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Abstract

In this master thesis project a class of tree grammars called “Branch-

ing tree grammar” has been implemented into the TREEBAG system.

A tree grammar is a device that generates a language of mathematical

trees, according to rules specified by the user. These trees can then be

transformed into for example pictures, by other components in TREE-

BAG. The branching tree grammar, which is a class of grammars known

from literature, can generate more advanced languages than the grammars

previously implemented in TREEBAG.

The implementation uses an approach of analyzing the branching tree

grammar, and replacing it with a series of simpler components, namely

regular tree grammars and top-down tree transducers. These components,

when used together in a sequence transforming each others’ output, will

generate exactly the same language as the specified branching tree gram-

mar.

Regular tree grammars and top-down tree transducers were already

implemented in TREEBAG. Therefore the core implementation of branch-

ing tree grammar consists of an algorithm that reads a file that specifies

a branching tree grammar, translates it into the equivalent series of sim-

pler components, and outputs files describing regular tree grammars and

top-down tree transducers. These files are then processed by the existing

TREEBAG-components.

As a basis for the translation an algorithm has been used, which was

taken from a constructive proof, in which it was proved that for each

branching tree grammar, there exists a sequence of a regular tree grammar

and top-down tree transducers, which generates the same language.

However, in order to get an implementation that obeys feasible time

requirements, and which is also fairly easy to use, the given algorithm

to obtain the regular tree grammar and transducers had to be heavily

reconstructed. This report describes at a relatively formal level the given

translation algorithm as well as several improved versions of the algorithm.

The advantages of the different algorithms are discussed, and some proofs

and proof sketches for the correctness of the improved algorithms are also

included.
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1 Branching Tree Grammars in TREEBAG

1 Introduction

This master thesis is a study within the area of tree based picture generation. A
picture generator in this area usually consists of two parts: a tree generator and
an algebra. The tree generator, which can be one of the standard tree grammars
from formal language theory, generates a set of trees, called a tree language. The
algebra then transforms trees into pictures, typically by interpreting leaves as
certain pictures and internal nodes as graphical transformations and/or pictures.

TREEBAG is a framework in which a user can, among other things, create their
own tree grammars and algebras to build picture generators. The subsection
TREEBAG below gives an more detailed introduction to what TREEBAG is
and how it works.

The objective of this master thesis is, briefly stated, to implement a new class
of tree grammar into the TREEBAG system. The tree grammar in question
is the branching synchronization tree grammar with nested tables, which is
abbreviated as branching tree grammar.

The master thesis also involves some theoretical work. The implementation is to
be based on a certain algorithm presented in [DE04], and this algorithm requires
some modifications before it can be used in the implementation, in a reasonable
manner. See Section 1.3 for details regarding this.

The background to the project is a book [Dre06] written by my master thesis
supervisor Frank Drewes. This book introduces, at a formal level, many tree
based picture generators, some of them using the branching tree grammar. All
of the major generators presented in the book are implemented in TREEBAG,
and the implementation of the branching tree grammar has been part of this
master thesis project.

Section 1.2 will describe what kind of pictures the branching tree grammar
is particularly good for, and compare its power with the grammars already
existing in TREEBAG. Section 1.3 and 1.4 summarize further the objectives
of the master thesis, and important choices made during the work. Section 1.5
explains the organization of the remaining chapters of this report.

1.1 TREEBAG, tree grammars and algebras

TREEBAG is a system written in Java, in which a user can create and combine
different kinds of components to assemble, among other things, picture gener-
ators. Typically the user uses one of the predefined classes of grammars and
algebras, in which case they write the rules in a text-file. One can also add new
classes to TREEBAG, as has been done in this thesis, in which case Java code
implementing the class is written.

Four major kinds of components are used:

• tree grammars, which create trees, often triggered by a user through the
GUI of TREEBAG,

• tree transformations that take trees as input and output other trees,
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• algebras that take trees as input and return pictures, which can be sent
to a display, and

• displays that draw pictures on the screen.

The trees used here are rooted trees, which means that one particular node in
the tree is specified as root. A tree also has the property that each node in the
tree has a symbol assigned to it, which is taken from a finite set specified in the
grammar. This symbol is what the typical algebra uses to select the picture or
transformation to apply. For a more formal definition of trees, grammars and
algebras, see Chapter 2.

For some examples of generated pictures, see Chapter 2. Most examples of
pictures in this report are pictures resembling trees and plants, but this is far
from everything such grammars are suitable for. Things like tiled patterns and
mathematical objects like fractals are other types of pictures these devices are
particularly appropriate for.

TREEBAG can be downloaded from http://www.cs.umu.se/~drewes/treebag,
see also http://www.cs.umu.se/~drewes/picgen.

1.2 Properties of the branching tree grammar

The first thing one might ask is what the branching tree grammar is useful for.
What does it do that makes it worthwhile to implement?

Different kinds of tree grammars can create different kinds of languages. A
simple grammar like a regular tree grammar is easier to use than the more
general ones, but on the other hand it is more limited in what languages it can
generate.

Branching tree grammars are particularly noted for their ability to generate
trees (and thus, with the help of algebras, pictures) with certain symmetries.
For example, a tiled pattern resembling a carpet, with horizontal and vertical
symmetry may be simple to create with a branching tree grammar, very complex
to create with a ET0L-grammar and even impossible to create with a regular
tree grammar. See the different sections of Chapter 2 for formal definitions of
these classes of grammars, and Section 2.7 for further discussion comparing their
generative power.

One way to increase the generative power, without creating new types of gram-
mars, is to combine existing components. For example, one can combine a
regular tree grammar with a top-down tree transducer, which is a kind of tree
transformation. In this case the input of the transducer is the output from the
regular tree grammar, and the output of the transducer is seen as the output of
the composed component. The result is a tree grammar which can generate a
more complex language than the regular tree grammar alone.

The languages that can be generated with a regular tree grammar, in composi-
tion with n top-down tree transducers, are actually the same as those that can
be generated with branching tree grammars of table depth n. The concept of
table depth will be defined along with the rest of the branching tree grammar
in Section 2.5. The equality mentioned is a result from [DE04] and is stated
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formally in Section 3.1. This equality is the background to the approach used
in this thesis, as is explained in the next subsection.

Although the implementation of branching tree grammars does not add any
generative power to TREEBAG, it is still worthwhile, since for most users it is
likely to be a much simpler task to specify a branching tree grammar, than to
specify the tree grammar and transducers otherwise needed.

1.3 What algorithm to use, and what modifications are
necessary

The implementation of the branching tree grammar should be based on an al-
gorithm described in [DE04] which transforms a branching tree grammar into
a regular tree grammar and a series of top-down tree transducers, which when
used in composition generate a language equal to that of the branching tree
grammar. Regular tree grammars and top-down tree transducers are compo-
nents that already exists in TREEBAG, and thus can be used directly in the
implementation.

An objective of the master thesis is also to improve this given algorithm, in
such a way that it transforms the branching tree grammar to more efficient
and easier to use components, which still produce the same tree language. The
improvement of the algorithm has been a major part of this master thesis.

The problem with using the given algorithm is that although the correct lan-
guage will be generated, the resulting components will work way too slow, and
many derivations will get stuck and not generate any tree. The latter is irrele-
vant in theory but unacceptable in practice. Another problem is that the same
output tree might appear many times when enumerating all possibly derivations.

More specifically the problem lies in the trees that are sent between the different
components in the composition emulating the branching tree grammar. These
trees will often be very large, thought most of the branches will be ignored in
later transformations.

Thus, for improving the algorithm, one has to identify when unnecessary branches
are created, and modify the components so that such branches are replaced with
leaves immediately.

1.4 Why using the approach of translating branching tree
grammar into other components?

An alternative way of implementing the branching tree grammar in TREEBAG
would be to ignore the transformation to other components altogether, and
implement the branching tree grammar from scratch. This could be done using
procedures directly derived from the formal definition of the derived language of
a branching tree grammar. This approach has not been followed in this master
thesis, for several reasons. The most important ones are listed below.
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• Using the transformation approach does not only add the branching tree
grammar component to TREEBAG. The feature of transforming a branch-
ing tree grammar to other components, which may be of interest for the
more theoretically minded user, comes as a spin-off. As the components
are actually generated as valid TREEBAG components the user may study
them individually.

• The predefined TREEBAG components regular tree grammar and top-
down tree transducer have gone through much testing, and optimization
for speed and avoidance of derivations ending in undefined results, see for
example [Vik04]. Thus, if the conversion of the branching tree grammar
into practically feasible components is successful, the implementation au-
tomatically can benefit from the optimization already done to the regular
tree grammar and top-down tree transducers.

The possible disadvantage of using the transformation approach is that it may
perhaps never become as efficient as a direct implementation. Maybe there are
some branching tree grammars which can be used to derive trees in polynomial
time, with respect to tree size, while no equivalent composition of tree trans-
ducers can do it in less than exponential time. During the work on this master
thesis, it has come to appear quite likely that this is not the case, and thus
the method of transforming branching tree grammars to other components is to
prefer.

The definition of branching tree grammars in [DE04] is slightly less general than
the variant in [Dre06]. Still, both definitions are equivalent in the sense that
a grammar of one kind can always be simulated by a grammar of the other
kind, possibly with a larger table depth. Since the more general version is to be
implemented, the algorithm given in [DE04] also has to be modified to handle
this version. See the beginning of Chapter 3 for a more detailed explanation.

1.5 Organization of the remaining chapters

In the second chapter of this report, definitions are given for the different com-
ponents, together with illustrating examples. These definitions are needed later
in the report, in particular for Chapter 3 which describes formally the improve-
ments done to the given algorithm. Chapter 3 also includes proofs and proof
sketches showing that the improvements done are only improvements to effi-
ciency and usability, and do not change the generated tree language.

Chapter 4 describes the implementation at a rather high level. It mainly de-
scribes how the user GUI commands are handled and how the interaction be-
tween the branching tree grammar component and the regular tree grammar
and tree transducer components is done. This information is perhaps most use-
ful for someone who wants to modify the implementation, but may be useful
also for someone using it.

Chapter 5 summarize the results and discusses the efficiency of the implemented
system. It also includes a list of limitations and possible improvements together
with some discussion and suggestions of how these fixes and improvements could
be made.
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2 Concepts and definitions

This section contains a number of formal definitions that will be needed in later
chapters, especially in Chapter 3, which formalizes the modified construction
used in the implementation. Along with all definitions some illustrating exam-
ples are given. Except when specified otherwise, all definitions are taken from
[Dre06].

Many things from the definitions in [Dre06], that are not necessary for any other
formalism later in this report, are left out in the definitions here. In particular
the definitions of derived languages, which are somewhat lengthy, are in this
report replaced with informal explanations and examples.

In addition supplemental references will be given for some of the defined objects,
some of them being texts available on the Internet, and some of them being older
texts about theory which is the foundation of the theory mentioned here.

2.1 Signatures and trees

In TREEBAG, trees are the basic objects generated by grammars and inter-
preted by algebras. Signatures are the alphabets specifying the symbols the
trees may consist of.

2.1.1 Definitions

A signature is a set Σ of ranked symbols. A ranked symbol is denoted f : n, f
being its name and n its rank, with n ∈ N. The rank is intuitively the exact
number of subtrees that are allowed under a node of the corresponding name
in a tree. Note that the same name f is allowed in more than one symbol of
a signature, with different ranks. When there is no risk of confusion f : n is
denoted with just f . We let Σ(n) denote the subset of Σ consisting of all symbols
with rank n.

Given a signature, we can build trees over it. The set TΣ is intuitively the set of
all trees that can be built using the signature Σ. Formally, TΣ is defined as the
smallest set such that f ∈ Σ(n) and t1, . . . , tn ∈ TΣ implies f [t1, . . . , tn] ∈ TΣ.

The notation f [t1, . . . , tn] means that the root of the tree has the name f , and
its subtrees are the trees t1, . . . , tn. The symbols ’[’, ’]’, and ’,’ are reserved for
this purpose, and will never occur in signatures. The tree f [] is also denoted f .

Trees are also often drawn in a more tree-like way for illustrational purposes.
An example is:

f [g[a, b], a] =

f

g

a b

a
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2.1.2 Examples

Here, a small signature is defined which will be used again in the following
sections to exemplify grammars and algebras.

Let Σex = {stem : 3, leaf : 0}.

Then Σ
(0)
ex = {leaf : 0}, and Σ

(3)
ex = {stem : 3}, and Σ

(n)
ex = ∅ , for n ∈ N\{0, 3}.

TΣex
= {leaf, stem[leaf, leaf, leaf ], stem[stem[leaf, leaf, leaf ], leaf, leaf ], . . .}

is the infinite set of trees over Σex.

2.1.3 More notation for trees

Let Σ be a signature. If R is a set of trees, Σ(R) denotes the set of trees
f [t1, . . . , tn] such that f : n ∈ Σ and t1, . . . , tn ∈ R.

The set TΣ(R) is intuitively the set of trees over Σ that have had some of its
subtrees replaced by trees in R. Formally TΣ(R) is the smallest set of trees such
that R ⊆ TΣ(R) and, for every symbol f : n ∈ Σ and all trees t1, . . . , tn ∈ TΣ(R),
the tree f [t1, . . . , tn] is also in TΣ(R). In particular TΣ(∅) = TΣ.

A set L ⊆ TΣ is called a tree language. A tree generator is any device g defining a
tree language L(g). L(g) is said to be the language generated by g. Examples of
tree generators are regular tree grammars, ET0L tree grammars and branching
tree grammars, which are defined in Sections 2.3 to 2.5.

A notation useful for defining how the tree grammars work is substitution, which
is defined as follows.

Let Xn = {x1 : 0, . . . , xn : 0} be a signature whose symbols we call variables.
The names x1, . . . , xn will from now on be reserved for this purpose only, and
will not appear in ordinary signatures.

Let t, s1, . . . , sn be trees. Then t[[s1, . . . , sn]] denotes the tree t′ obtained by the
simultaneous substitution of si for every occurrence of xi in t. As an inductive
definition,

t′ =

{
si if t = xi ∈ Xn

f [t1[[s1, . . . , sn]], . . . , tk[[s1, . . . , sn]]] if t = f [t1, . . . , tk] /∈ Xn

As an example: if t = f [g[x2, a], x1] then t[[f [x2], g[b, b]]] = f [g[g[b, b], a], f [x2]].

2.2 Collage algebras

To be able to show how tree generators can be used to generate pictures, we
now discuss collage grammars. A collage algebra takes a tree as input and
returns a picture, build pretty much in the same manner as a collage known
from traditional art. Each symbol in the tree is interpreted as a graphical object
or a transformation on such an object, and the collage of all these sub-pictures
makes the output picture.
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A tree grammar combined with a collage algebra, makes a collage grammar. If
the tree grammar is a regular tree grammar (defined in the next section) the
collage grammar is called a context-free collage grammar. Originally, the name
context-free collage grammar was introduced in [HK91], and this definition did
not involve tree grammars. However, this version of the collage grammar has
been shown equivalent to the one based on regular tree grammars [Dre01].

2.2.1 Informal definition

Intuitively a collage algebra is a device that takes as input a tree and returns a
subset of some Euclidean space, usually R

2. This is done by assigning a picture
(which may be empty) to each of the symbols in the input signature. This
picture is simply a subset of the Euclidean space, in practice usually circles,
rectangles and other polygons. In addition, each symbol of rank n is assigned n
geometric transformations. All used transformations are affine transformations,
that is those that preserve straight lines. Examples are rotation, scaling and
translation.

For each node, the algebra will add the corresponding picture to the output set,
after applying to it a chain of transformations taken from the path from the
root to the current node in the tree. More precisely, suppose a node labeled
f ∈ Σ(n) has subtrees t1, . . . , tn and that the algebra assigns the picture C and
transformations τ1, . . . , τn to f . Then the output pictures for the root nodes of
t1, . . . , tn are transformed by τ1, . . . , τn respectively.

The union of the resulting collages, together with C, forms the output picture
for the node labeled f .

The definition can be extended to color collage algebras, by adding color at-
tributes to each picture and adding a new kind of transformation that trans-
forms colors. A formal definition of collage algebras can be found in section 3.1
of [Dre06] for the uncolored case, and section 7.1 in [Dre06] for the colored case.
For a formal definition of algebras in general see [Dre06] page 21.

2.2.2 Example

Let the input signature be Σex from the previous subsection. We define a
corresponding collage grammar as follows:

leaf is interpreted as the picture .

stem is interpreted as the picture plus the following triple of trans-
formations:
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• scale to 60%, rotate 30 degrees counterclockwise, translate 15 points – half
the height of the stem – upward,

• scale to 80%, rotate 5 degrees clockwise, translate 30 points upward and

• scale to 60%, rotate 30 degrees clockwise, translate 20 points upward.

There are three transformations because stem has rank 3. Recall that this
means it always has three subtrees. The first transformation in the triple is
applied to the collage resulting from the evaluation of the first subtree. The
collage obtained from the second and third subtrees are affected by the second
and third transformations, respectively.

For example the following tree:

will be interpreted as the picture in Figure 1, which consists of two pictures
of the stem and five of the leaf. The leaf to the right has been scaled down,
moved upwards 20 points, and then rotated 30 degrees clockwise. Similarly
the whole subtree on the left, consisting of a stem and leaves, has been scaled
down, moved upwards 15 points and rotated counterclockwise. The leaves in this
subtree have been transformed by compositions of two scalings, two rotations
and two translations.

Figure 1: A picture obtained by interpreting a tree using a suitable algebra.
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2.3 Regular tree grammars

One of the most simple devices to create trees over some signature, is the regular
tree grammar. For the full definition see page 30 in [Dre06] or Chapter 2 in
[CDG+97].

2.3.1 Definition

A regular tree grammar is a system g = (N, Σ, R, S) consisting of:

• a finite signature N of symbols with rank 0, called nonterminals,

• a finite output signature Σ, disjoint with N , of symbols called terminals,

• a finite set of rules of the form A → t where A ∈ N and t ∈ TΣ(N) and

• an initial nonterminal S ∈ N .

2.3.2 Informal definition of derivations

Let g = (N, Σ, R, S) be a regular tree grammar as in the definition.

The principle by which it generates trees is the following:

The derivation starts with the initial nonterminal S, which is replaced with the
right-hand side t of some rule S → t in R. The tree t may contain nonterminals
as leaves. One of these nonterminals is then replaced, using again some rule of
the grammar. It does not matter in which order the nonterminals are replaced.

If there are several rules with the same left hand side, the regular tree grammar
is nondeterministic. Then one of these rules is chosen during this derivation
step. The process goes on until no nonterminal remains. The resulting tree is
then one in the language generated by g.

2.3.3 Example derivations and pictures

The regular tree grammar REGex = ({S}, Σex, {S → stem[S, S, S], S → leaf},
S) generates the whole language TΣ. An example of a derivation is shown in
Figure 2.

Using the collage algebra from Section 2.2.2 on this tree, results in the picture
in Figure 3. One of the larger trees – too large to print in the tree-like form
with the stem and leaf nodes – will be interpreted as the picture in Figure 4.
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S →

stem

S S S →

stem

stemS S

SS S

→

stem

stem S S

S S leaf

→

stem

stem S stem

S S leaf S S S

→

stem

stem S stem

S S leaf S S leaf

→ · · · →

stem

stem leaf stem

leaf leaf leaf
leaf leaf leaf

Figure 2: A derivation by the regular tree grammar in the example.

Figure 3: The picture obtained by interpreting the tree derived in Figure 2.
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Figure 4: The picture obtained by interpreting a very large tree from the regular
tree grammar.
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2.4 ET0L tree grammars

The ET0L tree grammar (whose full definition can be found in page 74 in
[Dre06], page 12 in [Dre04] or in [Eng76]) is a generalization of the regular tree
grammar. In the regular tree grammar each nonterminal was derived completely
independent of any other nonterminal. This makes it impossible to use that
device to create for example the language L ⊂ TΣex

, where all trees are balanced.

The concept of ET0L tree grammars originates from the Lindenmayer Systems
[Lin68]. These systems are a large class of grammars that generates strings by
repeatedly and in parallel replacing symbols according to the grammar rules.
The ET0L grammar is one of those systems, and the ET0L tree grammar is a
special case of the ET0L grammar, whose output language is a set of trees.

2.4.1 Definition

An ET0L tree grammar is a system g = (N, Σ, R, t0) consisting of:

• a finite nonterminal signature N of symbols with rank 0, called nontermi-
nals,

• a finite output signature Σ (which may or may not be disjoint with N),
of symbols called terminals,

• a finite set R of tables R1, . . . , Rk for some integer k. Each table is a set
of rules of the same form as for the regular tree grammar, and

• an initial tree t0 ∈ TΣ(N), called the axiom.

2.4.2 Informal definition of derivations

The principle by which the trees are generated is the following:

The derivation starts with the axiom t0. If t0 contains only symbols of the
output signature then t0 is a tree in the generated language of g, denoted L(g).
If t0 contains nonterminals, one derivation step is carried out by simultaneously

replacing all nonterminals, say A1, . . . Ai with trees t1, . . . ti such that the rules
A1 → t1, . . . , Ai → ti exist in the same table. Let t′ be the tree one gets by this
substitution. If t′ contains only symbols of the output signature then t′ ∈ L(g).
The process is repeated using t′ as input for the next derivation step.

In other words L(g) is the set of trees over the output signature that are possible
to reach, by zero or more derivation steps starting out from the axiom t0, with
the restriction that, in every derivation step, all nonterminals are replaced using
rules from the same table.

2.4.3 Example derivations and pictures

Let ET 0Lex = ({S}, Σex, R, S) be the ET0L tree grammar with R = {table1,
table2}, table1 = {S → stem[S, S, S]}, and table2 = {S → leaf}. This grammar
generates the subset of TΣ in which all leaves are at the same distance from the
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Figure 5: A derivation by the ET0L tree grammar in the example.

Figure 6: The picture obtained by interpreting the tree derived in Figure 5.

root. An example of a derivation is shown in Figure 5. Using the collage algebra
from Section 2.2.2 to interpret this tree, yields the picture shown in Figure 6. An
example of a larger tree generated by this language yields the one in Figure 7.

For an example where nonterminals and terminals are not disjoint, consider
the following ET0L tree grammar, which generates exactly the same language.
ET 0Lex2 = ({leaf}, Σex, R, leaf), with R = {{leaf → stem[leaf, leaf, leaf ]}}.
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Figure 7: The picture obtained by interpreting a relatively large tree from the
ET0L tree grammar.



15 Branching Tree Grammars in TREEBAG

2.4.4 ET0L tree grammars compared with regular tree grammars

It can be proved, by using a pumping lemma for regular tree grammars, that the
language generated by ET 0Lex in the previous subsection, cannot be generated
by a regular tree grammar. See page 48 in [Dre06] for a statement of that
pumping lemma.

This fact can also be argued for intuitively. If a regular tree grammar is used, all
parts of the tree are built independently, so the only way to keep track of how
long the tree should grow to be balanced, would be to let different nonterminals
specify different distances from the root. With finitely many nonterminals it is,
therefore, not possible to specify the infinite language of all balanced trees.

2.5 Branching tree grammar

The branching tree grammar is the kind of grammar that is to be implemented
in this master thesis project. Branching tree grammars are a generalization of
ET0L tree grammars. Suppose that we want to create the same types of tree
pictures as before, but now with the requirement that the picture should be
symmetric about the vertical line going through the root. This would be hard
or even impossible to accomplish with ET0L. See further comments on this in
Section 2.7.

This report will give definitions for two variants of branching tree grammars.
The first, called“simple branching tree grammar”, uses the definitions in [DE04].
The second, called “branching tree grammar”, is a more general variant which is
the one that should be implemented. In Chapter 3, we will see how a branching
tree grammar can be rewritten to a simple branching tree grammar that gener-
ates the same language. This is necessary since the implementation is based on
an algorithm from [DE04] that works for the simple branching tree grammar.

For the full definition of the branching tree grammar see page 150 and 323 in
[Dre06].

2.5.1 Definition of the simple branching tree grammar

A simple branching tree grammar is a system g = (N, Σ, I, J, R, t0) consisting
of:

• a finite signature N of symbols with rank 0, called nonterminals,

• a finite output signature Σ, disjoint with N , of symbols called terminals,

• an alphabet I of symbols called synchronization symbols,

• an alphabet J of symbols called table symbols,

• a mapping R which assigns to each τ ∈ Jn, a set of rules A → t, with
A ∈ N and t ∈ TΣ(N × In), and

• an initial nonterminal t0 ∈ N , called the axiom.
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The number n is the nesting depth, or depth, of g, the sets R(τ) for τ ∈ Jn are
the tables of g, and SNg = N × (In)∗ is the set of synchronized nonterminals.
A string in (In)∗ will be called a synchronization string.

The intuition behind the definition of R is to create a hierarchical structure of
tables. The tables at the level n are the sets R(τ) for τ ∈ Jn. A table R(τ ′)
at level i < n is given by τ ′ ∈ J i. Intuitively τ ′ is the name or address of the
table within the hierarchy. The table R(τ ′) is the union of all its subtables τ ′.j
where j ∈ J . Here τ ′.j denotes the addition of the component j to τ ′, i.e.,
τ ′.j = (j1, . . . , ji, j) if τ ′ = (j1, . . . , ji). The table at level 0, which is also called
the top table in the following, is the table R() =

⋃

τ∈Jn R(τ).

In order to make the derivations more readable, an alternative notation is used
for synchronized nonterminals, which is shown by the following example. Let
I = {1, 2, 3, 4}, n = 2 and A ∈ N . Suppose that during the derivation there
is a synchronized nonterminal σ = (A, S) with S = (1, 2)(3, 4)(1, 2) (a string
consisting of three pairs of symbols). Then σ is also denoted A〈1 3 1

2 4 2〉. The
number of rows in the matrix of symbols always equals n, but the number of
columns can be any number including zero.

2.5.2 Definition of the branching tree grammar

A branching tree grammar is a system g = (N, Σ, I, J, R, t0), whose components
are the same as in the simple branching tree grammar, except for the following:

• The output signature Σ need not be disjoint with the nonterminal signa-
ture N , and

• the axiom is now a tree t0 ∈ TΣ(N), rather than a single nonterminal.

The first generalization makes sure that both versions of branching tree gram-
mars studied in [Dre06] are covered. The second has been made for convenience.

2.5.3 Informal definition of derivations for simple branching tree

grammar

For the simple branching tree grammar, the principle by which the trees are
generated is the following:

The derivation starts with the synchronized nonterminal (t0, λ) consisting of the
axiom t0 and the empty string (it is in the set N × (In)0 and has no synchro-
nization information yet). A derivation step is carried out by simultaneously

replacing all synchronized nonterminals, call them (A1, S1), . . . (Ai, Si), with
trees t1, . . . ti such that the rules A1 → t1, . . . Ai → ti exist in some tables, with
the following limitation: The more rows Si and Sj have in common, the more
restricted is the choice of tables for Ai and Aj . More precisely, Siand Sj will
be members of the set (In)k which means they consist of k n-tuples of synchro-
nization symbols. If the first l symbols, l ≤ n, in every one of the k tuples are
equal for Si and Sj , then if Ai is to use table τi and Aj is to use table τj , the
first l table symbols of τi and τj must agree.
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Finally for each substitution Ai → ti, each synchronized nonterminal (N, S) in
ti is replaced by (N, Si.S) where . denotes the concatenation of lists of n-tuples.
This means that the synchronized nonterminals build up longer and longer series
of synchronization information along the derivation.

Let t′ be the tree one gets by this substitution. If t′ contains only symbols of
the output signature then t′ ∈ L(g). The process is repeated using t′ as input
for the next derivation step.

2.5.4 Informal definition of derivations for branching tree grammar

For the branching tree grammar, the principle by which the trees are generated
is similar to the one for the simple branching tree grammar, except for the
following:

The derivation starts with the tree obtained from the axiom by replacing every
nonterminal A with A〈〉. Let t′ be the initial tree, or a tree obtained by using
derivation steps as defined for the simple branching tree grammar case. Replace
all synchronized nonterminals (A, S) with A in t′, yielding t′′. If this t′′ contains
only symbols of the output signature then t′′ ∈ L(g). Naturally the derivation
then continues with t′ rather than t′′.

2.5.5 Example derivations and pictures

Let BST ex = ({S}, Σex, {0, 1}, {gen, term, one, two, three}, R, S) be a branch-
ing tree grammar with

R(gen.one) = {S → stem[S〈00〉, S〈
0
1〉, S〈

0
0〉]},

R(gen.two) = {S → S〈00〉},

R(gen.three) = {S → leaf},

R(term.one) = {S → leaf} and the remaining of R(i.j) are empty.

This grammar generates the subset of trees generated by REGex that satisfies
the following condition: On every stem-node in the output tree, the left and
the right of the three subtrees must be exact copies.

The addition of R(gen.two) makes it possible for different paths from root to leaf
to have different lengths. With only R(gen.one) and R(term.one) the language
had been equivalent to the language generated by ET 0Lex.

The table R(gen.three) does not add any power to the grammar, as its effects
can also be obtained by combining R(gen.two) and R(term.one). However the
table is convenient to have available. In particular the tree derived in the next
example would have required a somewhat more lengthy derivation, if this table
was not present.

An example of a derivation is:

S〈〉
→

(gen.one)
stem[S〈00〉, S〈

0
1〉, S〈

0
0〉]

→
(gen.one)
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stem[

stem[S〈0 0
0 0〉, S〈

0 0
0 1〉, S〈

0 0
0 0〉],

stem[S〈0 0
1 0〉, S〈

0 0
1 1〉, S〈

0 0
1 0〉],

stem[S〈0 0
0 0〉, S〈

0 0
0 1〉, S〈

0 0
0 0〉]

]

→
(gen.two) and (gen.three)

stem[

stem[leaf, S〈0 0 0
0 1 0〉, leaf ]],

stem[S〈0 0 0
1 0 0〉, leaf, S〈0 0 0

1 0 0〉],
stem[leaf, S〈0 0 0

0 1 0〉, leaf ]

]

→
(gen.one)

stem[

stem[leaf, stem[S〈0 0 0 0

0 1 0 0
〉, S〈0 0 0 0

0 1 0 1
〉, S〈0 0 0 0

0 1 0 0
〉], leaf ]],

stem[stem[S〈0 0 0 0

1 0 0 0
〉, S〈0 0 0 0

1 0 0 1
〉, S〈0 0 0 0

1 0 0 0
〉], leaf, stem[S〈0 0 0 0

1 0 0 0
〉, S〈0 0 0 0

1 0 0 1
〉, S〈0 0 0 0

1 0 0 0
〉]],

stem[leaf, stem[S〈0 0 0 0

0 1 0 0
〉, S〈0 0 0 0

0 1 0 1
〉S〈0 0 0 0

0 1 0 0
〉], leaf ]

]

→
(term, one)

stem[

stem[leaf, stem[leaf, leaf, leaf ], leaf ]],
stem[stem[leaf, leaf, leaf ], leaf, stem[leaf, leaf, leaf ]],

stem[leaf, stem[leaf, leaf, leaf ], leaf ]

]

The last tree is drawn in a tree-like form, in Figure 8. Using the collage algebra
from Section 2.2.2 to interpret this tree, yields the picture shown in Figure 9.

Figure 8: A tree derived by a branching tree grammar.

An example of a larger tree generated by this language yields the picture in
Figure 10.
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Figure 9: The picture obtained by interpreting the tree derived in Figure 8.

Figure 10: The picture obtained by interpreting a relatively large tree from the
branching tree grammar.
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2.6 Top-down tree transducers

A top-down tree transducer is a device that takes trees as input and transforms
them into other trees. In the context of this thesis, the device is important since
some of the more complicated tree grammars can be transformed into a series
of a regular tree grammar and top-down tree transducers, that generates the
same language. For the full definition of the top-down tree transducer see page
58 in [Dre06] or page 182, in Chapter 6 in [CDG+97].

2.6.1 Definition

A top-down tree transducer, also called td transducer, is a system td = (Σ, Σ′, Γ, R, γ0)
consisting of:

• a finite input signature Σ,

• a finite output signature Σ′,

• a finite signature Γ of symbols of rank 1, called states, such that Γ is
disjoint with Σ and Σ′ ,

• a finite set of rules R of the form γ[f [x1, . . . , xk]] → t[[γ1[xi1 ], . . . , γl[xil
]]]

where γ, γ1, . . . , γl ∈ Γ, f (k) ∈ Σ and t ∈ TΣ′(Xl) with i1, . . . , il ∈
{1, . . . , k}, and

• an initial state γ0 ∈ Γ.

A derivation starts with a tree γ0[tin] where tin ∈ TΣ. Rules from R are used
repeatedly to make substitutions to this tree, until there are no more states left.
If the final tree tout is a tree in TΣ′ , ie only contains symbols of the output
signature, we say that td can derive tout from tin.

For an input tree tin ∈ TΣ, the output of the td transducer td is a set td(tin) =
{tout : tout can be derived from tin by R}.

2.6.2 Example

Here a regular tree grammar REG and a td transducer td will be presented,
that when applied in a series generate exactly the same language as ET 0Lex in
Section 2.4.3. The terminals of the regular tree grammar are named table1 and
table2, to indicate the interpretation that the regular tree grammar decides a
series of table choices that the ET0L tree grammar would have used, and the
td transducer simulates picking rules from these tables.

REG = ({S}, {table1 : 1, table2 : 0}, {S → table1[S], S → table2}, S)

td = ({table1, table2}, {stem : 3, leaf : 0}, {γ}, R, γ)

with R = { γ[table1[x1]] → stem[γ[x1], γ[x1], γ[x1]] , γ[table2] → leaf } .

An example of a derivation is shown below.

First REG generates a monadic tree in the following derivation:

S → table1[S]→ table1[table1[S]]→ table1[table1[S]]→ table1[table1[table2]].
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Then the transducer uses that tree as its input as below:

This is the same tree that was produced by ET 0Lex in the example in Section
2.4.3. Note how the input tree to the tree transducer exactly corresponds to
the tables used in that example. Using the collage algebra from Section 2.2.2
on this tree, results in the same picture as in Figure 6.

2.7 Is the class of branching tree grammars needed?

Could it be the case that the ET0L tree grammar is really sufficient for picture
generators of practical interest, and thus the branching tree grammar a quite
unintersting addition?

For ET0L tree grammars there is no known suitable pumping lemma (as there is
for regular tree grammars), which could be used to prove that a language cannot
be generated by an ET0L tree grammar [Dre06]. Thus it is hard to formally
prove that a specific language generated by branching tree grammars could not
be generated by ET0L tree grammars as well. But there are many languages
that can easily be specified with a branching tree grammar but seem at least
very complicated to generate with ET0L tree grammars [Dre06]. Examples
(not directly related to picture generation) of languages which are provably not
contained in the class of ET0L tree languages can be found in [Eng82], [DE04].

Then when are branching tree grammars needed or prefered? Recall that ET0L
tree grammars are equally powerful as a regular tree grammar with monadic
output signature and a top-down tree transducer, while branching tree gram-
mars are equally powerful as a regular tree grammar and a series top-down tree
transducers.

It is known from tree theory [Bak79] that two consequtive top-down tree trans-
ducers sometimes can be replaced with one single top-down tree transducer
without changing the output. This can be done if both of the following two
conditions are true:

• The first transducer is deterministic or the second one is linear.

• The first transducer is total or the second one is nondeleting.

The first part is of particular interest. It leads to the conclusion that if a picture
language generated by a branching tree grammar uses synchronization to create
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copies of nondeterministically (here nondeterminism can intuitively be thought
of as randomness) generated parts, it is likely that the branching tree grammar
cannot be replaced with an equivalent ET0L tree grammar.
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3 The translation of branching tree grammars

This chapter formalizes the modified construction that is used in the implemen-
tation. The basis for the construction is a theorem from [DE04] which states
that the languages one can generate with a branching tree grammar of depth n,
are exactly those that one can generate composing a regular tree grammar and
n top-down tree transducers. This theorem is stated in Section 3.1.

The proof of this theorem, also from [DE04], is a constructive proof describing
how the regular tree grammar and td transducers can be constructed, and prov-
ing its correctness. This construction has been extracted from the proof and is
presented in Section 3.3, where it is called “original translation”.

During the work on this master thesis, four alternative constructions have been
studied. These four constructions are a chain of improvements, where each
one is defined in principle by its difference from of the previous construction.
These are in order called “plain translation”, “plain translation with terminat-
ing leaves”, “normal translation”and“extended translation”. Thus, for example,
“plain translation” is the least sofisticated modification of “original translation”.
The four translations, together with proof sketches for correctness, and illus-
trating examples are presented in Sections 3.4 to 3.7.

Section 3.8 describes how an arbitrary branching tree grammar is turned into
a simple branching tree grammar generating the same language. This is neces-
sary since the construction for translating a branching tree grammar to other
components is designed for grammars of that kind.

Throughout this chapter, we consider an arbitrary but fixed branching tree
grammar BG = (NBG, TBG, I, J, RBG, SBG), that is to be translated to a chain
consisting of a regular tree grammar and top-down tree transducers. Let n be
the depth of BG (ie the tables are all RBG(τ) for τ ∈ Jn), and let d be the
number of elements in I. The letters d and n will be reserved for this purpose
for this entire chapter.

Without loss of generality, we assume that I = {0, 1, 2, ..., d− 1}. If BG is not
a simple branching tree grammar, then it is replaced with a simple branching
tree grammar generating the same language, as described in Section 3.8. After
that one of the five translations from Sections 3.3 to 3.7 is used to turn it into
a regular tree grammar and a sequence of td transducers. Then some additions
are made to the transducers, as described in Sections 3.10 and 3.11, which do
not change to output language, but gives the components functionality that can
be used to obtain information about the derivation of an output tree.

There also exists a construction, in which the user is allowed to give a regular
expression specifying a table sequence for the top tables. This construction is
described in Section 3.9, where it is also argued that this does not add any
generative power to the class of branching tree grammars.

In the case where BG is of depth 0, it is by definition a regular tree grammar,
except for the synchronization information that is not used for anything. In this
case the regular tree grammar is obtained by simply removing the corresponding
components from the grammar.
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3.1 The theorem of equality of branching tree grammars
and regular tree grammars with td transducers

In [DE04] the correspondence between branching tree grammar on the one hand
and regular tree grammars and top-down tree transducers on the other is stud-
ied. The main result is the following:

Theorem 1

Let BST be an arbitrary simple branching tree grammar of depth i. Then there
exists a regular tree grammar REG and i td transducers td1, td2, . . . , tdi such
that L(BST ) = tdi(. . . (td2(td1(L(REG)))) . . . ). Here REG and td1, . . . , tdi

can effectively be constructed from BST . In addition, this can be done in such
a way that the td transducers td1, td2, . . . , tdi are total.

Theorem 2

Let REG be an arbitrary regular tree grammar, and let td1, td2, . . . , tdi be i
arbitrary td transducers. Then there exists a branching tree grammar BST of
depth i, such that L(BST ) = tdi(. . . (td2(td1(L(REG)))) . . . ).

3.2 Notation

In this section some notation and abbreviations are defined, that will be used
for the rest of the chapter. The following terms are defined as stated:

The regular tree grammar - The regular tree grammar first in the chain of
components simulating the branching tree grammar.

Final transducer - The last top-down tree transducer in the chain.

Intermediate transducer - Any top-down tree transducer in the chain except
the final transducer.

Synchronization tree - Any output tree of the regular tree grammar or an
intermediate transducer is a synchronization tree. The synchronization
trees generated by the i:th component in the chain (where i ≤ n) are
trees over the signature Σi = {(τ :di) | τ ∈ J i} ∪ {⊥: 0}. Informally
that means that Σi contains all table names for tables on depth i and the
bottom symbol. Intuitively every path from the root to some node in a
synchronization tree is a table sequence that some nonterminal will follow
in the derivation (either all the way to the leaf, or just a part if it on the
way uses a rule whose right hand side are only terminals). A more formal
definition of what a synchronization tree is can be found in [DE04].

Pseudo leaf - Any node in a synchronization tree whose subtrees are only
bottom symbols ⊥ is a pseudo leaf. (That means that if this node is used
in a derivation the derivation for that nonterminal has to stop there. If
this derivation step produces any nonterminal this particular derivation
results in an undefined tree.)
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Terminating rule - A rule with only terminals in its right hand side is said
to be terminating.

Terminable table - A table is a terminable table, if it contains at least one
terminable subtable, or if it contains rules, at least one terminating rule.

Terminal table - A table is a terminal table, if it contains only terminal sub-
tables, or if it contains rules, only terminating rules.

Let numk(i1, . . . , im) = 1+
∑m

j=1

(
ij · km−j

)
. That means the tuple (i1, . . . , im)

is interpreted as a number written on the base k, and then 1 is added to get a
number in {1, . . . , km} instead of {0, . . . , km − 1}.

As an additional notation, we let, for j ≤ k, firstj(i1, . . . , ik) = (i1, . . . , ij).

3.3 Original translation

This is the translation that was defined in [DE04]. The basic idea is that the
regular tree grammar makes a series of top table choices, and outputs a tree
consisting of top table names. After that the first intermediate transducer makes
a series of choices of tables on level 2, restricted by the choices of top tables in
the input tree. The second intermediate transducer chooses tables among the
tables on level 3 in the branching tree grammar, and so on.

This goes on until the final transducer which takes as input a tree with the
level-n tables, and chooses the rules to use from these tables for each step and
each nonterminal in the derivation. This will all be specified more clearly in the
definition in the next subsection, and further illustrated by an example.

3.3.1 Definitions

The regular tree grammar for this translation, is defined as

REGorig = ({S}, Σ1, R, S). Here R consists of all rules S → τ [ S, S, ..., S
︸ ︷︷ ︸

d times

]

where τ ∈ J . R also contains the rule S →⊥. Thus the grammar generates the
whole language TΣ1

.

The i:th intermediate transducer is defined as TD
(i)
orig = (Σi, Σi+1, {q}, R, q),

where R consists of all rules

q[τ [x1, . . . , xdi ]] → τ.j[ q[x1], . . . , q[x1]
︸ ︷︷ ︸

d times

, . . . , q[xdi ], . . . , q[xdi ]
︸ ︷︷ ︸

d times

]

and q[τ [. . . ]] →⊥, where τ ∈ J i and j ∈ J . R also contains the rule q[⊥] →⊥.

The final transducer is defined as TDfinal
orig = (Σn, TBG, NBG, R, SBG),

where R consists of all rules A[τ [x1, . . . , xdn ]] → t[[B1[xnumd(α1)], . . . , Bl[xnumd(αl)]]]

such that τ ∈ Jn and A → t[[(B1, α1), . . . , (Bl, αl)]] is a rule in τ .
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The formal proof that this construction gives the language L(BG) can be found
in [DE04].

3.3.2 Example illustrating original translation

In this section we will work with the example grammar BGex defined below,
borrowed from [DE04]. Informally this grammar describes the language of trees
whose leaves are the symbols ⊳ and ⊲, and the other nodes are ◦, • and |. In
addition there are two kinds of synchronization, which is achieved by having
a nesting depth of 2 in the grammar. The synchronization on top table level
causes the length of any path from root to leaf to be the same in the tree. The
synchronization on level two causes the two subtrees below any | to be mirror
images of each other.

The table named gen as in “generate”, contains rules which are used to keep
the derivation going on, making the tree larger. The table named term as in
“terminate”, contains rules with only output symbols in the right hand side, and
thus terminates the derivation.

BGex = (Nex, Tex, Iex, Jex, Rex, Sex)

Nex = {S, Sr}

Tex = {◦ : 2, • : 1, ⊳ : 0, ⊲ : 0, |: 1}

Iex = {0, 1}

Jex = {gen, term, one, two, three}

Sex = S

And Rex is defined by:

Rex(gen.one) = {S → ◦[S〈00〉], Sr → ◦[Sr〈00〉] }
Rex(gen.two) = {S → •[S〈00〉, S〈

0
1〉], Sr → •[Sr〈01〉, Sr〈00〉] }

Rex(gen.three) = {S →| [S〈00〉, Sr〈00〉], Sr →| [S〈00〉, Sr〈00〉] }
Rex(term.one) = {S → ⊲ , Sr → ⊳ }
Rex(term.two) = {S → ⊳ , Sr → ⊲}

and all other Rex(i, j) = ∅.

Note that the upper digit is zero in all of the synchronized nonterminals. This
causes the synchronization on top level to never be released. Thus in all deriva-
tion steps all nonterminals must either use the “generating” rules in the first
table or the “terminating” rules in the second table, and this is the reason that
all paths from the root to the leaves are of the same length.

An example of a derivation is: S〈〉
→

(gen.two)

•[S〈00〉, S〈
0
1〉]

→
(gen.one) and (gen.three)

•[◦[S〈0 0
0 0〉], | [S〈0 0

1 0〉, Sr〈0 0
1 0〉] ]

→
(term.one) and (term.two)

•[◦[⊳], | [⊲, ⊳] ].
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Figure 11 shows the same derivation in tree-like notation. Note that in the
last step, the second and third nonterminal had to use the same table, in this
case (term.two). This was because their sets of synchronization strings where
completely identical. The first nonterminal on the other hand had the freedom
to choose between (term.one) and (term.two) since the second row differed.
However the first nonterminal was forbidden to use any of the gen-tables (unless
the other two had done so, too) since the upper rows of digits where identical.

Figure 11: A derivation using the example branching tree grammar.

Let us now inspect how the same output tree could be generated using compo-
nents retrieved by “original translation”.

Using the algorithm from the previous subsection on BGex results in the regular

tree grammar REGex,orig and td transducers TD
(1)
ex,orig and TDfinal

ex,orig. These
look as follows:

REGex,orig = {{S}, {gen, term,⊥}, Rreg, S} with

Rreg = {S → gen[S, S] , S → term[S, S] , S →⊥} and

TD
(1)
ex,orig = {TDinput, TDoutput, {q}, Rtd, q} with

TDinput = {gen, term},

TDoutput = {(gen.one), (gen.two), (gen.three), (term.one), (term.two)},

Rtd = { q[gen[x1, x2] → gen.one[q[x1], q[x2], q[x3], q[x4]],
q[gen[x1, x2] → gen.two[q[x1], q[x2], q[x3], q[x4]],
q[gen[x1, x2] → gen.three[q[x1], q[x2], q[x3], q[x4]],
q[term[x1, x2] → term.one[q[x1], q[x2], q[x3], q[x4]],
q[term[x1, x2] → term.two[q[x1], q[x2], q[x3], q[x4]],

q → ⊥}

and TDfinal
ex,orig = {TDfinal−input, TDfinal−output, {S, Sr}, Rfinal, S} with

TDfinal−input = {(gen.one), (gen.two), (gen.three), (term.one), (term.two)},

TDfinal−output = {◦ : 2, • : 1, ⊳ : 0, ⊲ : 0, |: 0},
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Rfinal = { S[gen.one[x1, x2, x3, x4]] → ◦[S[x1]] ,
Sr[gen.one[x1, x2, x3, x4]] → ◦[Sr[x1]] ,
S[gen.two[x1, x2, x3, x4]] → •[S[x1], S[x2]] ,

Sr[gene.two[x1, x2, x3, x4]] → •[Sr[x2], Sr[x1]] ,
S[gen.three[x1, x2, x3, x4]] → | [S[x1], Sr[x1]] ,

Sr[gene.three[x1, x2, x3, x4]] → | [S[x1], Sr[x1]] ,
S[term.one[x1, x2, x3, x4]] → ⊲ ,
Sr[term.one[x1, x2, x3, x4]] → ⊳ ,
S[term.two[x1, x2, x3, x4]] → ⊳ ,
Sr[term.two[x1, x2, x3, x4]] → ⊲

}.

.

Next we will look at an example of a derivation which produces the same tree
as in the example before, but with these components instead of the branching
tree grammar.

REGex generates, in a number of steps, the tree in Figure 12. With this as

input tree for td
(1)
ex,orig, one of the possible output trees is shown in Figure 13.

Figure 12: A tree generated by the regular tree grammar first in the chain.

Figure 13: One possible output from the intermediate transducer, when using
the tree from Figure 12 as input.

Now it is time for the final transducer TDfinal
ex,orig to transform this tree to the

final output tree. This transformation is shown step in Figure 14, in order to
give more insight into how a final transducer works. Recall that S and Sr are
the states of this final transducer, which means that they exists only during the
transformation and not in the output tree. All other symbols involved are input
and output symbols for the transducer, which stand for table names and are
output symbols of branching tree grammar, respectively.

The role of the regular tree grammar is to make all choices of which top tables
to allow, and the first td transducer chooses the allowed subtables.

The input to the final transducer, which is the synchronization tree shown in



29 Branching Tree Grammars in TREEBAG

→

→

→

Figure 14: A derivation of the final transducer, when using the tree from Fig-
ure 13 as input.

Figure 13, determines which tables should be used, and the only thing left for
the final transducer is to pick the rules from the specified tables.

The four steps in Figure 11 correspond directly to the four steps in Figure 14.
Compare the pictures to see how the states of the final transducer exactly follow
the pattern of the nonterminals of the branching tree grammar.

This example will be revisited and its sources of inefficiency will be discussed in
Section 3.6.3, but before this we need to define some of the other translations.
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3.4 Plain translation

The translation called “plain translation” is the same as “original translation”
except that all rules q[τ [. . . ]] →⊥ are removed from the intermediate transduc-
ers, where τ is any table in J i. Intuitively these are the rules that cut random
branches off the synchronization trees, and they are unnecessary because any
application of them will either leave the end result unaffected if the derivations
of the remaining transducers end above the cut, or give an undefined result
otherwise.

The reason for this rule to be included in the first place, was that it was con-
venient to have in the proof of the correctness of “original translation”. Having
a rule that causes undefined results when used does not matter theoretically,
since the output language does not change.

However, in practice, the presence of this rule will make almost all tree deriva-
tions end with undefined trees. Therefore we want to remove it.

3.4.1 Definitions

The regular tree grammar REGplain equals REGorig.

The i:th intermediate transducer is defined as

TD
(i)
plain = (Σi, Σi+1, {q}, R, q), where R consists if all rules

q[τ [x1, . . . , xdi ]] → τ.j[ q[x1], . . . , q[x1]
︸ ︷︷ ︸

d times

, . . . , q[xdi ], . . . , q[xdi ]
︸ ︷︷ ︸

d times

]

with τ ∈ J i and j ∈ J . R also contains the rule q[⊥] →⊥.

The final transducer TDfinal
plain equals TDfinal

orig .

3.4.2 Proof of correctness

Here we will start out from “plain translation” and analyze how the generated
language is affected when turning to“original translation”. First we note that the
language cannot become smaller. All we do is adding rules to the transducers,
and adding rules to transducers can only enlarge the generated language, not
remove elements. So what we need to do is to prove that the language does not
become larger.

First we show that the generated language does not change if the modification is
applied only to the last intermediate transducer. Consider an arbitrary deriva-
tion step, whose left hand side is not q[⊥], in the last intermediate transducer,
when using “plain translation”. The derivation step will be q[τ [. . . ]] → τ ′[. . . ].
What would happen if we added the rule q[τ [. . . ]] →⊥ and that one was used
instead? There are two cases. In the first case the final transducer would never
look at this particular instance of τ ′. In this case the modification does not
matter. In the other case, the result would be undefined, because instead of
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τ ′[. . . ] this particular node is ⊥, and there is no rule in the final transducer,
whose left-hand side contains ⊥. In neither case the output language becomes
larger.

Now we show that using the modification in two consecutive intermediate trans-
ducers td1 and td2 gives same result as if using the modification in only td2. If
td1 uses “plain translation” an arbitrary derivation step, whose left hand side
is not q[⊥], is q[τ [. . . ]] → τ ′[. . . ]. Now one possibility is that td2 applies to
this particular instance of τ ′ the rule q[τ ′[. . . ]] →⊥. What would happen if
we added the rule q[τ [. . . ]] →⊥ to the first transducer td1 and that was used
instead? Then td2 would have to use the rule q[⊥] →⊥ on this node, and we
get exactly the same result as before, when td2 used q[τ ′[. . . ]] →⊥.

We also have to take into account the possibility that a previous derivation step
of td2 could copy or delete the subtree for which τ ′ is a node. But in the first
case the same argument is used on all copies and in the second case, since it
was deleted it does not matter what rule td1 applied to τ . We conclude that
the output language does not increase if td1 is made with “plain translation”.

These statements together imply that the modification can be done to all inter-
mediate transducers without changing the output language of the final trans-
ducer, which completes the proof.

3.5 Plain translation with terminating leaves

The “plain translation” gives an improvement in practical usability, but still
many derivations will end in undefined trees. The reason for this is that usu-
ally not all of the top tables contain, somewhere in their subtables, rules with
only terminals in the right hand sides. If there is not one such table on every
path from the root to a leaf in the synchronization tree, the derivation can not
terminate. The original regular tree grammar generates all trees over the input
signature, and therefore the chance for a derivation to terminate is small.

Recall that a pseudo leaf is a node with only bottom symbols as subtrees. The
next step in modification of the translation, is to only allow terminable tables
to be pseudo leaves. Another limitation is that terminating tables may only be
pseudo leaves. That is because any tables below can never be used since the
derivation has already terminated.

3.5.1 Definitions

The regular tree grammar for this translation is defined as

REGterm = ({S}, Σ1, R, S) . Here R consists of all rules S → τ [ S, S, ..., S
︸ ︷︷ ︸

d times

]

where τ ∈ J and τ is not terminating, and all rules S → τ [ ⊥,⊥, ...,⊥
︸ ︷︷ ︸

d times

] where

τ ∈ J and τ is terminable.
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Note that R does not contain the rule S →⊥ so the derivation of the regular tree
grammar cannot terminate unless there are terminable tables. Note also that a
table τ can be both terminable and not terminating, and then τ will appear in
the right hand side of two rules.

The i:th intermediate transducer is given by TD
(i)
term = TD

(n)
plain.

The final transducer TDfinal
term equals TDfinal

orig .

3.5.2 Proof of correctness

Let Lterm = TDfinal
term (TD

(n−1)
term (. . . (TD

(1)
term(L(REGterm))) . . . )).

We have to show that Lterm = L(BG).

Note first that the output language of the regular tree grammar does not be-
come larger (in most cases it becomes much smaller), that is L(REGterm) ⊆
L(REGplain). Since the output language of the tree transducers do not become
larger when some of the trees in the input language are removed, this implies
that Lterm ⊆ L(BG). What we need to show is that also L(BG) ⊆ Lterm, ie no
trees are missing in Lterm.

We will show that by proving that for any tree t′ ∈ L(BG), there is a tree

t ∈ L(REGterm), such that t′ ∈ TDfinal
term (. . . (TD

(1)
term({t}) . . . ). This implies

that REGTterm is indeed able to generate all trees that are required.

First look at the special case when L(REGterm) = ∅. Since S is the only
nonterminal of REGterm, it can only happen if there is no rule S → τ [⊥, . . . ,⊥]
for any τ . But that happens if no table of BG is terminable, and in that
case L(BG) = ∅, since no derivation can terminate without terminating rules.
Therefore we only need to consider the case when REGterm generates trees.
The following lemma summarizes these conditions, and completes the proof.

Lemma

Let t′ ∈ L(BG) and let L(REGterm) 6= ∅. Then there exists a tree t ∈

L(REGterm) such that t′ ∈ TDfinal
term (. . . (TD

(1)
term({t}) . . . ).

Proof of Lemma

Since t′ ∈ L(BG) we know from Section 3.4 that there is at least one derivation

using the composition of REGplain, TD
(i)
plain for i = 1, . . . , n − 1, and TDfinal

plain

that generates t′. Let Tr be the tree generated by REGplain in one of those
derivations.

The proof is done by induction over the tree Tr. If Tr ∈ L(REGterm) we are
done. If not, Tr contains a finite nonzero number of internal nodes that either

• case 1) are terminal tables but are not pseudo leaves, or

• case 2) are not terminable tables but are pseudo leaves.
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Let T i be one of these nodes.

In case 1, remove all subtrees from T i and replace with ⊥.

In case 2, replace all symbols ⊥ right below T i, with T j[ ⊥,⊥, . . . ,⊥ ] where
T j is a terminable table. By the assumption L(REGterm) 6= ∅ there exists at
least one such T j.

In both cases the number of nodes that have any of these two properties de-
creases. By induction we can repeat these actions and eventually end up with a
tree in L(REGterm). What is left to prove is that these actions does not affect
the output language of the branching tree grammar.

Note that the proof is about showing that the set of trees one can generate does
not become smaller when doing the modifications mentioned in case 1 and 2. We
are switching from something “plain translation with terminating leaves” can do
to something “plain translation” can do, and we concluded in the beginning of
Section 3.5.2 that the language does not increase when doing so.

Proof for case 1

In this case a subtree T i[t1, . . . , tk] where T i represents a terminal table, was
replaced by T i[⊥, . . . ,⊥]. We will prove that it does not matter since t1, . . . , tk
are never looked at by the tree transducers.

For any application of an intermediate transducer the rule looks like q[T i[...]] →
T ii[ ⊥, . . . ,⊥ ]. That is because since T i represents a terminal table, then all its
subtables are also terminal, in particular the one represented by T ii. The tree
T i[ ⊥, . . . ,⊥ ] may also have been copied when handling some node above T i,
but that does not matter since this argument can be used on all of these copies.

Now, this argument is repeated for all intermediate transducers. For the final
transducer, let T iii be a symbol that T i has been (indirectly or directly) re-
placed with. Since T i was terminal, and thus also T iii, all rules of the final
transducer whose left-hand side contains T iii must have a terminal right hand
side. Therefore the subtrees of T iii are not looked at either, and the proof for
case 1 is done.

Proof for case 2

What we have to show is that the set of trees one can generate does not become
smaller when the modification is used, that replaces the children of T i, all of
which are ⊥, with tables T j.

Here we will consider two sub-cases.

Sub-case 2.1: The depth of BG is > 1.

We proved in the previous section that one can replace all transducers obtained
by “original translation” in the translation of BG, with those obtained with
the “plain translation with terminating leaves”, without changing the output
language. Thus one can also go the other way and switch back to those of the
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“original translation”. Let us therefore assume here that the transducers from
“original translation” are used.

Recall that T i[⊥, . . . ,⊥] was replaced by T i[T j[⊥, . . . ,⊥], . . . , T j[⊥, . . . ,⊥]].
But by using the rule q[T j[X1, . . . , Xd]] →⊥ in the first intermediate trans-
ducer, on all such subtrees the effect can be undone.

Note that the modification might enlarge the sets of trees the intermediate
transducer can generate on this particular input tree. It can not decrease it,
however, and that was all we needed to prove here.

Sub-case 2.2: The depth of BG is 1.

In this case the tree Tr is the input to the final transducer TDfinal
term . The nodes

are the names of the applied tables, and the table named T i did by assumption
not contain any rules with only terminals in their right-hand side. Thus the
final transducer does not contain any rule with T i[. . . ] as left-hand side, and at
the same time only terminals in its right-hand side.

Since T i is pseudo leaf and a final transducer does not contain rules whose
left-hand side contains the symbol ⊥, we must conclude that all derivations of
TDfinal

term resulting in output trees terminated before reaching the node T i.

Therefore the output language does not change with the change of the partic-
ular node T i. Thus it does not depend on any subtrees of T i either, so the
modification was harmless.

3.6 Normal translation

Here the tree grammar and the intermediate transducers are modified so that
even more of the unnecessary subtrees of the synchronization trees will not be
generated. This will at many occasions allow a derivation that took exponential
space and time with “plain translation” to take only polynomial space and time.
Here space and time counted are with respect to the size of the output tree.

3.6.1 Definitions

The regular tree grammar REGnormal is given by ({S}, T, R, S) where R consists
of all rules S → τ [Y (1), Y (2), ..., Y (d)] where τ ∈ J and τ is not terminating,
and all rules S → τ [ ⊥,⊥, ...,⊥

︸ ︷︷ ︸

d times

] where τ ∈ J and τ is terminable.

For z = 1, . . . , d, Y (z) is defined as follows: Let N be the set of all synchronized
nonterminals that appear in some right hand side in some rule r in the top
table τ or its subtables. If z /∈ {numd(first1(w)) | (A, w) ∈ N} then Y (z) =⊥;
otherwise Y (z) = S.

The i:th intermediate transducer is defined as TD
(i)
normal = (Σi, Σi+1, {q}, R, q),

where R consists if all rules q[τ [x1, . . . , xdi ]] →

τ.j[ Y (1, x1), . . . , Y (d, x1)
︸ ︷︷ ︸

d terms

, . . . , Y (di+1 − d + 1, xdi), . . . , Y (di+1, xdi)
︸ ︷︷ ︸

d terms

]
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where τ ∈ J iand j ∈ J . R also contains the rule q[⊥] →⊥. For z = 1, . . . , di+1

and x = x1, . . . , xdi , Y (z, x) is defined as follows: Let N be the set of all
synchronized nonterminals that appear in some right hand side in some rule r
in table τ or some of its subtables. If z /∈ {numd(firsti(w)) | (A, w) ∈ N} then
Y (z, x) =⊥; otherwise Y (z, x) = q[x].

The final transducer TDfinal
normal equals TDfinal

orig .

3.6.2 Proof sketch of correctness

No proof of the correctness of this construction will be presented here. Instead,
the discussion in the next subsection should give an intuitive idea of why the
construction works. However, a sketchy idea for a proof could be the following:

The only difference between “normal translation” and “plain translation with
terminating leaves”, is that some subtrees in the rules are replaced by ⊥ in
“normal translation”.

These subtrees can never be used by later transducers, since those transducers
only look at subtrees, whose number when numbering all nodes directly below
its parent, match the synchronization numbers (when transformed from tuples
to integers) in some right-hand side of a rule.

Later transducers in the chain look at rules from a smaller set of tables, and thus
the available synchronization numbers must be more restrictive. Thus the earlier
transducer can safely remove subtrees not matching any of the synchronization
symbols in the table, whose name appear in the rule.

3.6.3 Comparison with the original translation using an example

We will now analyze the sources of inefficiency when translating the example in
Subsection 3.3.2. As it turns out, “original translation” is not suitable for the
example, whereas on the other hand “normal translation” will work well.

Using the algorithm of the “normal translation” from the previous subsection
on BGex results in the regular tree grammar REGex,normal and td transducers

TD
(1)
ex,normal and TDfinal

ex . These look as follows:

REGex,normal = {{S}, {gen, term,⊥}, Rreg, S}

with Rreg = {S → gen[S,⊥] , S → term[⊥,⊥] } and

TD
(1)
ex,normal = {TDinput, TDoutput, {q}, Rtd, q} with TDinput = {gen, term},

TDoutput = {(gen.one), (gen.two), (gen.three), (term.one), (term.two)} and

Rtd = { q[gen[x1, x2] → gen.one[q[x1],⊥,⊥,⊥] ,
q[gen[x1, x2] → gen.two[q[x1], q[x2],⊥,⊥]
q[gen[x1, x2] → gen.three[q[x1],⊥,⊥,⊥]
q[term[x1, x2] → term.one[⊥,⊥,⊥,⊥]
q[term[x1, x2] → term.two[⊥,⊥,⊥,⊥]

q → ⊥}



Gabriel Jonsson 36

and the final transducer TDfinal
ex,normal is equal to the one of“original translation”.

First we will focus on how the intermediate transducers work more efficiently,
by comparing the transducers of original and “normal translation”. We will
not at this point compare “original translation”with the other translations that
are less sofisticated than “normal translation”, since there is no obvious gain in
efficiency for this particular example.

We let the transducer TD
(1)
ex,normal take as its input tree, the tree in Figure 12.

One possible output tree would be the one in Figure 15, which is indeed smaller
than the tree in Figure 13 which is the corresponding tree when using “original
translation”.

Figure 15: An output tree from the intermediate transducer from the “normal
translation”.

When the final transducer (TDfinal
ex,orig = TDfinal

ex,normal) is applied, the same out-
put tree as before, shown as the last tree in Figure 14, results. The gain may
not seem so big in this example, but this is only because of the smallness of the
derivation. It will become quite different if we consider a slightly larger output
tree from the regular tree grammar REGex,orig, namely the one in Figure 16.

Figure 16: A larger output tree from the regular tree grammar first in the chain,
that still will lead to the same end result.

With this as an input tree, TD
(1)
ex,normal will generate the tree in Figure 15 once

again. On the other hand TD
(1)
ex,orig would generate a tree with approximately

100 symbols (⊥’s included). Yet the final transducer TDfinal
ex,orig would have
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generated the same old final tree in Figure 14 from this huge input tree. In
fact, when using “original translation”, this output tree will come up repeatedly
many times, and sometimes after very long computations.

This illustrates how the unwanted exponential space requirement enters the
computation of components from “original translation”. If we for example con-
sider a binary synchronization tree, produced by a regular tree grammar from
“original translation”, it will have a number of nodes depending exponentially
on the height of the tree. Apparent from the regular tree grammar from“normal
translation” (note that the right subtree is the leaf ⊥ in every node) only the
left-most path from the root to a leaf will actually be kept in the end of the
derivation, and the size of this part of the tree depends only linearly on the
height of the tree.

Next we will discuss how to detect which nodes in the trees are actually unnec-
essary. Now the focus is more on the efficiency of the regular tree grammar, and
in particular on how to cause it to not create subtrees that will necessarily be
ignored by the transducers.

Consider the trees from Figure 12 and Figure 16. Using them will lead to exactly
the same results (even though this fact may not completely apparent from the
discussion above, it can be shown), so most of the nodes in the second tree
are unnecessary. Here “unnecessary”means that the nodes created from such a
node – by means of the first transducer – will never be looked at by the final
transducer.

First note that the node “term” at the bottom of the second tree can never
be used. All derivations of the final transducer that reach the node “term”
right above, will end there, since the subtables of table “term” only contain
terminating rules. The translation “plain translation with terminating leaves”
contains functionality to make the regular tree grammar avoid creating exactly
this type of nodes. To be more specific, it would make the symbol “term” occur
at every pseudo leaf, and never anywhere where it is not a pseudo leaf. The
latter is because that if a “gen” occurs at a pseudo leaf, and it is used, the
derivation will get stuck, since the rules are not terminal, and there are no more
tables in the tree to use to get rid of the remaining nonterminals.

Furthermore, the whole right half of the second tree is unnecessary, since the
third and fourth subtree of any given node are only used when a table is chosen,
that contains synchronization symbols <1

0> or <1
1>, and no such rules exists in

the whole branching tree grammar. Note that the right half of the tree will be
transformed into an even larger subtree by the transducers, if “original transla-
tion” is used, but at the end it will always be ignored by the final transducer.
The “normal translation” aims at removing such branches as early as possible.
Optimally they are never created at all, but sometimes with more complicated
grammars these branches will have to be created by the regular tree grammar,
but can then sometimes be removed by the intermediate transducers.

There is actually an even smaller tree that the regular tree grammar REGex,orig

could produce, that works as well, namely the one in Figure 17.

In fact, the only trees that the regular tree grammar ever needs to generate
are the trees of the form shown in Figure 18. These are exactly the trees that
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Figure 17: A smaller output tree from the regular tree grammar, that will also
lead to the same end result.

Figure 18: For this particular example, the only necessary trees in the language
of the regular tree grammar, follow this pattern.

will be generated by REGex,normal, the regular tree grammar obtained using
“normal translation”. The transducers created with “normal translation” for
this particular branching tree grammar example, will be optimal as well. The
last construction “extended translation” contains nothing that will improve this
particular example. In Section 3.7.2 another example will be presented where
“extended translation” will be the best choice.

3.7 Extended translation

There are still many cases where the space and time complexity with respect to
the size of output trees are exponential. The modification discussed now will
turn this into polynomial time for some of these cases.

It is possible, although it seems hard to prove, that with this translation the
generated synchronization trees will have no unnecessary subtrees. If that is
the case, this is about the best that can be done if implementing branching tree
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grammars by composing regular tree grammar and tree transducers.

Here we only discuss how to modify the transducers, but a very similar opti-
mization could be applied to the regular tree grammar, too. This is left as one
of the possible extensions of the system.

The downside of this translation is a drastic increase in the number of states
of the transducers; in the worst case it will depend exponentially on the num-
ber of nonterminals in the branching tree grammar. That means that with 10
nonterminals the transducers will become 1024 times as large as with “normal
translation”, and thus take about 1000 times longer to apply. However, if that
takes the space and time complexity with respect to output tree size from an
exponential down to a polynomial, this will always be an improvement, as soon
as the output trees we generate become sufficiently large.

Intuitively, the state q of the intermediate transducers means“any nonterminal”.
When the transducer rule q[T i[...]] → T ii[q[x1], ...] is used, it intuitively means
the following: It has previously been decided that a particular nonterminal (or
several if synchronization demands them to use the same tables) will be derived
further, by using some rule in the table named T i. Now the choice is refined such
that the rule must come from a table named T ii, which is a subtable to that
table. At this stage it is completely unknown which nonterminal this might be,
which the q in the left-hand side notifies. It is also unknown what nonterminals
that might appear in the result tree, which is notified by the q in the right-hand
side.

If we instead use as states all subsets of the set of nonterminals in the branching
tree grammar, we can keep track of exactly which nonterminals can possibly be
used on each table node in the synchronization tree.

As an example, if C and E are the nonterminals of the branching tree grammar,
and all no rule with left-hand side E contains a C in its right-hand side, the
intermediate transducer could, instead of the rule above, contain the following
two rules:

{C, E}[T i[...]] → T ii[{C, E}[x1], ...] and {E}[T i[...]] → T ii[{E}[x1], ...].

Note that {C, E} has been replaced with {E}, in the second right-hand side
since a C can not be created by using rules from table named T ii to replace E.
A more elaborate example will be given in the next subsection.

Initially the algorithm to create the intermediate transducer uses all combina-
tions of nonterminals as states, but in the end all unreachable states are removed
from the transducer. In many cases almost all states will be unreachable. This
means that in practice, the size of the resulting transducer does not always
depend exponentially on the number of nonterminals.

3.7.1 Definitions

The regular tree grammar REGextended equals REGnormal.

The final transducer TDfinal
extended equals Dfinal

normal.



Gabriel Jonsson 40

The i:th intermediate transducer is defined as TD
(i)
extended = (Σi, Σi+1, Q, R, {SBG})

with Q = {q ∈ ℘(NBG)}.

R is constructed as follows:

1. For every q ∈ ℘(NBG):

(a) For every τ ∈ J i and for every j ∈ J :

i. Add to R the rule:

q[τ [x1, . . . , xdi ]] →

τ.j[ Y (1, x1), . . . , Y (d, x1)
︸ ︷︷ ︸

d terms

, . . . ,

Y (di+1 − d + 1, xdi), . . . , Y (di+1, xdi)
︸ ︷︷ ︸

d terms

]

ii. Let ς be the set of all synchronized nonterminals that appear in
some right hand side in some rule r in the table τ or its subtables,
such that the left-hand side of r is in q.

iii. Now Y (z, x) is defined, for z = 1, . . . , di+1 and x = x1, . . . , xdi ,
as follows:

Let q′ = {A | (A, w) ∈ ς and numd(firsti(w)) = z}.

If q′ = ∅, then Y (z, x) =⊥; otherwise Y (z, x) = q′[x].

(b) In addition, R contains the rule q[⊥] →⊥.

2. Finally, all states in Q that are not reachable are removed, as well as all
rules in R with such states in their left-hand side.

Here is an informal explanation to clarify the idea:

In the construction ς contains all nonterminals that can possibly be derived
when this occurrence of τ is handled by the final transducer. Now different
terms in the right hand side of the rule in the intermediate transducer will get
different subsets of ς. That is because those nonterminals in that do not have
synchronization symbols that refer to that subtree do not need to be in the set
which becomes the state that handles the next node.

3.7.2 An example where extended translation is useful

In this section we will explore how the “extended translation” affects the perfor-
mance of a picture generating branching tree grammar. It is a slightly modified
version of an example from page 149 of [Dre06].

The branching tree grammar is defined by BGcarpet =

(Ncarpet, Tcarpet, Icarpet, Jcarpet, Rcarpet, Scarpet) where Ncarpet = {S, E, C},

Tcarpet = {quarters : 4, corner : 4, edge : 2, a-part : 0, b-part : 0, empty : 0},
Icarpet = {0, 1}, Jcarpet = {gen, term, one, two} and Scarpet = S.
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Rcarpet is defined by:

Rcarpet(gen.one) = {

C → corner[a-part, E〈01〉, C〈00〉, E〈01〉] ,

E → edge[a-part, E〈00〉], S → quarters[C〈00〉, C〈00〉, C〈00〉, C〈00〉] },

Rcarpet(gen.two) = {

C → corner[b-part, E〈01〉, C〈00〉, E〈01〉],

E → edge[b-part, E〈00〉], S → quarters[C〈00〉, C〈00〉, C〈00〉, C〈00〉] },

Rex(term.one) = {C → empty, S → empty},

and all other Rex(i.j) are empty.

The collage algebra that interprets the output trees of BGcarpet will only briefly
be described here. For more details, see pages 149 to 153 of [Dre06]. The symbol
a-part is interpreted as a black square, and the symbol b-part is interpreted
as a square with a cross inside. The symbol quarters is only present in the
root, and implies a rotation by i · 90 degrees for each of its four subtree. The
symbol edge yields a geometrical transformation which translates its argument
horizontally one unit away from the center of the picture. Similarly corner
corresponds to three geometrical transformations which translate one argument
horizontally, one vertically and one both horizontally and vertically. Finally
empty is interpreted as the empty picture.

The components when using “normal translation”are, the regular tree grammar

REGcarpet and td transducers TD
(1)
carpet,normal and TDfinal

carpet which are given as
follows:

REGcarpet = {{S}, {gen, term,⊥}, Rreg, S} with Rreg =

{S → gen[S,⊥] , S → term[⊥,⊥] }.

TD
(1)
carpet,normal = {TDinput, TDoutput, {q}, q} with TDinput={gen, term},

TDoutput={(gen.one), (gen.two), (term.one)}, and Rtd = {

q[gen[x1, x2]] → gen.one[q[x1], q[x1],⊥,⊥],
q[gen[x1, x2]] → gen.two[q[x1], q[x1],⊥,⊥],
q[term[x1, x2]] → term.one[⊥,⊥,⊥,⊥],

q[⊥] → ⊥}

.

TDfinal
carpet = {TDfinal−input, TDfinal−output, {S, C, E}, Rfinal, S} with

TDfinal−input = {(gen.one), (gen.two), (term.one)}, and TDfinal−output =

{quarters : 4, corner : 4, edge : 2, a-part : 0, b-part : 0, empty : 0}

and Rfinal = {
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S[gen.one[x1, x2, x3, x4]] → quarters[C[x1], C[x1], C[x1], C[x1]],
C[gen.one[x1, x2, x3, x4]] → corner[a-part, E[x2], C[x1], E[x2]],
E[gen.one[x1, x2, x3, x4]] → edge[a-part, E[x1]],
S[gen.two[x1, x2, x3, x4]] → quarters[C[x1], C[x1], C[x1], C[x1]],
C[gen.two[x1, x2, x3, x4]] → corner[b-part, E[x2], C[x1], E[x2]],
E[gen.two[x1, x2, x3, x4]] → edge[b-part, E[x1]],
E[term.one[x1, x2, x3, x4]] → empty,
C[term.one[x1, x2, x3, x4]] → empty}

The components when using“extended translation”are REGcarpet, TD
(1)
carpet,extended

and TDfinal
carpet. Both “normal translation” and “extended translation” yield the

same regular tree grammar and final transducer, so only TD
(1)
carpet,extended is

defined below.

TD
(1)
carpet,extended = {TDinput, TDoutput, Γ, Rtd, {S} } with

TDinput={gen, term}, TDoutput={(gen.one), (gen.two), (term.one)} and

Γ = { {S}, {C}, {E} }

When constructing the transducer according to the algorithm, the states {S, C},
{S, C, E}, {E, S}, . . . are also present, but they are all removed at the end as
they turned out to be unreachable.

Rtd = {

{S}[gen[x1, x2]] → gen.one[{C}[x1],⊥,⊥,⊥],
{S}[gen[x1, x2]] → gen.two[{C}[x1],⊥,⊥,⊥],
{S}[term[x1, x2]] → term.one[⊥,⊥,⊥,⊥],

{S}[⊥] → ⊥,
{E}[gen[x1, x2]] → gen.one[{E}[x1],⊥,⊥,⊥],
{E}[gen[x1, x2]] → gen.two[{E}[x1],⊥,⊥,⊥],
{E}[term[x1, x2]] → term.one[⊥,⊥,⊥,⊥],

{E}[⊥] → ⊥,
{C}[gen[x1, x2]] → gen.one[{C}[x1], {E}[x1],⊥,⊥],
{C}[gen[x1, x2]] → gen.two[{C}[x1], {E}[x1],⊥,⊥],
{C}[term[x1, x2]] → term.one[⊥,⊥,⊥,⊥],

{C}[⊥] → ⊥}

The regular tree grammar is the same as for “normal translation”and“extended
translation”. Therefore we will only consider the output tree from the interme-
diate transducer in this section.

A tree generated by TD
(1)
carpet,extended is shown in Figure 19. The corresponding

tree, generated by TD
(1)
carpet,normal is shown in Figure 20. In both cases the

output tree of the final transducer TDfinal
carpet is the tree in Figure 21. This

output tree is transformed by the collage grammar to the picture in Figure 22,
consisting of four black squares.



43 Branching Tree Grammars in TREEBAG

Figure 19: An output tree from the intermediate transducer from the “extended
translation”.

Figure 20: An output tree from the intermediate transducer from the “normal
translation”, when using the same input as in Figure 19.

Figure 21: The output from the final transducer, when using as input the tree
in Figure 19 as well as the one in Figure 20.
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Figure 22: A picture obtained by interpreting the tree in Figure 21 tree using
the example algebra. It consists of four black squares (corresponding to the four
a−part in the tree), which are aligned so that they form a larger black square.

The argument that the subtrees that are missing of Figure 19 (but present in
Figure 20) could indeed safely be removed without affecting the end result, is the
following: Assume that the right gen.one in Figure 20 had been used. It is the
root of the second subtree of its parent, and thus is this context labeled as the
”1”:th subtree, as we for technical reasons choose to count from zero. Therefore
it corresponds to the binary string 01, because d = 2 and num2(0, 1) = 2. Note
that if d had been three, a number written in base 3 had been used instead
of binary base (ie num3 had been used). By inspection of the construction of
“extended translation”(as well as for “normal translation”), one can see that this
means that if we reach this node, a rule has been used with the synchronization
tuple <0

1> in its right-hand side.

But such a right-hand side exists only for the nonterminal E. We also see that
the derivation has only gone one step, so the initial nonterminal S can have
become a C, but an E cannot yet have been created.

We can now conclude that the right gen.one can never be used for anything,
and thus it is safe to remove it. This far it does not seem that we gain much by
using “extended translation”. To compute which nonterminals may have been
reached only works for the first few depths, and cannot remove the exponential
growth of a deep tree. But the “extended translation”also contains functionality
that can be used to optimize at any depth, as the following example shows.

Let us now consider a slightly larger tree. We will still have to stick to as small
trees as possible due to the exponential increase in width of the intermediate
trees, when the height is increased.

A tree generated by TD
(1)
carpet,extended is shown in Figure 23. The corresponding

tree, generated by TD
(1)
carpet,normal is shown in Figure 24 (only a part of it is

shown).

The tree that both of these intermediate trees will give rise to is shown in
Figure 25. Due to its size, only half the tree is shown. The picture for this tree
is shown in Figure 26.

The unnecessary branch has been marked with a ring in Figure 24. Now why is
it unnecessary? By the same argument as earlier, the nonterminal has to be an
E when/if one reaches the node gen.one above the ring, since that node is the
second subtree of its parent. But if we look at table gen.one we see that E only
has the rule E → edge[a-part, E <0

0>]. Since num2(0, 0) = 0 the only subtree
to be used is the one numbered zero, ie the one to the left of the ring. Thus the
subtree marked with the ring can be replaced with ⊥.
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Figure 23: An output tree from the intermediate transducer from the “extended
translation”.

Figure 24: An output tree from the intermediate transducer from the “normal
translation”, when using the same input as in Figure 23. The “unnecessary
subtree” is marked with a ring.

Figure 25: The output from the final transducer, when using as input the tree
in Figure 23 as well as the one in Figure 24.

Figure 26: A picture obtained by interpreting the tree in Figure 25 tree using
the example algebra.



Gabriel Jonsson 46

Had we not known that E was the only possible nonterminal, we could not have
removed the branch. All nodes where a C is possible need to keep both its first
and second subtree, since the right hand sides of C contain both the tuple <0

0>
and <0

1>. This is a way to see why “normal translation” cannot be optimal.
In this construction the transducers never keep track of which nonterminals are
possible at any given node, or more precisely what nonterminal-named state the
final transducer can possibly have when reaching this node.

If we consider a larger tree, built by adding more branches to the tree discussed
above, we can see another way to detect unnecessary branches. Since E can
never go over to a C in the grammar (no C occurs in any right-hand side of an
E), for all nodes below the node to the left of the ring, only the nonterminal E
is relevant, and thus only the first subtree needs to be saved in all nodes in this
branch.

Finally, in order to further illustrate how an extended intermediate transducer
works, the derivation to create the tree in Figure 23 is shown step by step in
Figure 27. The last step of the derivation is omitted, as it would have been a
copy of Figure 23.

Note that the states named {E, C}, {E, C, S}, . . . that potentially could have
been present, never had to be used. This is because it was always possible to
deduce whether an E, S or C was a possible nonterminal, and it was never the
case that several of them where possible. This, in turn, is because no right-hand
side of any rule contained a C and an E with the same synchronization tuple,
in the same table (and S did not occur in any right hand side at all). It can
generally be worthwhile to try to rewrite a branching tree grammar such that
it gets this property, in order to get efficient components when using “extended
translation”.

In Figure 28 a large picture is shown, yielded by a tree from the same grammar.
With“extended translation”this took less than a second with a 2GHz computer.
With“normal translation”the time needed is unknown but smaller pictures take
several minutes to generate.
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Figure 27: A derivation (with the final step omitted) using the intermediate
transducer from the “extended translation”.
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Figure 28: The picture obtained by interpreting a very large tree from the
example grammar.

3.8 Turning a branching tree grammar into a simple branch-
ing tree grammar

All of the algorithms in Sections 3.3 to 3.7 are designed to work on simple
branching tree grammars. Therefore, a branching tree grammar BSTnonsimple

that is to be translated is first transformed to a simple branching tree grammar
BSTsimple, as follows.

If BSTnonsimple= (N, T, I, J, R, S) is of depth n, then the simple branching tree
grammar BSTsimple= (Nsimple, T, I, Jsimple, Rsimple, Ssimple) constructed is of
depth n + 1.

We let Nsimple = {A′ : A ∈ N}, where A′ /∈ T for all A ∈ N , and

Jsimple = J ∪ {axiomtable, derivationtable, terminatetable}.

For every τ ∈ Jn, we define the following tables: Rsimple(derivationtable . τ)
equals R(τ), with every nonterminal A therein replaced by A′.

Similarly, Rsimple(axiomtable . τ) equals {Ssimple → S} with the nonterminals
A in S replaced by A′. Finally Rsimple(terminatetable . τ) is the table {A′ →
A : A ∈ N ∩ T }. All other tables of BSTsimple are empty.
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It is clear from the construction above that all derivations using BSTsimple that
generate output trees will start by using the single table within axiomtable,
then use tables within the table derivationtable a number of times, and then
finish by using the table terminatetable once.

Consider derivations using BSTnonsimple and BSTsimple, respectively. If the
choices of tables and rules taken from the table derivationtable in BSTsimple

follows exactly the choices in BSTnonsimple, the same output tree will be gen-
erated. To be precise, the derivation BSTnonsimple may generate more than
one tree on the way, but all of them can be generated by BSTsimple as well by
choosing terminatetable in an earlier step.

The fact that the languages L(BSTnonsimple) and L(BSTsimple) are equal is
not formally proven here, but should be intuitively apparent because of the
argument mentioned above.

3.9 Restricting top table sequences by regular expressions

We now discuss how table sequences at top level can be restricted by regular
expressions. The objective of this functionality is to limit the derivation of a
branching tree grammar such that the choices of tables at top level seen as strings
over the table names, are members of some regular language specified by the
user. Note that, in one and the same derivation, unsynchronized nonterminals
may be replaced using different choices of tables even at top level. However, the
resulting strings must all be members of the specified regular language.

First the branching tree grammar is translated to a regular tree grammar and
a sequence of transducers according to one of the algorithms. Then the regular
tree grammar is replaced by another more restricted version of the same regular
tree grammar, where all paths from the root to a leaf in the output tree yield a
string in the specified regular language.

The detailed construction will not be presented here, but the idea is that every
nonterminal in the regular tree grammar corresponds to a state in a NFA (non-
deterministic finite automaton, see [ASU86]) that accepts the specified regular
language. Only nonterminals corresponding to accepting states have rules that
turn them into the terminal ⊥.

We can conclude that this modification does not add any generative power to the
branching tree grammar. This can be seen from the second theorem in Section
3.1, which states that this modified regular tree grammar, together with the
sequence of transducers, can be turned back into a branching tree grammar
with the same depth as the original one. On the other hand, restricting a
grammar with a regular expression may greatly reduce the complexity of the
grammar. Another benefit for the user is that it can be exploited to exclude a
large number of derivations that do not generate any tree.
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3.10 Additions in order to allow nonterminal derivations

Some additional symbols and rules have to be added to the regular tree gram-
mar and the tree transducers, in order to simulate stepwise derivations of the
branching tree grammar.

First the branching tree grammar is translated to a regular tree grammar REG
and a sequence of transducers td (1), . . . , td (n−1), and td final according to one
of the algorithms in Sections 3.3 to 3.7.

Now, for every nonterminal A in REG do the following:

• To the input signatures and output signatures of td(i) we add A : 0.

• To the rules of td(i) we add γ[A] → A, for each state γ.

• To the input signature of tdfinal we add A : 0.

• To the output signature of tdfinal we add γ : 0 for each state γ.

• To the rules of tdfinal we add γ[A] → γ, for each state γ.

Note that this does not conflict with the requirement that the set of states of a
transducer is disjoint with its output signature, as γ : 0 and γ : 1 are distinct
symbols.

In TREEBAG, when using the branching tree grammar in the “stepwise deriva-
tion” mode, the instruction “stepwise derivation” is passed to REG, which will
then generate trees containing nonterminals. These nonterminals are left un-
changed by the intermediate tree transducers, and the final transducers replaces
them by the actual nonterminals of the branching tree grammar. Recall that
the state of the final transducer is equal to the nonterminal the branching tree
grammar would have used at this time, which explains the rules of the form
γ[A] → γ in tdfinal.

3.11 Obtaining synchronization strings for a derivation

The functionality of showing synchronization strings gives the user more insight
in how the derivations of the simulated branching tree grammar BG behave,
by adding the synchronization information to the output tree when using the
“stepwise derivation” mode. First the changes described in Section 3.10 are
made. Then the final transducer tdfinal is changed in the following way:

All synchronization symbols in IBG are added to the output signature of tdfinal,
seen as symbols of rank one.

If n is the depth of BG, the symbols − : 0, proj-1 : 0, . . . , proj-n : 0,

subst : (n+1) and syncinfo : (n+1) are added to the output signature of tdfinal.
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Furthermore, a new initial state γ′

0 is added, as well as the rule γ′

0 →

subst[γ0[x1],−,−] where γ0 was the old initial state.

Finally, recall that the final transducer contains some rules of the form

A[τ [x1, . . . , xdn ]] → t[[B1[xnumd(α1)], . . . , Bl[xnumd(αl)]]]

In these rules we replace each Bi[xnumd(αi)] by

subst[Bi[xnumd(αi)], αi1[proj-1], . . . , αi n[proj-n] ] where αi1αi2 . . . αi n = αi.

Now, another kind of tree transducer, the YIELD transducer, is added to the end
of the series of components, such that it uses the output of the final transducer
as input, and give its output as the output of the simulated branching tree
grammar.

The symbols − : 0, proj-1 : 0, . . . , proj-n : 0, subst : (n+1) are special symbols
that are interpreted by the YIELD transducer. What will happen is that the
yield transducer collects all synchronization information that the final trans-
ducer left all over the output tree, and attaches these to the nonterminals.

Slightly informally, the YIELD-transducer can be described as a mapping from
the set of all trees, to trees which are the input tree with some substitutions
made. The substitutions to be made are specified by the special symbols subst :
n+1 and proji, i = 1, . . . , n in the input tree. Applying subst to n + 1 trees is
done by evaluating them recursively yielding t1, . . . tn, and then substituting ti
for every occurence of proji in t0. The t0 with these substitutions made is then
returned.

For formal definition of YIELD transducer see page 446 in [Dre06] or [FV98].
In the following subsection an example illustrating all of this will be given.

3.11.1 An example of a translated grammar rewritten to show syn-

chronization information

We will once again look at the example from Section 3.3.2.

Let N be the nonterminal used by the regular tree grammar.

The final transducer from Section 3.3.2, will after the modification in the previ-
ous subsection, look like TDfinal

ex = {TDfinal−input, TDfinal−output, {S, Sr, γ},
Rfinal, γ}, with

TDfinal−input = {(gen.one), (gen.two), (gen.three), (term.one), (term.two), N},

TDfinal−output = {◦ : 2, • : 1, ⊳ : 0, ⊲ : 0, |: 0, S : 0, Sr : 0, − : 0, 0 : 1, 1 :
1, proj − 1 : 0, proj − 2 : 0, subst : 3, syncinfo : 3}, and

Rfinal = {

γ[x1] → subst[S[x1],−,−],

S[gen.one[x1, x2, x3, x4]]

→ ◦[subst[S[x1], 0[proj-1], 0[proj-2]]],

Sr[gen.one[x1, x2, x3, x4]]
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→ ◦[subst[Sr[x1], 0[proj-1], 0[proj-2]]],

S[gen.two[x1, x2, x3, x4]]

→ •[subst[S[x1], 0[proj-1], 0[proj-2]], subst[S[x2], 0[proj-1], 1[proj-2]]],

Sr[gen.two[x1, x2, x3, x4]]

→ •[subst[Sr[x2], 0[proj-1], 1[proj-2]], subst[Sr[x1], 0[proj-1], 0[proj-2]]],

S[gen.three[x1, x2, x3, x4]]

→| [subst[S[x1], 0[proj-1], 0[proj-2]], subst[Sr[x1], 0[proj-1], 0[proj-2]]],

Sr[gen.three[x1, x2, x3, x4]]

→| [subst[S[x1], 0[proj-1], 0[proj-2]], subst[Sr[x1], 0[proj-1], 0[proj-2]]],

S[term.one[x1, x2, x3, x4]] → ⊲ ,
Sr[term.one[x1, x2, x3, x4]] → ⊳ ,
S[term.two[x1, x2, x3, x4]] → ⊳ ,
Sr[term.two[x1, x2, x3, x4]] → ⊲,

S[N ] → syncinfo[S, proj-1, proj-2],
Sr[N ] → syncinfo[Sr, proj-1, proj-2]

}

A derivation by the final transducer is shown in Figures 29 to 33. The last one
is used as input to the YIELD transducer, and the output from that is shown
in Figure 34. For comparision, see the corresponding part of the derivation in
Figure 35, or for the whole derivation Figure 11 in Section 3.3.2.

In the output tree of the YIELD transducer, the synchronization strings corre-
sponding to a certain table depth are read vertically from bottom to top. Thus
the vertical strings of digits in Figure 34 correspond to the rows of the matrices
of digits in Figure 35.

Figure 29: The first step in a derivation using the alternative final transducer.
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Figure 30: The second step in the derivation.

Figure 31: The third step in the derivation.

Figure 32: The fourth step in the derivation.
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Figure 33: The last step in the derivation.

Figure 34: The output from the YIELD transducer, when using the tree in
Figure 33 as input.

Figure 35: A step during the derivation of the equivalent untranslated branching
tree grammar, that corresponds to the tree in Figure 34.
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4 The implementation

This section describes some aspects of the implementation of branching tree
grammars in TREEBAG. This implementation consists the Java-files generators/

BSTGrammar.java, generators/SuperTable.java, and generators/SyncedRule.

java. The main class for the branching tree grammaris named BSTGrammar.

There will not be any in-depth description of the Java code used, but rather
comments that can be useful for someone who wants to modify the branching
tree grammar, and to some extent for users of the grammar. The advice for
using the implementation efficiently is also summarized in Section 5.1.

4.1 Translation

The implementation reads the file, in which the user has specified the branching
tree grammar. This information is put into an internal data structure. Then the
implementation proceeds by creating several components, in the way explained
in Chapter 3. One field in the input file specifies whether to use“plain”,“normal”
or “extended” translation. Depending on this field the definitions from either
Section 3.4, 3.6 or 3.7 are chosen.

The additional modifications from Sections 3.10 and 3.11, which allow a user to
derive stepwise as well as inspect the synchronization information, are always
made. The modifications of Section 3.8, which transforms the branching tree
grammar into a simple branching tree grammar is used if necessary. If a regular
expression restricting the allowed table sequences at top level is specified in the
input file the regular tree grammar is created as specified in Section 3.9.

This translation is remade every time a branching tree grammar-component is
loaded in TREEBAG, even if the translated files where up to date.

The resulting components are written to files in the same folder as the branching
tree grammar, with the suffix .1, .2, .3 and so on, added to the file name. The
alternative final transducer, used to show synchronization information, which is
specified in Section 3.11, gets the suffix .Y.

The resulting files are then read and handled using code of the existing imple-
mentations of the corresponding classes. This process is invoked by the code of
the branching tree grammar.

For the TREEBAG user, all of this is invisible, unless they choose to check
the file directory for the translated files. The only component that is visible
in the TREEBAG GUI, is the branching tree grammar, even though the other
components are actually used internally.

4.2 Interaction with the branching tree grammar

There are a number of ways a user can interact with the branching tree grammar
component through the TREEBAG GUI. Most of these interactions are handled
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by the branching tree grammar by sending appropriate commands to its inter-
nal components. The different commands are described in the corresponding
sections in the rest of this chapter.

In general the tree transducers always transform their input trees all the way,
while the regular tree grammar is set to different modes (eg “results only” or
“derive stepwise”) depending on the mode of the branching tree grammar.

If a user feels this functionality is not enough, for example if the user wants to
derive the transducers stepwise, he or she can always open the branching tree
grammar, then close it and instead load the translated components separately,
to be able to interact with them.

The two main modes are “table enumeration” as described in Section 4.3, and
“random tables” as described in Section 4.4. The “table enumeration” can be
done either in the “results only” mode, which enumerates trees in a particular
sequence, or the “derive stepwise” mode, which shows derivations in a stepwise
manner, in which one can see which nonterminals are used.

4.3 Table enumeration

Unlike the case of regular tree grammars the command “results only” does not
enumerate all trees in the branching tree grammar language. It rather enumer-
ates all possible choices of tables at top-level, and then for each such choice
chooses nondeterministically among the subtables in those tables.

This is due to the fact that the regular tree grammar, whose language is enu-
merated, can be seen as the device choosing the table sequences at top level,
while the tree transducers choose subtables and rules. Instead, if a user wants to
see all trees, they can, for each enumeration, use commands of the kind “choose
new subtables at depth 2”, which is described below.

For both “results only” and “derive stepwise” there is an interesting special case,
which is when the top table has only two tables, such that one is not terminable
and the other is terminal. In this case, the sole effect of enumerating a new
top table choice, is increasing the (maximum) height of the output tree by one.
This behavior makes this type of branching tree grammar particularly easy to
use. A user who wants that functionality is encouraged to rewrite the branching
tree grammar to have exactly this property.

4.3.1 Results only

When the branching tree grammar is in the “results only” mode, the regular
tree grammar is instructed to work in this mode too. In this mode the user of
the branching tree grammar component never sees any nonterminals, but only
complete trees.

The commands “advance” and “reset” are forwarded to the regular tree gram-
mar, “advance” causing the next top table choice to be enumerated, and “reset”
causing the branching tree grammar to reset to the first choice in the enumera-
tion.
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4.3.2 Derive stepwise

The mode “derive stepwise” causes the regular tree grammar to be set to “derive
stepwise”. This causes the output tree of the grammar, which specifies table
choices at top level, to generate nonterminal trees. The final transducer contains
rules to recognize these nonterminals and replace them with the actual branching
tree grammar nonterminals, exactly as described in Section 3.10.

By default, the synchronization strings are not present in the output tree. See
Section 4.6 for the mode that reveals these strings.

4.4 Random tables

The mode “random tables” is to be used when a user wants to derive the output
trees step by step, and have the ability to go backwards in the derivation in order
to try new nondeterministic choices for some of the latest steps. Internally the
regular tree grammar is set to the mode “random tables” in order to accomplish
this.

The commands ”refine”, ”back” and ”reset” are handled by sending them to the
regular tree grammar.

When using “refine”, all table choices at top level are kept, and one new choice
is added, causing the length of the derivation to be increased by one step.

4.5 Choose new subtables/rules

The command“choose new subtables at depth i”, where i ≥ 2, causes the (i-1)th
transducer and all transducers after to be reinvoked with a new random seed.
The command “choose new rules” similarly reinvokes the final transducer only.
For instance, new subtables at depth 3, means that all choices of top tables and
their direct subtables are kept, but all choices of tables at higher depths are
remade.

4.6 Hide/Show sync info

The commands “Hide sync info” and “Show sync info” toggle whether to use the
final transducer as the last component in the chain or the YIELD-transduction
together with the transducer (whose file gets suffix .Y) described in Section 3.11.
The standard final transducer is the one that does not include the synchroniza-
tion information in its output tree.

As described in Section 3.11, the synchronization information is added to the
nonterminals in the form of monadic subtrees. To use this feature in a picture
generating device, the user may extend the algebra, so that it interprets the
synchronization symbols in some meaningful way. If a free term algebra is used
nothing has to be done, since the output is simply passed on to the display
component which draws the tree in a treelike form, interpreting any names of
the nodes, simply as text strings to be drawn.
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5 Results and conclusions

The theoretical work and the implementation have turned out to be successful,
in that the objectives stated in the master thesis specification have been fulfilled,
and all of the branching tree grammar examples from [Dre06] now work with
the implementation.

All of these grammars also work quite efficiently, ie there does not seem to be
any exponential time dependence on the tree size in the grammars tested. The
grammars also do not generate a lot of undefined or repeated trees, though it
happens sometimes.

However it should be noted that some of these grammars have been slightly
rewritten in order to make them become efficient. Thus, the implementation
can not be said to handle all cases efficiently, but still it seems to handle most
cases without requiring too much rewriting. Some detailed tips about how to
rewrite the grammars are described in the next subsection.

At the beginning of this work, there where quite some doubts about whether
it was even possible to, by using the approach of translating branching tree
grammars to regular tree grammars and top-down tree transducers, make an
implementation that handled all examples from the book with reasonable ef-
ficiency. Taking this into account, the results of the master thesis are quite
positive.

The work on the proof sketches have been quite illuminating and instructive,
and because of the proof sketches I find the construction reliable. There could
of course still be some mistakes in the construction, as not many persons have
checked the proofs.

In fact during the search for a proof sketch for the correctness of the “plain
translation with terminating leaves”, I could not immediately find a convincing
argument for its correctness, and after some thinking I instead ended up with a
counter example showing that the construction did not work. As a consequence,
the construction was modified to its current state, which led to the proof sketch
in Section 3.5.2.

5.1 Some hints regarding efficiency for users of the imple-
mentation

The mode “plain translation” is very inefficient, and should be seen as having
been implemented mainly for the theoretically interested who wants to inspect
the components involved or the synchronization trees. For all cases of picture
generation “normal translation” should be tried first. If it works too slowly,
try “extended translation”. If the grammar still works slowly, or yields many
undefined results, consider the following:

The translation works best if the branching tree grammar has two tables at the
top level, one with only non-terminable tables (recall that they have no rules
with only terminals in right hand side) and one with only terminal tables (recall
that they only have rules with only terminals in right hand side). Alternatively
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several non-terminable tables and/or several terminal tables can be used with
good results, but then a regular expression should be used to specify suitable
top table sequences. A rule of thumb could be that the more terminal and
non-terminable rules are mixed, within the same tables at top level, the more
undefined results one will get when using the grammar.

Note that if the branching tree grammar has non-disjoint sets of nonterminals
and terminals, the grammar is in the implementation rewritten to a simple
branching tree grammar, having two tables at top level, with only terminal
rules in the second, as described in Section 3.8. In this case there might not be
any gain in rewriting the grammar, as described above. It has not been studied
very much what properties make a grammar of this kind efficient, but it appears
to work better if all of the nonterminals are also terminals.

5.2 Remaining problems and possible improvements

The implementation is of course not perfect, and there are many possible im-
provements. Some of these are described in the following subsections, together
with hints regarding workarounds for the problems.

5.2.1 Extended translation for regular tree grammars

The“extended translation”described in Section 3.7 is applied to the transducers
only. It is not implemented for regular tree grammars, nor is it described in this
report how this could be done. It should however be rather straightforward to
convert the “extended translation” algorithm, to one that improves the regular
tree grammar as well. However, this modification would not improve anything
if the sets of nonterminals and terminals intersect, and cannot in any obvious
manner be used if a regular expression for top-tables is specified.

It is likely that some grammars, though none of the ones tested, could benefit
largely if this was implemented. There is, however, a workaround yielding a
similar effect, namely to simply add a new single table at the top, containing
all tables at top level. Thus the depth is increased by one, and the regular tree
grammar created will be very simple. There will be one additional transducer
now, but since transducers are optimized more thoroughly than tree grammars
it will hopefully work more efficiently anyway.

5.2.2 Undefined and repeated results

Depending on the structure of the branching tree grammar at hand, the deriva-
tions may lead to many undefined results, and the same tree may appear in the
output many times. The reason for the first is basically that there are some-
times combinations of table choices that can lead to an output tree, but does
not do so in a particular situation, due to unfortunate choices of rules within
them. The reason for the second is that the derivation may terminate before
using all the tables in the given list of choices, and thus two different lists may
result in the same output tree.
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As mentioned above, each table at top level should preferably be either non-
terminable or terminal. Many branching tree grammars can be rewritten to
this form without too much trouble, and if so, the user is encouraged to do so.
However there may be ways to improve the implementation in order to handle
grammars not complying with this in a smarter way.

A possible improvement to the implementation could be an algorithm that takes
the branching tree grammar as input and tries to rewrite it to a branching tree
grammar generating the same language, using the guidelines discussed above.
This algorithm could then be used before doing the translation described in
Chapter 3.

However it is probably quite difficult to design this algorithm, unless one limits
it to handle certain special cases and simpler tasks, like recognizing all terminal
tables and moving them out to the second top-table, leaving the rest in the
first top-table. Cases when terminal right hand sides and nonterminal ones are
heavily mixed will be more difficult to handle.

5.2.3 Enumerating every generated tree once and only once

As stated in Section 4.3, the enumeration function does not enumerate all trees,
but rather enumerates all choices of tables at top level. At deeper levels, random
choices are made. In order to see all trees one has to use the command “choose
new tables” several times, for each enumerated choice of tables at top level.
Thus results will be repeated, and because of the randomness a user can never
be sure that they has seen them all.

One way to accomplish this could be to make the transducers, for every new
input, enumerate all possible computations. There is currently no support for
this implemented in the tree transducers in TREEBAG, so that would have to
be added to the implementation. It does not seem to be clear whether this
modification alone would remove all cases of duplicate trees. Theoretically the
problem could be solved using a vector listing all enumerated trees so far. Then
when a tree comes up a second time, it can immediately be discarded, turning
to the next. However, such an approach is of course not feasible since it requires
a vast amount of memory and has an unacceptable time complexity.

5.2.4 Avoiding unwanted recomputation by the tree transducers

There are some points where the implementation causes the tree transducers to
recompute their output, using a new random seed, when this may neither be
necessary nor appropriate.

Perhaps the most important example is the case when toggling the “show sync
info” mode. As described in Section 4.1, there are two variants of the final
transducer, one used when showing, and one used when hiding synchroniza-
tion information. Since these two transducer components do not currently have
access to each other’s random seed, they must choose the rules of the tables
independently. Thus, if the user has used the branching tree grammar to gen-
erate a certain tree and wants to see the synchronization information of the
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nonterminals, it does not work to select “show sync info” since then a new tree
is generated, and the synchronization information for this tree is displayed.

Of course, if the final transducer is deterministic (ie the branching tree grammar
is deterministic), then the problem disappears. This is because there is no need
to change the synchronization tree from the last intermediate transducer at all.

5.2.5 Regular expressions regulating subtables

As described earlier a regular expression can be used to regulate the choice of
tables at top level, by restricting the regular tree grammar to generate only
trees in which all paths, from the root to a leaf, correspond to a string in the
language of the regular expression. This raises the questions whether a similar
construction can be done for the deeper levels of tables.

A nearby problem is that the use of a regular expression is not supported when
the sets of nonterminals and terminals intersect. This can be explained with the
transformation of the branching tree grammar into a simple one. Since a new
table is inserted above the old top level, we are back to the problem of using a
regular expression on subtables.

It is also not obvious how to properly define what the regular expression would
mean in this case. Consider the case when the set of terminals equals the set
of nonterminals. In this case all paths from the root to a leaf in the output
tree must always have the same length. Consider further two nonterminals in a
generated tree of this kind, and the two series of table choices that led to them
respectively. Now there are suddenly two requirements of these series - one that
they both should be a string in the regular language and the other that the
strings have equal length.

In this case, is it clear that the resulting construction does not have a generative
power exceeding the class of branching tree grammar? After that, there is also
the more general case when nonterminals and terminals only partially intersect,
which is probably even more difficult to study.

A possible solution could be changing the tree transducers in such a way that
they use many states instead of just q. The states are intuitively the states of
a NFA accepting the language given by the corresponding regular expression.
Only the transducer state(s) f with the same name as a final state of the NFA
have the rule with left hand side f [⊥] defined, and thus any table sequence not
complying with the regular expression will yield an undefined result instead of
an output tree.

The fact that this construction can be done with transducers, means that the
language generated is still one that can be generated with a branching tree gram-
mar, according to the theorem in Section 3.1. However this solution appears to
have some severe problems, discussed below.

The most important one seems to be the very high probability of receiving an
undefined result. What in principle happens is that the regular tree grammar
constructs a strings of table choices, that later are checked for acceptance in
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all the transducers, using a more restrictive pattern. Thus it seems that most
derivations will fail to create a tree.

What about combining this idea with the “extended translation”? It already
has multiple states instead of the single state q. While it could be possible to
make this work by using as states, the set of all combinations of a state from
the NFA and a state from the transducer as it looks now, it would include a
potentially very large number of states. No further work regarding this matter
has been made in this master thesis.
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