DYNAMIC AND TRANSPARENT SERVICE
COMPOSITION TECHNIQUES FOR
SERVICE-ORIENTED GRID ARCHITECTURES*

Erik Elmroth and Per-Olov Ostberg
Dept. Computing Science and HPC2N, Umed University, SE-901 87 Umed, Sweden

{elmroth, p-o@cs.umu.se
http://www.gird.se

Abstract With the introduction of the Service-Oriented Architecture design paradigm, ser-
vice composition has become a central methodology for developing Grid soft-
ware. We present an approach to Grid software development consisting of archi-
tectural design patterns for service de-composition and service re-composition.
The patterns presented can each be used individually, but provide synergistic
effects when combined as described in a unified framework. Software design
patterns are employed to provide structure in design for service-based software
development. Service APIs and immutable data wrappers are used to simplify
service client development and isolate service clients from details of underly-
ing service engine architectures. The use of local call structures greatly reduces
inter-service communication overhead for co-located services, and service API
factories are used to make local calls transparent to service client developers.
Light-weight and dynamically replaceable plug-ins provide structure for deci-
sion support and integration points. A dynamic configuration scheme provides
coordination of service efforts and synchronization of service interactions in a
user-centric manner. When using local calls and dynamic configuration for cre-
ating networks of cooperating services, the need for generic service monitoring
solutions becomes apparent and is addressed by service monitoring interfaces.
We present these techniques along with their intended use in the context of soft-
ware development for service-oriented Grid architectures.

Keywords: Grid software development, Service-Oriented Architecture, Web Service com-
position, Design patterns, Grid ecosystem.

*Financial support has been received from The Swedish Research Council (VR) under contract number 621-
2005-3667. This research was conducted using the resources of the High Performance Computing Center
North (HPC2N).

2

1. Introduction

With the introduction of service-oriented computing and the increased pop-
ularity of the Service-Oriented Architecture (SOA) design paradigm, service
composition has become a key methodology for building distributed, service-
based applications. In this work we outline the foundational concepts of our
SOA development methodology, introducing and describing a number of tech-
niques targeting the development of robust, scalable, and flexible Grid software.
We investigate development methodologies such as design patterns, call opti-
mizations, plug-in structures, and techniques for dynamic service configuration.
When combined, these techniques make up the foundation of an approach for
composable Web Services that are to be used in Grid SOA environments. The
techniques are here presented in Grid Web Service development scenarios.

The outline of the paper is the following: A motivation and overview of our
work is presented in Section 2. A more detailed introduction to the concept
and aspects of service composition is given in Section 3, after which we present
architectural design patterns used to address these concepts in Section 4. Finally,
a brief survey of related work is presented in Section 5, followed by conclusions
in Section 6 and acknowledgements.

2. Motivation and Overview

The work presented here has grown out of a need for flexible development
techniques for the creation of efficient and composable Web Services. Current
Grid systems employ more and more SOA-based software where scalability is
a key requirement on all levels of system design, including in the development
process. Service composition techniques, which employ services as building
blocks in applications through the use of service aggregators, often create sys-
tems that impose substantial overhead in terms of memory requirements and
execution time. Although Web Services are distributed by definition, utilizing
them dynamically is often a process with lack of flexibility and transparency.
The complexity of SOAP message processing alone can present impracticalities
to SOA developers, as a single Web Service that exchanges large or frequent
messages may in itself negatively impact the performance of other, co-located,
services.

In our approach, we address these issues in two ways; by providing flex-
ible and transparent structures for dynamic reconfiguration of (networks of)
services, and by outlining development patterns for optimization of interac-
tion between co-located services and service components. More specifically,
we provide a set of architectural software design patterns for service APIs,
local call structures, flexible plug-in and configuration architectures, and ser-
vice monitoring facilities. Combined, these techniques make up a framework
that serves to reduce the temporal and spatial system footprints (time of ex-

Service Composition Techniques 3

ecution and memory requirements, respectively) of co-located services, and
provide for a software development model where dynamic service composi-
tion is made transparent to service client developers. The techniques presented
are completely orthogonal to approaches using the Business Process Execution
Language for Web Services (BPEL4WS) [9], Web Service Choreography Inter-
face (WSCI) and similar techniques for service composition, and the resulting
Web Services can be used in a range of service orchestration and choreography
scenarios.

The approach presented here has emerged from work on the Grid Job Man-
agement Framework (GJMF) [3], a software developed in the Grid Infras-
tructure Research & Development (GIRD) [14] project. As a key part of the
GIRD project, we investigate software development methodologies for the Grid
ecosystem [13], an ecosystem of niched software components where compo-
nent survival follows from evolution and natural selection [5], and a Grid built
on such components. We primarily develop software in Java using the Globus
Toolkit 4 (GT4) Java WS Core [7], which contains an implementation of the
Web Services Resource Framework (WSRF).

3. Service Composition Techniques

Two approaches to service composition are service orchestration and service
choreography. As the needs and practices in Grid and Web Service software de-
velopment vary, clear definitions of the terms are yet to be fully agreed upon. In
Peltz [11], service orchestration and choreography are described as approaches
to create business processes from composite Web Services. Furthermore, ser-
vice orchestration is detailed to be concerned with the message-level interac-
tions of (composite and constituent) Web Services, describing business logic
and goals to be realized, and representing the control flow of a single party
in the message exchange. Service choreography is defined in terms of public
message exchanges between multiple parties, to be more collaborative by na-
ture, and taking a system-wide perspective of the interaction, allowing involved
parties to describe their respective service interactions themselves.

Our approach to service composition is primarily concerned with trans-
parency and scalability in dynamic service usage. We investigate techniques
for developing Web Services in a dynamic and efficient manner, Web Services
that can be transparently de-composed and dynamically re-composed.

3.1 Transparent Service De-Composition

At system level, Web Services are defined in terms of their interfaces without
making any assumptions about the internal workings of the service functionality.
In SOA design, focus is on service interactions rather than service design, and
a service set providing required functionality is assumed to exist.

In the development of individual services, the structured software develop-
ment approach is often hindered by the practical limitations of Web Services.
By recursively subdividing the functionality of a composite Web Service, a pro-
cess here referred to as service de-composition, it is often possible to identify
functionality that can be reused by other services if exposed as Web Services.
However, response times and memory requirements of Web Services often make
it impractical to expose core functionality in this manner.

We address this issue with a framework for call optimizations, which allows
software components to simultaneously and transparently function as both Web
Services and local Java objects in co-located services. Small, single purpose
components are easier to develop and maintain, less error-prone, and often
better matched to standardized functionality [5]. By mediating the technical
limitations imposed by Web Services, the use of these techniques provides a
programming model that offers transparency in the use of services in distributed
object-oriented modelling. As these techniques are optimizations of calls be-
tween co-located services, they are completely orthogonal to, and can be used
in conjunction with, service composition techniques such as BPEL4WS, WS-
AtomicTransaction and WS-Coordination.

A recent example of the application of these techniques is the construction of
a workflow execution engine. A workflow engine typically contains function-
ality for, e.g., workflow state coordination, task submission, job monitoring,
and log maintenance. By de-composing the engine functionality into a set of
cooperating services rather than a large, monolithic structure, reusable soft-
ware components are created and can be exposed as Web Services. The use
of the proposed call optimization framework makes the de-composition pro-
cess transparent to developers, provides improved fault tolerance though the
use of multiple service providers (for, e.g., job submission), and preserves the
performance of a single software component (an example from [3] and [4]).

3.2 Dynamic Service Re-Composition

Given a mechanism for service de-composition, a natural next step is to iden-
tify mechanisms to facilitate dynamic and transparent reconfiguration of Web
Services during runtime, here referred to as service re-composition. In most
service orchestration and choreography scenarios, this can be achieved using
late service binding and dynamic discovery of services. As in the case of ser-
vice de-composition, natural inefficiencies in these techniques may discourage
developers from using them to their full potential.

We employ a scheme for dynamic configuration of services into networks
of smaller, constituent services. Once again, this is a lower-level optimiza-
tion of the service interactions that does not compete with traditional service
orchestration techniques, but can rather co-exist with them. The scheme (out-

Service Composition Techniques 5

lined in Section 4.5) consists of services keeping local copies of configuration
modules that may at any time be updated by external means. All services
consult their respective configuration modules when making decisions about
what plug-ins to load, which services to interact with, etc. Once a transac-
tion with another service has been initialized, information about this process
is maintained separately. The benefits of using this scheme include increased
flexibility in development and deployment; access to transparent mechanisms
for redundancy, fault tolerance and load balancing; and ease of administration.

A practical example of the application of this technique is the internal work-
ings of the GJMF [3]. All services in the framework are configured using the
dynamic configuration technique described, allowing services to reshape the
network of services that collectively make up the higher-level functionality of
the framework. Note that this technique is completely transparent to service
orchestration and choreography approaches as it operates on a lower level. In
fact, in a service orchestration scenario it is expected that the configuration data
would be provided the service by the orchestration mechanism itself.

4. Architectural Design Patterns

The techniques presented here are intended to be used as architectural design
patterns to facilitate the development of scalable and composable Web Services.
Though they may be used individually, the techniques have proven to provide
synergistic effects when combined, both in development and deployment.

4.1 Software Design Patterns

In architecture design, we extensively employ the use of established software
design patterns [8] for the creation of efficient and reusable software components
with small system footprints. The Flyweight, Builder, and Immutable patterns
are used to create lean and efficient data structures. Patterns such as the Sin-
gleton, Factory Method, and Observer are deployed in a variety of scenarios to
create dynamic and composable software components. To enable components
to dynamically update and replace functionality, we use the Strategy, Abstract
Factory, Model-View-Controller, and Chain of Responsibility patterns. The
Facade, Mediator, Proxy, Command, Broker, Memento, and Adapter patterns
are used to facilitate, organize, abstract, and virtualize component interaction.

4.2 Immutable Wrappers & Service APIs

In this section, we present patterns used for data representation and service
APIs. The techniques presented combine design patterns and design heuris-
tics, and are aimed to simplify service client development and facilitate the
techniques presented in the following sections.

Passive data objects such as job and workflow descriptions are rarely modified
once created. A useful pattern for the representation of passive data objects is
to construct immutable data wrapper classes that provide abstraction of the data
interface. Embedding data validation in wrappers also simplifies data handling,
and is considered good practice in defensive programming. Typically, in Web
Service development, data representations are specified in service descriptions
and stub types are generated from WSDL. The use of wrappers around stub
types provides the additional benefit of encapsulating service engine-specific
stub behavior and incompatibility issues between service engines. The practice
of assigning unique identifiers, e.g., in the form of Universally Unique Identi-
fiers (UUID), to data instances facilitates the use of persistence models such as
Java object serialization and GT4 resource persistence, and provides services
and clients with synchronized data identifiers. By creating a service-specific
data translation component, it is possible to help service instances to translate
stubs to wrappers, and vice versa. The use of immutable wrappers and a des-
ignated translation component is illustrated in Figure 1. In the figure, software
components are illustrated as boxes, component interactions as solid arrows,
and dynamically discovered and resolved interactions as arrows with dotted
lines. Note that the service client APIs and back-end make use of immutable
data wrappers and are isolated from the stubs by the stub type translator.

Service Container Process \ Network \ Client Process
| |
SOAP I Web Service Call I SOAP
Engine ‘ SOAP ‘ Engine
Service [‘ Application
Resource Stub | | Stub PP
[y Web Service | | Stub Type
Interface Translator
Servi
ervice Web Service
Resource Stub Immutable Wrapper Client
Home
Stub Type Web Service
Translator Client API [%,
Service Service
v .
Back-End [Immutable Wrapper Client AP
. Factory
Service
. Local Call Local Call
Back-End .
L Client API
Factory Immutable Wrapper

Figure 1. Tllustration of local call optimizations for co-located services; dynamic resolution of
service client APIs, back-ends and resources; and the use of immutable data wrappers.

In the interest of software usability for developers, it is recommended to
provide client APIs with each Web Service. This practice allows developers

Service Composition Techniques 7

with limited experience of Web Service development to use SOAs transparently,
and offers reference implementations detailing service use. In service APIs, a
programming language interface, rather than a concrete implementation, should
be used to abstract the service interface. The API interface should furthermore
make strict use of wrapped data types in order to isolate it from changes in
underlying architectures, e.g., Web Service engine replacement.

4.3 Local Call Structures

The use of local call structures facilitates the development of components
that can be used both as generic objects and stand-alone Web Services. As illus-
trated in Figure 1, we propose a structure where Web Service implementations
are divided into separate components for service data, interface, and imple-
mentation. Here, the service data are modeled as WSRF resources, which are
dynamically resolved through the resource home using unique resource iden-
tifiers. The service interface contains the actual Web Service interfaces, and
handles call semantics, stub type translation, and parameter validation issues.
The service implementation back-end houses the service logic. It is dynami-
cally resolved using a service back-end factory that instantiates a unique service
implementation for each user, providing complete user-level isolation of service
capabilities and resources.

Separating the service interface from the service implementation makes it
possible for service clients that are co-located with the service (i.e., other ser-
vices running in the same service container) to directly access the service logic.
As illustrated in Figure 1, local calls bypass resource consuming data transla-
tions, credentials delegations, and Web Service invocations. For service noti-
fication invocations, the process is mediated through a notification dispatcher
that dynamically resolves service resources and provides optional notification
filtering and translation. Note that this scheme allows the GT4 resource per-
sistence mechanisms to function unhindered, and remains compatible with the
WSRF and WS-Notification specifications.

The resolution of the service back-end, and the local call logic, are encapsu-
lated and made transparent to developers through the use of service client API
classes. A service API factory provides appropriate service API implementa-
tions based on inspection of the service URLs, e.g., comparing IP address and
port number to the local service containers configuration to determine if a local
call can be made and wrapping the use of multiple (stateless) service instances
into a single, logical service client interface. The service API factory makes
this process transparent to the developer, which provides a set of service URLs
to retrieve a service client interface.

The use of local calls efficiently optimizes communication between co-
located services, but the main benefit of the technique is that it allows for

8

transparent de-composition of service functionality into networks of services.
This provides for a more flexible development model for services that can be dy-
namically re-composed with a minimum of overhead, a requirement for service
networks that rely on state update notifications for service coordination.

4.4 Policy Advisor and Mechanism Provider Plug-Ins

For situations where modules are to be dynamically provided and reused
within components, but not between them, we make use of dynamic plug-in
structures. Made up by a combination of programming language interfaces and
designated configuration points, plug-in modules are dynamically located and
loaded, and are considered volatile in the sense that they are intended to be
short-lived and dynamically replaceable.

Functionality provided by plug-ins can be divided into two major categories:
policy advisors and mechanism providers. A policy advisor implementation
is intended to function in a strict advisory capacity for scenarios where policy
logic is too complex to be expressed in direct configuration. The typical role
of a policy advisor is to provide decisions when asked specific questions (for-
mulated by the plug-in interface). This type of plug-in is useful for decision
support in, e.g., failure handling or job prioritization. Mechanism providers are
typically used for interface abstraction and integration point exposure. These
types of modules are used to provide, e.g., vendor-specific database accessors
or alternative brokering algorithms for job submitters.

Plug-in implementations should be light-weight, refrain from causing side-
effects, have short response times, be thread-safe, and use minimal amounts of
memory. Services using plug-ins should acquire the modules dynamically for
each use, and rely strictly on the plug-in interface for functionality. As plug-
ins can be provided by third party developers, and dynamically provided over
networks, the use of code signing techniques to maintain service integrity is
advisable. Grid security solutions that deploy Public-Key Infrastructures (PKI)
for associating X.509 certificates with users can also be used to provide key
pairs for code signing. When services provide user-centric views of service
functionality, per-user configuration of service mechanism is trivial to realize.

4.5 Dynamic Service Configuration

Configuration data for Web Services are typically expressed in XML and
loaded from local configuration files. Semantic Web Services provide con-
figuration metadata to facilitate a higher degree of automation in, primarily,
service composition and choreography. Similar to this approach, we employ
a simplistic architecture for dynamic configuration built on the interchange of
configuration data between services, and customized configuration modules to
be used within services. This approach allows services to be expressed as net-

Service Composition Techniques 9

works of services, and to dynamically adapt to changes in executional context
in a way that can be utilized by semantic service aggregators.

Central to our configuration approach is a dynamically replaceable config-
uration module. Each service maintains a configuration module factory that
instantiates configuration modules when needed. The manner in which data
contained in the configuration modules are acquired is encapsulated in the fac-
tory and can alternate between, e.g., polling of configuration files, triggering in
databases, querying of Grid Monitoring and Discovery Services, and notifica-
tions from dedicated configuration services.

Providing configuration data through dedicated configuration services allows
for transparent configuration of multiple services, where each service requests
configuration data based on current user identity and service location. Ded-
icated configuration services can monitor resource availability and perform,
e.g., load balancing through dynamic reconfiguration of networks of cooperat-
ing services. In terms of administrational overhead, this technique can alleviate
the managerial burden of administrating services as it provides a single point
of configuration for multiple service containers. As the local call structures
of Section 4.3 provide an automatic and transparent optimization of calls be-
tween co-located services, the configuration service may attempt to optimize
inter-service usage by favoring cooperation between co-located services.

In this scheme, services should never maintain direct references to configu-
ration modules, but rather rely on them as temporary factories for configuration
data. Interpretation of configuration data, type conversions, and data valida-
tion are examples of tasks to be performed by configuration modules. The
use of caching techniques for configuration modules, and the synchronization
and acquisition of raw configuration data should be encapsulated in configu-
ration module factories. As seen in Section 4.4, configuration data may also
be supplied in the form of plug-ins, in which case the configuration module is
responsible for the location and dynamic construction of these plug-ins. When
providing sensitive data, the personalization techniques of Section 4.3 can be
used to provide user-level isolation of service configuration.

4.6 Service Monitoring

The dynamic configuration solutions of Section 4.5 facilitate the deployment
of composite Web Services as networks of services. For reasons of system trans-
parency, it is equally important to make parts of this configuration available to
service clients, e.g., as WSRF resource properties. Consider a client submit-
ting workflows to a workflow execution service, which schedules and submits
a Grid job for each workflow task. In the interest of system openness, the client
should be provided means to trace job execution, e.g., from workflow down to
computational resource level. By publishing job End-Point References (EPR),

10

or log service URLSs, the service empowers clients with the ability to monitor
and trace job execution.

As mentioned in Section 4.2, data entities are provided unique identifiers
prior to Web Service submission. Using these identifiers as resource keys for
corresponding WSRF resources in Web Services allow clients with knowledge
of identifiers (and service URL) to create resource EPRs when needed. Stateful
services expose interfaces for listing resources contained in the services. For
efficiency, the information returned by these interfaces are limited to lists of
data identifiers (UUIDs). To improve usability and ease of development for
service clients, boiler-plate solutions for tools to monitor service content are
provided with each service. Although not further explored here, it should be
noted that these monitoring interfaces, as well as the wrappers and service APIs
of Section 4.2, are well suited for use in web portals and directly usable in the
JavaService Pages (JSP) environment.

5. Related Work

There exists numerous valuable contributions on how to design for service
composition and orchestration within both the fields of Grid computing and
service orientation. For reasons of brevity, however, this section only references
a selected number of related publications that directly touch upon the concepts
presented in our software development approach.

The authors of [6] provide a grouping of service composition strategies.
Our approach, containing late service bindings and semi-automatic service in-
teraction planning, falls into the semi-dynamic service composition strategies
category of this model. Brief surveys of service orchestration and choreog-
raphy techniques are given in [10] and [11], and an approach for developing
pattern-based service coordination is presented in [15]. Our work focuses on
design heuristics and patterns for dynamic and transparent service composition
in Grid contexts, and is considered orthogonal to all these techniques. The au-
thors of [2] investigate a framework for service composition using Higher Order
Components. Here, component Web Service interface generation is automated,
and services are dynamically configured and deployed. We consider this a dif-
ferent technique pursuing a similar goal, i.e., dynamic service composition.

The Globus Toolkit [7] and the Apache Axis Web Service engine both contain
utilities for local call optimizations. The Axis engine provides an in-memory
call mechanism, and the Globus Toolkit provides a configurable local invocation
utility that performs dynamically resolved Java calls to methods in co-located
services. These approaches provide a higher level of transparency in service
development, whereas our approach focuses on transparency for service client
developers. In terms of performance, direct Java calls are naturally faster than
in-memory Web Service invocations, and the GT4 approach suffers additional

Service Composition Techniques 11

overhead for the dynamic invocation of methods compared to our approach.
Additionally, GT4 does not currently support local invocations for notifications.

Recent approaches to Grid job monitoring are presented in [1] and [12], and
are here included to illustrate service monitoring functionality in dynamically
composable service networks. We strive to provide dynamic monitoring and
traceability mechanisms that are usable in external service monitoring tools,
rather than providing stand-alone service monitoring solutions.

6. Conclusions

We present an approach to Grid software development consisting of a num-
ber of architectural design patterns. These patterns, as presented in Section
4, provide a framework addressing service de- and re-composition. The pat-
terns presented can each be used individually, but provide synergistic effects
when combined into a framework. E.g., the unique identifiers of the immutable
wrappers that are used in service client APIs can also be used as resource keys
for service resources, providing a simple mechanism for client-service data
synchronization. Additional examples of synergistic effects are the coopera-
tive use of local call structures, dynamic configuration, plug-ins, and service
monitoring techniques: Local call structures reduce service footprints to a level
where services are usable for the creation of transparent service networks. As
service APIs and service API factories make the use of local calls transparent,
service client developers are given an automated mechanism for optimization
of service interaction. Employing dynamic configuration techniques to ex-
ploit the transparency of local calls then further increases flexibility in service
interaction and administration of multiple services. Plug-ins can in turn be
used to represent policy decisions, i.e., configuration semantics too complex
to be represented in direct configuration, to provide alternative mechanisms,
and expose integration points in services. Parts of service configuration can be
exposed through monitoring interfaces to provide system transparency and mon-
itorability, and services can employ replaceable plug-ins to utilize customized
monitoring mechanisms.

The patterns described provide individually useful mechanisms for system
architecture, and are orthogonal in design to each other and related technolo-
gies. Combined, they provide a framework for building lean and efficient Web
Services that can be used transparently in cooperative networks of services.

Acknowledgments

We are grateful to Johan Tordsson and the anonymous referees for providing
valuable feedback on, and improving the quality of, this work.

12

References

(1]

(2]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

A. N. Duarte, P. Nyczyk, A. Retico, and D. Vicinanza. Global Grid monitoring: the
EGEE/WLCG case. In GMW ’07: Proceedings of the 2007 workshop on Grid monitoring,
pages 9-16, New York, NY, USA, 2007. ACM.

J. Diinnweber, S. Gorlatch, F. Baude, V. Legrand, and N. Parlavantzas. Towards automatic
creation of Web Services for Grid component composition. In V. Getov, editor, Proceed-
ings of the Workshop on Grid Systems, Tools and Environments, 12 October 2005, Sophia
Antipolis, France, December 2006.

E. Elmroth, P. Gardfjill, A. Norberg, J. Tordsson, and P-O. Ostberg. Designing general,
composable, and middleware-independent Grid infrastructure tools for multi-tiered job
management. In T. Priol and M. Vaneschi, editors, Towards Next Generation Grids, pages
175-184. Springer-Verlag, 2007.

E. Elmroth, F. Herndndez, and J. Tordsson. A light-weight Grid workflow execution engine
enabling client and middleware independence. In R. Wyrzykowski et.al, editors, Parallel
Processing and Applied Mathematics. 7th Int. Conference, PPAM 2007. Lecture Notes in
Computer Science, Springer Verlag, 2007 (to appear).

E. Elmroth, F. Herndndez, J. Tordsson, and P-O. Ostberg. Designing service-based re-
source management tools for a healthy Grid ecosystem. In R. Wyrzykowski et al., editors,
Parallel Processing and Applied Mathematics. 7th Int. Conference, PPAM 2007. Lecture
Notes in Computer Science, Springer-Verlag, 2007 (to appear).

M. Fluegge, I. J. G. Santos, N. P. Tizzo, and E. R. M. Madeira. Challenges and techniques
on the road to dynamically compose Web Services. In ICWE ’06: Proceedings of the 6th
international conference on Web engineering, pages 40-47, New York, NY, USA, 2006.
ACM.

I. Foster. Globus toolkit version 4: Software for service-oriented systems. In H. Jin et al.,
editors, IFIP International Conference on Network and Parallel Computing, Lecture Notes
in Computer Science 3779, pages 2—13. Springer-Verlag, 2005.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

IBM. Business Process Execution Language for Web Services, version 1.1.
http://www.ibm.com/developerworks/library/specification/ws-bpel/, visited Febru-
ary 2008.

N. Milanovic and M. Malek. Current Solutions for Web Service Composition. /EEE
Internet Computing, 08(6):51-59, 2004.

C. Peltz. Web Services Orchestration and Choreography. Computer, 36(10):46-52, 2003.

M. Ruda, A. Kienek, M. Mula¢, J. Pospisil, and Z. Sustr. A uniform job monitoring
service in multiple job universes. In GMW ’07: Proceedings of the 2007 workshop on
Grid monitoring, pages 17-22, New York, NY, USA, 2007. ACM.

The Globus Project. An “ecosystem” of Grid components.
http://www.globus.org/grid_software/ecology.php, visited February 2008.

The Grid Infrastructure Research & Development (GIRD) project. Umed University,
Sweden. http://www.gird.se, visited February 2008.

C. Zirpins, W. Lamersdorf, and T. Baier. Flexible coordination of service interaction

patterns. In ICSOC ’04: Proceedings of the 2nd international conference on Service
oriented computing, pages 49-56, New York, NY, USA, 2004. ACM.

