100	64K 256K
	10 پ ^{ېړ}	~ 101 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
11/	/23/09	Year of introduction 8 Invin CSE431 PSU
30 9000 200	a 1 107 GILUT \$1:0	

5DV008 20091107 ch:01 sl:9

A Sea Change is at Hand

- The power challenge has forced a change in the design of microprocessors
 - Since 2002 the rate of improvement in the response time of programs on desktop computers has slowed from a factor of 1.5 per year to less than a factor of 1.2 per year
- As of 2006 all desktop and server companies are shipping microprocessors with multiple processors – cores – per chip

Product	AMD Barcelona	Intel Nehalem	IBM Power 6	Sun Niagara 2
Cores per chip	4	4	2	8
Clock rate	2.5 GHz	~2.5 GHz?	4.7 GHz	1.4 GHz
Power	120 W	~100 W?	~100 W?	94 W

Plan of record is to double the number of cores per chip 11/2 there generation (about every two years)

11/20/00	10	
DV000 00004407 -1-04 -1-40	10	Irwin CSE431 PS
DV008 20091107 Ch:01 SI:10		

Performance Metrics

Purchasing perspective

- given a collection of machines, which has the
- best performance ?
 - least cost ?
- best cost/performance?
- Design perspective
 - faced with design options, which has the
 - best performance improvement ?
 - least cost ?
 - best cost/performance?
- Both require
 - basis for comparison
 - metric for evaluation
- Our goal is to understand what factors in the architecture contribute to overall system performance and the relative importance (and cost) of these factors

11/23/09	
5DV008 20091107 ch:01	sl:12

Irwin CSE431 PSU

Throughput versus Response Time

Response time (execution time) – the time between the start and the completion of a task

- Important to individual users
- □ Throughput (bandwidth) the total amount of work done in a given time
 - Important to data center managers

Will need different performance metrics as well as a different set of applications to benchmark embedded and desktop computers, which are more focused on response time, versus servers, which are more focused on throughput

13

Irwin CSE431 PSU

Irwin CSE431 PSU

11/23/09 5DV008 20091107 ch:01 sl:13

Defining (Speed) Performance	
To maximize performance, need to minimize execut time	tion
$performance_x = 1 / execution_time_x$	
If X is n times faster than Y, then	
$\frac{\text{performance}_{x}}{\text{performance}_{y}} = \frac{\text{execution}_{time_{y}}}{\text{execution}_{time_{x}}} = n$	
Decreasing response time almost always improves throughput	
11/23/09 14	Inwin CSE431 PSU

11/23/09 5DV008 20091107 ch:01 sl:14

A Relative Performance Exan	ople

If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds, how much faster is A than B?

Irwin CSE431 PSU

If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds, how much faster is A than B?

We know that A is n times faster than B if

performance _A	_	execution_time _B	= n
performance _B	-	execution_time _A	- 11

The performance ratio is 15

 $\frac{15}{10} = 1.5$

So A is 1.5 times as fast as B.

11/23/09 5DV008 20091107 ch:01 sl:16

16

Irwin CSE431 PSU

Improving Performance Example

, , , , , , , , , , , , , , , , , , , ,	- 1 5 -	
11/23/09	19	
DV008 20091107 ch:01 sl:19		Irwin CSE431

PSU

Irwin CSE431 PSU

Irwin CSE431 PSU

Improving Performance Example

A program runs on computer A with a 2 GHz clock in 10 seconds. What clock rate must computer B run at to run this program in 6 seconds? Unfortunately, to accomplish this, computer B will require 1.2 times as many clock cycles as computer A to run the program.

> CPU time_A = <u>CPU clock cycles_A</u> clock rate_A

 $CPU \ clock \ cycles_{A} = 10 \ sec \ x \ 2 \ x \ 10^{9} \ cycles/sec$ $= 20 \ x \ 10^{9} \ cycles$ $CPU \ time_{B} = \frac{1.2 \ x \ 20 \ x \ 10^{9} \ cycles}{clock \ rate_{B}}$

 $\frac{\text{clock rate}_{\text{B}}}{11/23/09} = \frac{1.2 \times 20 \times 10^9 \text{ cycles}}{6 \text{ seconds}} = 4 \text{ GHz}$

Clock Cycles per Instruction

- Not all instructions take the same amount of time to execute
 - One way to think about execution time is that it equals the number of instructions executed multiplied by the average time per instruction
- # CPU clock cycles for a program = # Instructions x Average clock cycles for a program x per instruction
- Clock cycles per instruction (CPI) the average number of clock cycles each instruction takes to execute
 - A way to compare two different implementations of the same ISA

		CPI for this instruction class		
		Α	В	С
11/22/00	CPI	1	2	3
5DV008 20091107 ch:01 sl:21				21

Using the Performance Equation

	atton	
Computers A and B implement th A has a clock cycle time of 250 p 2.0 for some program and compu- time of 500 ps and an effective C program. Which computer is fast	le same ISA. Con s and an effective iter B has a clock PI of 1.2 for the sa ter and by how mu	puter CPI of cycle ame ch?
11/23/09		
V008 20091107 ch:01 sl:22	22	Irwin CSE431 PSU

Using the Performance Equation

- Computers A and B implement the same ISA. Computer A has a clock cycle time of 250 ps and an effective CPI of 2.0 for some program and computer B has a clock cycle time of 500 ps and an effective CPI of 1.2 for the same program. Which computer is faster and by how much?
- Each computer executes the same number of instructions, *I*, so

CPU time_A = $I \times 2.0 \times 250 \text{ ps} = 500 \times I \text{ ps}$

CPU time_B = $I \times 1.2 \times 500 \text{ ps} = 600 \times I \text{ ps}$

Clearly, A is faster ... by the ratio of execution times

performance _A _	execution_time _B	600 x / ps	- 1 2
performance _B	execution_time _A	500 x / ps	- = 1.2
11/23/09 5DV008 20091107 ch:01 sl:23		23	Irwin CSE431 PSU

Effective (Average) CPI

Computing the overall effective CPI is done by looking at the different types of instructions and their individual cycle counts and averaging

Overall effective CPI = $\sum_{i=1}^{11} (CPI_i \times IC_i)$

- Where IC_i is the count (percentage) of the number of instructions of class i executed
- CPI_i is the (average) number of clock cycles per instruction for that instruction class
- n is the number of instruction classes
- The overall effective CPI varies by instruction mix a measure of the dynamic frequency of instructions across one or many programs

1	11/2	23/1	78	
5DV008	2009	1107	ch:01	sl:24

Irwin CSE431 PSU

Irwin CSE431 PSU

5DV008 20091107 ch:01 sl:25

Determinates of CPU Performance

CPU time =	Instruction_	_count x	CPI x	clock_cycle
------------	--------------	----------	-------	-------------

		Instruction_ count	CPI	clock_cycle	
	Algorithm				
	Programming language				
	Compiler				
	ISA				
	Core organization				
	Technology				
11/23/09 5DV008 20091107 ch:0	1 sl:26			26	Irwin CSE431 PS

Deterr	ninates of	CPU Perf	ormanc	e	
PU tin	ne = Instru	uction_coun	t x CPI	x clock_cyd	cle
Γ		Instruction_ count	CPI	clock_cycle]
A	Algorithm	x	X		
F	Programming anguage	x	X		
C	Compiler	x	X		
I	SA	x	X	x	
(Core organization		X	x	
٦	Fechnology			X	1
23/09 1107 ch:01 sl	:27			27	Irwin C

5D

A Simple Example

Ор	Freq	CPI _i	$Freq \ x \ CPl_{i}$
ALU	50%	1	
Load	20%	5	
Store	10%	3	
Branch	20%	2	
			$\Sigma =$

□ How much faster would the machine be if a better data cache reduced the average load time to 2 cycles?

How does this compare with using branch prediction to shave a cycle off the branch time?

28

Irwin CSE431 PSU

What if two ALU instructions could be executed at once?

1	1	23	/0	9

5DV008 20091107 ch:01 sl:28

Simple E	xampl	9					
Ор	Freq	CPI _i	Freq	CPI			
ALU	50%	1		.5	.5	.5	.25
Load	20%	5		1.0	.4	1.0	1.0
Store	10%	3		.3	.3	.3	.3
Branch	20%	2		.4	.4	.2	.4
			Σ=	2.2	1.6	2.0	1.95
	atorwoul	ld tha n	acching	ho if	a hatt	or dat	

How much faster would the machine be it a better data cache reduced the average load time to 2 cycles?

□ How does this compare with using branch prediction to shave a cycle off the branch time?

CPU time new = 2.0 x IC x CC so 2.2/2.0 means 10% faster □ What if two ALU instructions could be executed at once?

11/23/09 CPU time new = 1.95 x IC x CC so 2.2/1.95 means 12.8% faster Irwin CSE431 PSU 5DV008 20091107 ch:01 sl:29

Workloads and Benchmarks

Benchmarks – a set of programs that form a "workload" specifically chosen to measure performance

SPEC (System Performance Evaluation Cooperative) creates standard sets of benchmarks starting with SPEC89. The latest is SPEC CPU2006 which consists of 12 integer benchmarks (CINT2006) and 17 floating-point benchmarks (CFP2006).

www.spec.org

There are also benchmark collections for power workloads (SPECpower_ssj2008), for mail workloads (SPECmail2008), for multimedia workloads (mediabench), ...

11/23/09

5DV008 20091107 ch:01 sl:30

Irwin CSE431 PSU

SPEC CINT2006 on Barcelona (CC = 0.4 x 10⁹)

Name	ICx10 ⁹	CPI	ExTime	RefTime	SPEC ratio
perl	2,1118	0.75	637	9,770	15.3
bzip2	2,389	0.85	817	9,650	11.8
gcc	1,050	1.72	724	8,050	11.1
mcf	336	10.00	1,345	9,120	6.8
go	1,658	1.09	721	10,490	14.6
hmmer	2,783	0.80	890	9,330	10.5
sjeng	2,176	0.96	837	12,100	14.5
libquantum	1,623	1.61	1,047	20,720	19.8
h264avc	3,102	0.80	993	22,130	22.3
omnetpp	587	2.94	690	6,250	9.1
astar	1,082	1.79	773	7,020	9.1
xalancbmk	1,058	2.70	1,143	6,900	6.0
Geometi	ric Mean				11.7

20091107 ch:01 sl:31

Comparing and Summarizing Performance

- How do we summarize the performance for benchmark set with a single number?
 - First the execution times are normalized giving the "SPEC ratio" (bigger is faster, i.e., SPEC ratio is the inverse of execution time)
 - The SPEC ratios are then "averaged" using the geometric mean (GM)

$$GM = n / \prod_{i=1}^{n} SPEC ratio_{i}$$

Guiding principle in reporting performance measurements is reproducibility – list everything another experimenter would need to duplicate the experiment (version of the operating system, compiler settings, input set used, specific computer configuration (clock rate, cache sizes and speed, memory size and speed, etc.)) 11/23/09

5DV008 20091107 ch:01 sl:32

Irwin CSE431 PSU

Growth in Cell Phone Sales (Embedded)

embedded growth >> desktop growth

Where else are embedded processors found?
11/23/09
34
CSE331 W01.34

Irwin Fall 09 PSU