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This document describes the use of Treebag, a system implemented in
Java that allows to generate and transform objects using tree grammars
and tree transducers. The basic ideas underlying Treebag are briefly
summarised in Section 1. In Section 2 the Treebag worksheet—the
main window of the system—is described. Section 3 explains the syntax
of files needed to define worksheet configurations and Treebag com-
ponents. In Section 4 the currently implemented classes of Treebag

components are described in detail.

Most parts of Treebag have been implemented using the Java
Standard Environments 1.3 and 1.4, but some of the newer ex-
tensions use version 1.5. Therefore, you should not use an older
version of Java. The latest Treebag version is always available
at http://www.cs.umu.se/˜drewes/treebag, the Treebag home page
which is updated whenever the implementation is improved or extended.
Changes usually concern small improvements or additions that are not
reflected in the version number. Therefore, please make sure that you
always use the version of this manual that corresponds to your Treebag

version, in order to avoid inconsistencies.

Attention Users who are familiar with previous Treebag versions
should notice an important (and, unfortunately, incompatible) change.
Version 1.3 differs from all previous versions with respect to the way in
which components are connected on the worksheet. See Section 1 for
the new conventions.
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1 What is TREEBAG?

Treebag is a system that allows to generate and transform objects of several types. This
is accomplished by generating and transforming trees (= terms) using tree grammars and
tree transducers, and interpreting the resulting trees as expressions that denote objects of
the desired type. For the latter, algebras are used, each algebra defining an abstract data
type (i.e., a set of objects together with a number of operations on them). Finally, there
are displays whose purpose is to visualise the generated objects on the screen. Tree gram-
mars, tree transducers, algebras, and displays are the four types of TREEBAG components
everything relies on. The system has been designed as a Java application, but can since
version 1.5 also be started from a web browser as an applet.

In order to explain the way in which Treebag works, some basic concepts are required.
A tree in the sense discussed here is a rooted and ordered tree whose nodes are labelled
with symbols from a ranked alphabet (or signature). A node which is labelled with a
symbol of rank n must have exactly n children. As an example, consider the signature
Σ = {+: 2, fac: 1} ∪ {c: 0 | c ∈ N} which contains the symbols + and fac of rank 2 and 1,
respectively, and all natural numbers, each considered as a symbol of rank 0. One of the
trees over this signature is shown in Figure 1. In a natural way such a tree can be regarded

+

11 fac

+

3 2

Figure 1: A tree over the signature Σ = {+: 2, fac: 1} ∪ {c: 0 | c ∈ N}

as a term. As a term, the tree shown in Figure 1 would be denoted +[11, fac[+[3, 2]]] or,
using infix notation for the binary symbol + in order to enhance readability, 11+fac[3+2].

An algebra interprets every symbol of the considered signature as an operation on the
domain of that algebra (where the arity of an operation equals the rank of the respective
symbol). Thus, every tree may be considered as an expression that denotes an element
of the domain. Taking the signature Σ from above as an example, one may, for instance,
choose the domain N and interpret + as addition, fac as the faculty function, and c ∈ N

as c. Then the number denoted by the tree which is depicted above is 131. It is important
to notice that the signatures and trees themselves do not have a particular meaning—one
can as well consider a totally different algebra to interpret the symbols in Σ. A tree as
such is pure syntax without meaning.

A tree grammar is any device that generates a language of trees. A tree transducer
transforms input trees into output trees according to some (possibly complex) rule. Now,
the main observation is that one can interpret the output trees of a tree grammar or tree
transducer by means of an appropriate algebra in order to obtain objects from the domain
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one is interested in. Thus, one can deal with all kinds of objects in a tree-oriented way
just by choosing the right algebra to interpret the trees. Many of the well-known systems
studied in formal language theory can be simulated nicely in this way. For a more detailed
and formal discussion see [DE98, Dre98a, Dre98b, Dre98c, Dre99].

Now, coming back to Treebag, the system allows to arrange instances of the four types
of components as nodes of an acyclic graph and establish input/output relations between
them. More precisely, the output of a tree grammar or tree transducer can be fed into
tree transducers and algebras. The output of an algebra (i.e., the evaluation result) can
be used as input for displays in order to visualise the respective objects (provided they
are of the correct type).

Users who are familiar with earlier Treebag versions should notice the change!
Instead of providing a display with input trees from a tree generator and with
an algebra which determines the interpretation of these trees, it is now the al-
gebra which receives the input trees and communicates the evaluation results
to the display. The display itself does not any longer have a direct connection
to the tree generator.

It must be stressed that each of the mentioned types of Treebag components consists
of several classes. There is, for example, one class that implements top-down tree trans-
formations and another one that implements the so-called YIELD mapping. Both are
tree transformations, but of a different type. Technically, the latter means that they are
implemented by different Java classes. In fact, one can add new types of tree transducers
just by implementing a corresponding class.

Every class of Treebag components defines its own syntax. This makes it possible
to load an instance of such a class—a concrete regular tree grammar or a top-down tree
transducer, for example—from a file. Furthermore, every class provides a set of commands
for interaction.

So far, the following classes of Treebag components are available:

• regular tree grammars, ET0L tree grammars and parallel deterministic total tree
grammars (a special case of ET0L tree grammars), and branching tree grammars;

• top-down tree transducers, YIELD mappings, macro tree transducers, and a meta-
class of tree transducers called iterator;

• algebras on truth values, integers, strings, trees, and two-dimensional collages, as
well as algebras that correspond to the chain-code and turtle formalisms, yielding
line drawings;

• displays for a textual representation of objects (which can be used to display truth
values, numbers, strings, and trees), for a graphical representation of trees, and for
collages and line drawings.

Because of the fact that arbitrary compositions of the available classes of tree grammars
and tree transducers can be built, these classes open a large number of possibilities. For
details see, e.g., [GS97, DE98, Dre98a, Dre98b, Dre98c].
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2 The TREEBAG worksheet

The Treebag worksheet is the main window of the system. To start it, make sure that
a java runtime environment is installed and knows where to search for your copy of the
Treebag class files (i.e., include the directory or the jar-file in your set of class paths).
Then, start Treebag using the command java gui.worksheet (to start with an empty
worksheet) or java gui.worksheet <file> (to load an existing worksheet configuration).1

Since version 1.5 Treebag can also be started from a web page as an applet. The applet
class to be called is gui.tbApplet.class. It makes use of the (optional) parameter file
– the file name of a local worksheet configuration to be loaded. (Note: Only one instance
of the applet at a time may be started. If, e.g., a browser starts a second, the first will be
terminated before the second starts its execution.)

Once the system has been started and the worksheet has appeared, the user can arrange
instances of Treebag components as nodes of an acyclic graph and establish input/output
relations by drawing edges between these nodes. More precisely, the worksheet allows to
do the following.

2.1 The worksheet and component commands

These commands are accessible from the menu bar of the worksheet. Alternatively, one
may press the right mouse button (or whichever button is the “popup button”) on a free
area of the worksheet. Using the worksheet commands, the following can be done.

Saving a configuration The “Save. . . ” item of the worksheet menu allows to save the
current configuration. In addition to the structure of the configuration graph the
information is saved which of the nodes are currently “open” (see below). Loading
the configuration later on will open the respective nodes, too. Furthermore, if the
size of the worksheet window has been changed (i.e., if it differs from the default
size) that information is stored, too. Notice, however, that neither the current state
of components nor available ReadMe information (see Section 3.1) is recorded.

Adding a configuration Using the “Add. . . ” item one gets a file selector in order to
select a configuration file. The corresponding configuration is then added to the
worksheet. (For more details see the description of the syntax of configuration files
in Section 3.)

Loading a configuration The “Load. . . ” item works just like “add” except that the
current configuration is removed from the worksheet when the new one is loaded.

Clearing the worksheet Selecting the item “Clear” will remove all nodes from the
worksheet.

Exiting TREEBAG As one might expect, selecting the item “Quit” will terminate
Treebag.

The component commands allow the user to do two additional things:

1This is how it works on Unix, Linux, and Mac OS X systems. For Windows the procedure should

essentially be the same.
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Loading an instance of a TREEBAG component Selecting the item “Add compo-
nent. . . ” will open a file selector which can be used in order to select the file de-
scribing the instance to be loaded (see Section 3 for details on the syntax of these
files). The same can, however, be accomplished in a quicker way by performing a
double click somewhere on a free area of the worksheet. The new instance will in
this case appear at the position determined by the double click.

Creating an instance of a TREEBAG component in an editor The command
“Create component. . . ” opens an editor window in which a new Treebag compo-
nent can be created. (See below for a short description of the editor.) Once the file
has been saved and could be successfully parsed, a corresponding node will appear
on the worksheet.

2.2 The editor

The textual descriptions of Treebagcomponents can be edited using any editor. How-
ever, Treebag also provides its own simple editor. It can be used to create new Treebag

components (see above) or to edit existing ones. Per default, saving an edited file will auto-
matically attempt to load resp. reload the component from the saved file. This behaviour
can be changed using the menu item “Auto (re)load” provided by the menu “Options”.

2.3 Creating, redirecting, and deleting edges

New edges can be created by selecting (by single mouse clicks) first the source and then
the target node of the desired edge. As mentioned above, if the source node represents a
tree grammar or tree transducer then the target should be a tree transducer or an algebra.
The other possibility is that the first node is an algebra and the second is a display. Tree
grammars never accept ingoing edges whereas displays can never have outgoing ones. Any
attempt to create a “wrong” edge will simply be ignored. In particular, one may cancel
the creation of an edge by clicking somewhere on the worksheet instead of selecting a valid
target node for this edge.

If a new edge is created, then the system removes any old edge with the same target.
In addition, one can disconnect an edge from its target in order to redirect it to some
other node. For this, just click at the edge. This can also be used to delete an edge by
disconnecting it from its target and then clicking somewhere else on the worksheet.

2.4 Dragging nodes around

Nodes can be positioned by dragging them with the mouse in the usual way.

2.5 Opening nodes

A node v can be “opened” by a double-click. If v represents an instance of a display
component the double-click opens its display window. If v is of another type or its dis-
play window has already been opened before, the double-click raises a small control pane
containing a number of buttons. The buttons correspond to the commands offered by the
component. As mentioned above, these commands differ from class to class (see Section 4
for details).

Since version 1.6 the control pane is not opened in its own top-level window any more.
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Instead, it becomes a section of a larger window containing all opened control panes. This
is intended to reduce the clutter on the screen.

The commands offered by a component may also be invoked by pressing the right mouse
button (or, more correctly, the popup trigger of the window manager used) on a node. As
a result, a popup menu containing the available commands becomes visible. Pressing the
right mouse button on a free area of the worksheet is an alternative way of getting access
to the general commands provided by the menu bar.

2.6 Commands provided by all component types

There are three standard commands which each and every Treebag component under-
stands: reload, delete, and edit. The first updates a node when the file from which is was
initially loaded has been changed. This operation will succeed only if the object described
in the respective file still belongs to the same class. If not, or the file contains syntax er-
rors, a message box appears and the operation is cancelled. The delete command deletes
a node from the worksheet. Finally, edit opens the respective file in the Treebag editor.

3 Syntax

All Treebag input files are pure ASCII files that can be created and modified using any
standard text editor. There is a common syntax for comments. A comment starts with a
% and extends towards the end of the line (like in TEX and LATEX). Such comments can
occur in all sensible places, except in the midst of an input token (which hardly anyone
would consider a sensible place for a comment, I suppose).

As usual, the syntax descriptions below are given in the form of context-free productions
(neglecting the possibility of comments), where ::= separates left- and right-hand sides.
In addition, the following conventions are used.

• Nonterminals are always enclosed in angle brackets and are written in italics, like
<nonterminal>.

• For terminal symbols a typewriter font is used, like terminal.

• The symbols [, ], |, *, +, (, and ) are meta-symbols (unless a typewriter font is
used): square brackets [· · ·] enclose optional parts, | separates alternatives, some-
thing∗ denotes zero or more occurrences of something, and something+ denotes one
or more occurrences of something. Parentheses are used for grouping, in order to
avoid ambiguities.

There are basically two different sorts of input files. The first one is the configuration file.
Such a file describes a worksheet configuration that can be loaded using the “load” item
of the worksheet menu. The second is the sort of file describing an instance of a Treebag

component.

3.1 Configuration files

A configuration file mainly consists of a list of node definitions and a list of edges. Op-
tionally, there may be a line defining the size of the worksheet (in pixels). Two further
optional parts may be added at the very end of the configuration file. The first consists of
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lists of commands that shall be executed automatically after loading. The second allows
you to add a description of how to use this worksheet, or any other useful information. If
you add such information, the lower right corner of the Treebag worksheet will display
a ReadMe button that lets a corresponding text window pop up.

A node definition is mainly a file name together with the Cartesian coordinates of the
node on the worksheet. In addition, a node definition says whether the node is to be
opened and it provides the opportunity to execute a list of commands after loading (which
is equivalent to the optional part mentioned above). The syntax is case insensitive with
respect to keywords. It is defined as follows:

<configuration> ::=
Worksheet configuration

[ <worksheet size> ]
<component>∗

[ Edges are <edge>∗ ]
end

[execute initially (<nat>: <commands>)∗ ]
[info: <arbitary text>]

<worksheet size> ::= Worksheet size is (<nat>, <nat>)

<component> ::=
Component <nat> is

[ <nat> up ] "<path name>" at (<nat>, <nat>) *∗

[ with <commands> ]

<commands> ::= [<nat>] "<command>" (, [<nat>] "<command>")∗

<edge> ::= <nat> -> <nat>

Here, <nat> is a natural number, <path name> is the path name of a file that defines a
component. If a relative path name is used then it is regarded as being relative to the nth
parent directory of the configuration file’s directory. Here, n is the number in the optional
part <nat> up if present, and 0 otherwise. (This may seem somewhat complicated, but it
makes it possible to avoid the use of platform dependent notation for path names at least
in those rather frequent cases in which a file resides in a parent directory. If you do not
care about platform independence of your configuration files you may just use the usual
path names.).

As mentioned above, the optional clause with <commands> lets you specify a list of
commands to be executed initially by the component. In the definition for <commands>,
the optional <nat> is a multiplicity and <command> is a command recognized by the
component. An alternative place to specify such commands is the optional part starting
with execute initially. Here, the addressed component is identified by its number,
followed by a colon and the list of commands (again possibly with multiplicities). If both
with clauses and execute initially are present, the commands specified in the former
are executed first.
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Note that, when a worksheet is saved, neither the commands to be executed initially nor
the ReadMe information is stored. There is, however, an easy way to keep such information
by using the include directive (see Section 3.2.5): Split the definition into two files and
load a third one including both of them. Thus, the main file contains only the two lines

#include(worksheet.main)

#include(worksheet.opt)

while worksheet.main contains the “raw” worksheet and worksheet.opt contains every-
thing following the keyword end. Then, whenever you wish to save your worksheet, save
it to worksheet.main. However, inconsistencies may of course be created if components
are deleted.

Components must be numbered consecutively, starting with 0. The sequence of stars fol-
lowing the coordinates determines how many times the component should receive opening
requests (for displays 0, 1, and 2 are sensible, for other components usually only 0 and 1).
Thus, if you load (on a UNIX machine, for instance) a configuration file like

Worksheet configuration

Component 0 is 2 up "display" at (324,161) **

Component 1 is "grammar" at (163,86) * with 2 "advance"

Component 2 is 1 up "algebra" at (130,177)

Edges are

1 -> 2

2 -> 0

end

execute initially

0: "auto zoom"

1: 3 "advance"

and this file is found in the directory /home/someone/test then Treebag will (try to)
create new nodes representing instances of Treebag components which it loads from the
files /home/display, /home/someone/test/grammar, and /home/someone/algebra. After-
wards, it will draw edges from the grammar to the algebra and from the algebra to the
display and open the display as well as the control panels of the display and the grammar
(provided these are indeed the types of the loaded components). Finally, the command
“auto zoom” and five times the command “advance” are invoked on the respective com-
ponents.

3.2 Component definitions

Instances of Treebag components are defined using the following syntax:

<component> ::= <class name> [ ( <name> ) ] : <instance>

Here, <class name> is the name of the (Java) class the component belongs to, <name> is
an optional name one may provide (see below for the syntax of names), and <instance> is
the actual description of the instance of <class name> to be created. The latter must use
the syntax defined by this class, which is described separately for each class in Section 4.
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(Internally, what happens is that the worksheet dynamically tries to find the implementa-
tion of <class name>, load it, create an instance, and then invoke an initialisation method
of this instance, which parses the <instance> part of the file.)

In order to ensure as much syntactic consistency as possible the parsers have been imple-
mented in a modular way, so that, for instance, all classes use the same notation for trees.
These common syntactic figures are described in the following.

3.2.1 Numbers

Natural numbers (<nat>) are denoted in decimal notation, as usual (including 0). An
integer (<int>) is a <nat>, optionally preceded by a minus sign. Non-negative rational
numbers (<rat+>) are denoted in decimal, too, with an optional decimal point. Rational
numbers (<rat>) can be preceded by a minus sign. Finally, <rat[a,b]> stands for all rational
numbers between a and b (a and b included).

3.2.2 Names

A <name> is either a non-empty string entirely consisting of letters, digits, and the
symbols +, -, *, /, ., , <, >, @, and ;, or it is a string enclosed in double quotes which
itself does not contain double quotes. (As a result, the double quote " cannot be part
of a name. All other symbols, including newline characters, are allowed to occur within
names.)

3.2.3 Sets and tuples

The usual mathematical notation is used for sets (which are always finite) and tuples.
Thus, a set has the form { [ <element> (, <element>)∗ ] } and a k-tuple is written
( <item1>, . . . , <itemk> ).

3.2.4 Symbols, signatures, and trees

A (ranked) <symbol> has the form <name>:<nat>, the natural number being its rank.
A <signature> is a set of symbols. Trees are denoted as terms in the usual way, direct
subtrees being enclosed in square brackets and separated by commas. Furthermore, infix
notation may be used for trees having exactly two direct subtrees. In this case the tree
must be enclosed in parentheses. Altogether, this amounts to the following syntax for
trees:

<tree> ::= <name>
| <name>[ <tree> (, <tree>)∗ ]

| ( <tree> <name> <tree> )

Thus, f[(a + foo["s y m"]), g[0]] and f[+[a, foo["s y m"]], g[0]] denote the
same tree. For a signature Σ, a tree t is a tree over Σ if f : k is a symbol in Σ for every
subtree f [t1, . . . , tk] of t.

3.2.5 File inclusion

Sometimes it is useful to divide a component definition into several files, for example if
several components have large parts in common that must be changed from time to time.
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For this, Treebag has the include directive #include(<filename>). Here, <filename>
may be any string whatsoever, where \ is treated as an escape character. Thus, \<char>
yields the character <char>. This is important only in two cases: \\ yields a single
backslash and \) yields a closing parenthesis. The include directive may occur in any place
and the included file may contain any substring of the component definition. Recursion is
allowed, i.e., included files may themselves contain include directives. Of course, it is not
a good idea to create cyclic inclusions. Include directives that are split into pieces which
are distributed over several (included) files are not recognized.

4 Classes of TREEBAG components

In this section the available classes of Treebag components are described briefly. It is
not the purpose of this manual to explain the theoretical concepts behind these implemen-
tations in a very detailed manner. For this, the reader is referred to the literature (see the
references given below). Here, the emphasis is laid on explaining how the implemented
Treebag classes work. In particular, the available commands and the class-specific part
of the syntax (i.e., the part denoted by <instance> in the last section) are described for
each class.

The standard commands reload, delete, and edit, which every Treebag component ac-
cepts, have been described at the end of Section 2 and are therefore not explicitly men-
tioned below.

4.1 Tree grammars

4.1.1 Regular tree grammars (class generators.regularTreeGrammar)

Mathematically, a regular tree grammar is a 4-tuple (N,Σ, R, S), where N is a set of
nonterminals, Σ is a signature, R is a set of productions A→ t consisting of a nonterminal
A ∈ N and a tree t over Σ∪N (where the nonterminals are considered as symbols of rank
0), and S ∈ N is the start symbol. It is required that Σ does not contain any symbol A: 0
for which A ∈ N . The tree language generated by such a grammar is the set of all trees
over Σ that can be derived from S by repeatedly applying productions in the obvious way,
i.e., replacing a nonterminal with the right-hand side of an appropriate production (see
[GS97] for details). In addition, in Treebag one can assign a weight to every production.

Syntactically, in Treebag the set of nonterminals is a set of names. The syntax for
productions is <name> -> <tree> [ weight <rat+> ]. For example, the following is a
syntactically correct regular tree grammar:

( { left, somewhere },

{ left:2, .:2, 0:0 },

{ left -> left[left[left, somewhere], somewhere] weight 4,

left -> 0,

somewhere -> (somewhere . somewhere),

somewhere -> 0 },

left )
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The grammar generates all trees with zeroes as leaves, such that the leftmost branch
consists of an even number of left symbols and all the other symbols (except leaves) are
dots.

The implementation of regular tree grammars basically provides two modes, called enu-
meration and random generation mode. The enumeration mode yields an enumeration
of the tree language generated by the grammar. In this mode the main commands are
advance (compute the next tree in the enumeration), reset (return to the first tree), and
random generation (turn to random generation mode). In addition, there is the command
derive stepwise, which yields a stepwise derivation of the current tree of the enumeration.
An application of this command makes the grammar turn to the start of the derivation
and brings up the additional commands single step (perform a single step of the deriva-
tion), parallel step (perform several steps of the derivation by applying productions to
all nonterminals in parallel), back (undo the last single or parallel step), and results only
(return to the enumeration mode).

The random generation mode iteratively applies productions to all nonterminals in par-
allel, using a random choice depending on the weight of productions. Here, the main
commands are refine (replace all nonterminals in the current tree by the right-hand sides
of randomly chosen productions), back (undo one refinement step), enumeration (apply
terminating productions and return to enumeration mode), and reset (return to the ini-
tial nonterminal). As mentioned above, the random choice taken in the refinement step
depends on the weight of productions (the default weight being 1). If w is the sum of
the weights of all productions with left-hand side A and one of these productions has
weight w0, then this production will be chosen with probability w0/w (where 0/0 = 0, by
convention). In case of the sample grammar above, for instance, this would mean that the
first production is applied to an occurrence of the nonterminal left with probability 4/5.

4.1.2 Parallel deterministic total tree grammars (class generators.pdtGrammar)

Parallel deterministic total tree grammars are a very special, yet frequently useful class
of tree grammars. They are similar to regular tree grammars, except that, for every
nonterminal, there must be exactly two productions the second of which is terminating
(i.e., contains no nonterminals). Derivations are maximum parallel, applying n times the
first production to all nonterminals in parallel, and then, finally, the second production
(which corresponds to the derivation mode of table-driven L-systems, with a fixed number
of two tables). Thus, for every n > 1 there is exactly one tree tn that can be derived by a
derivation of length n. The generated language is the set {t1, t2, . . .} of all these trees.

The syntax is like the one for regular tree grammars, the difference being that the two
productions for each nonterminal are denoted as <name> -> <tree> | <tree> (where the
left-hand side is the nonterminal and the two trees are the first and second right-hand
side, separated by |). Because of the deterministic nature of these grammars, productions
cannot be assigned a weight. An example is
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( { start, left, right },

{ left:2, right:2, .:2, 0:0 },

{ start -> (left . right) | (0 . 0),

left -> left[left, left] | left[0, 0],

right -> right[right, right] | right[0, 0] },

start )

which generates all trees (t . t′) such that t and t′ are fully balanced trees of equal height,
where t consists of the symbols left and 0, and t′ consists of the symbols right and 0.

The implementation provides enumerations of the generated terminal and nonterminal
trees, the nth tree in the enumeration being the one that can be derived by a parallel
derivation of length n. The basic commands are advance (turn to the next tree in the
enumeration), back (return to the previous tree in the enumeration), and reset (return to
the first tree). In addition, the commands terminal results and nonterminal results allow
to switch between terminal and nonterminal output terms.

4.1.3 ET0L tree grammars (class generators.ET0LTreeGrammar)

ET0L tree grammars are a tree-grammar version of the well-known ET0L-systems (ex-
tended context-free Lindenmayer systems with tables). They are parallel grammars which
generalize the previously described class generators.pdtGrammar.

Syntactically, an ET0L tree grammar is a regular tree grammar except for the following
differences. The set of rules is now a set of sets of rules {R1, . . . , Rn}. Each set Ri is
called a table. The output signature is allowed to intersect with the set of nonterminals
and instead of the initial nonterminal one can, more generally, specify an initial tree called
the axiom. An example is

( { c },

{ root:1, a:2, b:2, c:0 },

{ { c -> a[c, c] }, { c -> b[c, c] } },

root[c] ).

Derivations start with the axiom. A derivation step is made by choosing a table and
then replacing all nonterminals in parallel, using rules of the chosen table. If, for a given
nonterminal A, the table does not contain an appropriate rule, then the implicit rule
A -> A is applied (i.e., A stays as it is). The example above is deterministic in the sense
that every table contains only one rule for each nonterminal. In this case, the result
of a derivation is uniquely determined by the chosen sequence of tables. (The grammar
generates all trees of the form root[t] such that t is a fully balanced binary tree whose
internal nodes are labelled with a respectively b, whose leaves are labelled with c, and
where nodes at the same distance from the root have identical labels.)

The last syntactical deviation from regular tree grammars is that one may add, as a
fifth component (i.e., after the specification of the initial nonterminal and separated by
a comma) a regular expression which specifies the admissible table sequences. In such
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a regular expression, the numbers 1, . . . , n denote the tables, juxtaposition denotes con-
catenation of table sequences, commas separate alternatives, E* denotes arbitrarily many
repetitions of E (i.e., the Kleene star), E+ denotes at least one repetition of E (which is
equivalent to EE*), square brackets enclose optional parts, and parentheses (· · ·) are used
to override the precedence rules. Without parentheses, * and + bind strongest, concatena-
tion binds second strongest, and commas bind weakest. For instance, in a grammar with
three tables, the expression (1,2 3)*2+ requires admissible table sequences to start with
a sequence of tables 1, 2, and 3 where tables 2 and 3 occur only in direct succession (and
in this order). After this initial part, the sequence must end with at least one application
of table 2 (note the space between 2 and 3; without it, this would refer to table number
23).

The implementation of ET0L tree grammars translates such a grammar into a regular tree
grammar whose output signature is monadic, and a top-down tree transducer (see [ERS80]
for the theory behind). Roughly speaking, an output tree of the regular tree grammar
determines the table sequence (every symbol corresponds to a table) and the top-down
tree transducer implements the actual rules, using the input symbols in order to choose
the tables consistently. The parsing routine of the class generators.ET0LTreeGrammar

stores the two components in files named file.1 and file.2, where file refers to the parsed
file. (The two files are syntactically correct descriptions of Treebag components and can
therefore be studied or loaded onto the worksheet if someone wants to do so.)

The available commands are rather similar to those of regular tree grammars. There
are two basic modes: table enumeration (the initial one) and random tables. The first
implements an enumeration of the table sequences. In this mode, the following commands
are available:

• advance turns to the next table sequence in the enumeration. A derivation based
on this sequence is chosen nondeterministically, and the resulting tree is the output
tree. If the grammar is deterministic, this yields an enumeration of the generated
tree language;

• reset returns to the first table sequence;

• derive stepwise is similar to the corresponding command of regular tree grammars
and allows to view the current derivation step by step, using the commands deriva-
tion step (perform one parallel step of the current derivation), back (back up one
step), and results only (switch back to the state in which only the terminal results
of derivations are shown);

• random generation switches to the second main mode.

If the grammar contains nondeterministic tables, an additional command new derivation
is available. Upon invocation, it randomly chooses a new derivation based on the current
table sequence (which is not affected by the command).

In the random tables mode a derivation based on a random table sequence is performed
using the commands refine, back, and reset, similar to the corresponding mode of regular
tree grammars. Note, however, that only the table sequence is chosen at random. If the
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grammar is nondeterministic, the command new derivation should be used in order to get
further output trees.

Pragmatically, if you do not restrict the table sequences by a regular expression, it is often
a good idea to have one or more tables which contain terminating rules for all nonterminals.
In this case, the translation into a regular tree grammar and a top-down tree transducer
guarantees that the enumeration mode yields only defined results (which may otherwise
fail to be the case because the tree transducer does not always turn a table sequence into
a terminal tree).

The translation of the optional regular expression into a regular tree grammar does not
perform state minimization. Therefore, it is not as efficient as one would like it to be.
Moreover, depending on the expression used, certain table sequences may occur repeatedly
in the table enumeration mode.

4.1.4 Branching tree grammars (class generators.BSTGrammar)

This class implements branching tree grammars introduced in [DE04] (with some slight
deviations, some of them being motivated by the use of these tree grammars in [Dre05]).
The following description assumes that the reader is familiar with the definition of this
type of tree grammars. Very roughly speaking, branching tree grammars generalize ET0L
tree grammars using the concepts of branching synchronization and nested tables, as
follows. Rather than having only one set of tables, the tables of a branching tree grammar
are organized into a hierarchy of supertables consisting of n levels (where n, the nesting
depth, is fixed for every grammar). In addition, every nonterminal in the right-hand side
of a rule is given n so-called synchronization symbols. These synchronization symbols
are accumulated into n strings of synchronization symbols during a derivation. (Since
derivations are fully parallel, all these strings will be of the same length.) Now, if the first
k strings of synchronization symbols of two nonterminals are equal, rules from the same
supertable at depth k must be applied to them.

Syntactically, the description of a branching tree grammar is similar to an ET0L tree
grammar, with the following differences:

• The nesting depth n and the set of synchronization symbols are specified as the third
and fourth components (i.e., after the set of nonterminals and the output signature).

• The table structure is denoted as a nested hierarchy of sets of rules. Thus, for n = 0
it is just a set of rules (as in a regular tree grammar), for n = 1 it is a set of sets of
rules (as in an ET0L tree grammar), and so on.

• Each nonterminal in the axiom and in the right-hand side of a rule is followed by n
synchronization symbols between angular brackets and separated by white space.

The definition of the actual grammar can be preceded by two optional statements (sepa-
rated by commas if both are present):

1. [no] implicit rules

determines whether or not implicit rules (replacing a nonterminal with itself, by
convention using the first synchronization symbol in all places) should be added if a
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left-hand side is not present in a table. The default is that no such rules are added.

2. (plain | normal | extended) translation
allows to choose between three different types of translation. Internally, a branching
tree grammar is translated into a regular tree grammar and a chain of n top-down
tree transducers. Plain translation is the one given in [DE04], which is theoretically
correct but practically not very useful as many of the simulated derivations will
yield undefined and/or identical results. Normal translation (the default) tries to
avoid this effect but shares with plain translation the unpleasant property that it
is sometimes quite inefficient since unnecessarily large intermediate trees are gener-
ated internally. Extended translation often solves this problem, but may in certain
(seldom?) cases result in exponentially large state sets. As a rule of thumb, try ex-
tended translation if normal translation seems to result in an inefficient generation
process or many of its derivations yield undefined output trees.

Similar to ET0L tree grammars, the choice of tables at depth 1 can be restricted by a
regular expression which is optionally added after the axiom and separated from it by
a comma. The only difference is that the supertables at depth 1 must be given names
(rather than using numbers), which is optional in the definition of (super)tables. For
this, rather than simply using set notation {· · ·}, the desired name is specified using the
syntax table "<string>" {· · ·}. The names defined in this way are then used in the
regular expression (also in double quotes) in order to refer to tables. As another means
to influence the generation process, tables can be given weights (the default being 1) in
order to change their relative frequency in random tables mode.

Here is an example of nesting depth 2, where the first supertable at depth 1 is named but
no regular expression is given (i.e., the name is superfluous):

extended translation

( { C, E },

{ F:4, G:3, H:1, a:0 },

{ 1, 2 },

2,

{

table "xyz" {

{

C -> G[E<1 2>, C<1 1>, E<1 2>],

E -> H[E<1 1>]

},

{

C -> G[E<1 2>, C<1 1>, E<1 2>],

E -> H[E<1 1>]

}

},

{

{
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C -> a,

E -> a

}

} weight 0

},

F[C<1 1>,C<1 1>,C<1 1>,C<1 1>] )

The fact that the second supertable at depth 1 has been given the weight 0 implies that
it will never be chosen in a derivation in random tables mode (which may be intended
because this table is terminating). Assigning weights to tables at nesting depth 1 has no
effect if admissible table sequences are specified by means of a regular expression.

The available user commands are similar to those known from ET0L tree grammars,
except that the command new derivation is replaced with choose new supertables at depth
i for all i ∈ {2, . . . , n} as well as choose new rules. Thus, applying the command choose
new supertables at depth i will make new random choices for the supertables at depth i
and below (but keep those above) and the command choose new rules will make a new
random choice of rules (but keep the tables). The latter is only available if the grammar
is nondeterministic. (Clearly, the command choose new supertables at depth i is useless if
no supertable at depth i − 1 contains more than one subtable, but the command will be
available in any case.)

To avoid confusion, it should be pointed out that the class allows nonterminals to be
output symbols, as in [Dre05, Section 6.3], but in constrast to the original definition in
[DE04]. As discussed in [Dre05, Section 6.3.1], such branching tree grammars have one
“hidden” level of synchronization. To cope with this fact, the implementation internally
inserts a new supertable above the supertable at depth 0. Externally, this becomes visible
only in two ways. The table enumeration mode does not any more enumerate all sequences
of tables at depth 1. It merely increases the length of derivations (because what it actually
does now is enumerating all sequences of tables at depth 0 – and there exists only one
of them). Correspondingly, the command choose new supertables at depth i is now also
available for i = 1.

Finally, there is a pair of commands called show sync info and hide sync info. If the former
is invoked, the grammar will generate trees in which the nonterminals are given monadic
subtrees that represent the synchronization strings. Thus, to exploit this you should use
a free term algebra and a tree display.

4.2 Tree transducers

4.2.1 Deterministic bottom-up tree transducers (class generators.dbuTransducer)

A bottom-up tree transducer is a tuple consisting of an input signature Σ, an output
signature Σ′, a set Γ of states which are considered as symbols of rank 1, a set of rules, and
a set F ⊆ Γ of final states. The signatures Σ and Σ′ must not contain any symbol f : 1 such
that f ∈ Γ. The rules are left-linear term rewrite rules of the form f [γ1[x1], . . . , γn[xn]]→ t,
where γ1, . . . , γn ∈ Γ, f :n ∈ Σ, and t is a tree over Σ′ ∪ {x1, . . . , xn} with a root symbol
in Γ on top. It is required that the bottom-up tree transducer be deterministic, i.e., the
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left-hand sides of the rules are pairwise distinct. (This is only a very straightforward
implementation. If you need nondeterminism, have a look at the class of top-down tree
transducers, whose implementation is more sophisticated.)

The transformation of an input tree s is performed by applying rules until the root is
reached (unless the procedure terminates earlier, because there are no applicable rules),
i.e., the tree is of the form γ[t]. In this case, t is the output tree, provided that γ ∈ F .
Otherwise, the output is undefined. For a more thorough introduction to top-down tree
transducers see [GS97, FV98] and the references cited there.

Syntactically, the set of states is a set of names. As an example, one may consider the
following deterministic bottom-up tree transducer:

( { f:2, a:0, b:0 },

{ 1:2, 2:2, a:0 },

{ p, q },

{ a -> q[b], b -> p[b],

f[q[x1],q[x2]] -> q[x1],

f[p[x1],q[x2]] -> p[1[x1,x1]],

f[p[x1],p[x2]] -> p[1[x1,x1]],

f[q[x1],p[x2]] -> p[2[x2,x2]] },

{ p } )

This tree transducer checks whether there is a b in the input tree. If not, it is undefined.
Otherwise, it takes the path to the left-most b and turns (by copying) into a complete
binary tree. The internal nodes of the binary tree are 1s and 2s, indicating the path to
the occurrence of the original b in the input (i.e., the left-most one).

In its default mode a deterministic bottom-up tree transducer performs complete com-
putations, producing the corresponding output tree every time it receives an input tree
(provided that the result of the computation is defined). Similar to the implementation of
regular tree grammars there is a stepwise mode that allows to view in a stepwise manner
the computation which yielded the current output tree.

The available commands are derive stepwise (switch to “stepwise” mode, yielding the
additional commands single step and back, and results only, similar to the respective
commands of regular tree grammars).

4.2.2 Top-down tree transducers (class generators.tdTransducer)

A top-down tree transducer is a tuple consisting of an input signature Σ, an output
signature Σ′, a set Γ of states which are considered as symbols of rank 1, a set of rules, and
an initial state γ0 ∈ Γ. The signatures Σ and Σ′ must not contain any symbol f : 1 such that
f ∈ Γ. The rules are left-linear term rewrite rules of the form γ[f [x1, . . . , xn]]→ t, where
γ ∈ Γ, f :n ∈ Σ, x1, . . . , xn are pairwise distinct variables, and t is a tree over Σ′, which
may in addition contain subtrees of the form γ′[x], where γ′ ∈ Γ and x ∈ {x1, . . . , xn}.
The transformation of an input tree t0 is performed nondeterministically, starting with
γ0[t0] and applying rules until no state is left, i.e., a tree over Σ′ is obtained. For a more
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thorough introduction to top-down tree transducers see [GS97, FV98] and the references
cited there.

Syntactically, the set of states is a set of names. A variable consists of the letter x, followed
by a decimal non-negative integer (without leading zeroes). As in the case of regular tree
grammars, rules can be assigned a weight in order to influence the nondeterministic choice
of rules. As an example, one may consider the following top-down tree transducer:

( { f:2, a:0, b:0 },

{ f:2, a:0, b:0 },

{ start, a, b },

{ start[f[x1, x2]] -> f[a[x2], a[x2]] weight 2,

start[f[x1, x2]] -> f[b[x1], b[x1]],

a[f[x1, x2]] -> f[a[x2], a[x2]],

a[a] -> a,

a[b] -> a,

b[f[x1, x2]] -> f[b[x1], b[x1]],

b[a] -> b,

b[b] -> b },

start )

The transformation computed by this top-down tree transducer is undefined for the input
trees a and b (since no rule applies to start[a] or start[b]). For every other input
tree there are two possible results, the first one being twice as probable: Either the tree
is turned into a fully balanced binary tree over f and a whose height is the length of the
rightmost branch of the input tree, or it is turned into a fully balanced binary tree over f
and b whose height is the length of the leftmost branch of the input tree.

In its default mode a top-down tree transducer performs complete random derivations,
producing an output tree every time it receives an input tree (provided that there is at
least one output tree).2 Similar to the implementation of regular tree grammars there is a
stepwise mode that allows to view in a stepwise manner the derivation which yielded the
current output tree. By default, subsequent computations use equal initialisation values
for the random number generator that chooses between applicable rules. This turns out to
be useful because it produces more comprehensible results in most of the typical situations.

The available commands are derive stepwise (switch to “stepwise” mode, yielding the addi-
tional commands single step, parallel step, back, and results only, similar to the respective
commands of regular tree grammars). If the transducer is nondeterministic (i.e., at least
one combination of a state and an input symbol occurs twice as a left-hand side), there
are the additional commands new random seed (compute another output tree, using a new
initialisation value for the random number generator), and variable random seed (always
use a new random seed). In the latter case one can switch back using the command fixed
random seed.

2A perhaps nicer implementation of top-down tree transducers would produce an enumeration of all

possible output trees, but this has not yet been implemented.
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4.2.3 Tolerant top-down tree transducers (class generators.ttdTransducer)

This class is a variant of the top-down tree transducers described above. The behaviour
and the available user commands are exactly the same as in that case, except for the fact
that an implicit rule

q[f [x1, . . . , xn]] → f [q[x1], . . . , q[xn]]

is added for every so-called tolerant state q and every symbol f of rank n that does not
belong to the input signature. In other words, the transducer just tolerates (steps over)
each unexpected input symbol it encounters in a tolerant state. For this, the syntax of
tolerant td transducers specifies, after the set of states, the set of tolerant states (where
the latter must be a subset of the former). Except this addition, the syntax is identical
to the syntax of ordinary td transducers. Note that there is no difference at all between
the behaviours of this class and the preceding one as long as the trees they are applied
to contain only symbols belonging to the input signature (or the set of tolerant states i
empty).

4.2.4 YIELD mappings (class generators.YIELDTransduction)

A YIELD mapping (see, e.g., [ES77, ES78, DE98]) is a YIELD algebra (see below), turned
into a tree transformation: if the interpretation of an input term by the YIELD algebra
results in a tree without variables, that tree is returned. Otherwise, the result is undefined.
There are no commands (except the standard commands delete node and reload file, of
course), and the syntax is the same as for YIELD algebras.

4.2.5 Macro tree transducers (class generators.mtTransducer)

This class implements the concept of a macro tree transducer as introduced in [Eng80,
EV85] (see [FV98] for further references), which extends the top-down tree transducer.
Besides the input tree to be processed, a state of a macro tree transducer can have a fixed
number of parameter trees (but the initial state must be of rank 1, i.e., parameterless).
As a consequence, states may be nested, since the parameters of a state may themselves
contain states. A typical rule is

q[f [x1, x2], y1, y2] → g[q[x1, f [a, q
′[x2]], y2], q

′′[x1, a]].

Here, q, q′, and q′′ are states with two parameters, zero parameters, and one parameter,
respectively. In the rules, the variables x1, x2, . . . play the same role as in td transducers
whereas y1, y2, . . . denote parameters. Note that the recursion goes over the first subtree
of a state, which is the input tree. For more thorough introductions and examples see the
references mentioned above.

Except for the more general form of rules, using the names y1, y2, . . . for the parameters,
the syntax used by the class mtTransducer is similar to that of the class tdTransducer.
Naturally, ranks must now be given in the signature of states. In addition, there is an
option called performance, which can be given after the parenthesis enclosing the whole
tuple (separated by a comma). In performance mode, the implementation will not produce
the internal data structures needed to perform stepwise derivations (and, thus, stepwise
derivations are unavailable in this case). This leads to a considerable increase in efficiency.
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Besides the commands known from the case of td transducers (which have a similar se-
mantics as in that case), some additional commands are provided.

• In macro tree transducers which are neither deterministic nor total, one can switch
between safe and blind derivations. The former is the default. It means that the
transducer will only make derivations that lead to an output tree, thus avoiding
undefined results if possible (i.e., if there exists at least one output tree for the given
input tree). Blind derivations skip the respective checks, which may be useful in
connection with stepwise mode if arbitrary derivations shall be considered.

• It is possible to switch between derivations in IO (inside–out or innermost–outermost)
and OI (outside–in or outermost–innermost) modes. In the case of nested states,
rewriting always continues with the innermost states in the IO case, and with the
outermost states in the OI case. It is a well-known fact that these evaluation strate-
gies result in different tree transformations. More precisely, the set of output trees
obtained in IO mode may be strictly smaller than the set of output trees obtained
in OI mode (which is equivalent to unrestricted mode). The reason for this is that,
in IO mode, parameters are evaluated before applying rules that possibly dupli-
cate them, yielding identical subtrees, while evaluation after copying may result in
different subtrees (in the presence of nondeterminism).

4.2.6 Tolerant macro tree transducers (class generators.tmtTransducer)

Just as the tolerant td transducer is an extension of the td transducer by “tolerant” states,
this class extends the macro tree transducer by tolerant states. Thus, the behaviour
and the available user commands are exactly the same as in the case of the macro tree
transducer, except for the fact that an implicit rule

q[f [x1, . . . , xn], y1, . . . , yk] → f [q[x1, y1, . . . , yk], . . . , q[xn, y1, . . . , yk]]

is added for every tolerant state q of rank k+1 and every symbol f of rank n that does not
belong to the input signature. Thus, the transducer tolerates (steps over) each unexpected
input symbol it encounters in a tolerant state, distributing the parameters y1, . . . , yk to
the subtrees. Similarly to the case of tolerant td transducers, the syntax is extended by
adding the set of tolerant states after the set of states.

4.2.7 Iterators (class generators.iterator)

An iterator is a tree transducer that encapsulates another tree transducer and works like
the encapsulated object, except that it adds the command “iterate”, which can be used
to iterate the application of the tree transducer. When the iterator receives an input
term, the output is the term obtained by applying the tree transducer as if it was not
encapsulated by an iterator. The iterator keeps the output term, however, so that it can
apply the tree transducer to this term when the command iterate is invoked. Note that,
usually, wrapping a tree transducer by an iterator makes sense only if its output signature
is a subset of its input signature.

The syntax equals the syntax of the encapsulated tree transducer, including the initial
part <class name> [ ( <name> ) ] :. Thus, an iterator that encapsulates the sample
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top-down tree transducer given above could be denoted as follows:

generators.tdTransducer:

( { f:2, a:0, b:0 },

{ f:2, a:0, b:0 },

{ start, a, b },

{ start[f[x1, x2]] -> f[a[x2], a[x2]] weight 2,

start[f[x1, x2]] -> f[b[x1], b[x1]],

a[f[x1, x2]] -> f[a[x2], a[x2]],

a[a] -> a,

a[b] -> a,

b[f[x1, x2]] -> f[b[x1], b[x1]],

b[a] -> b,

b[b] -> b },

start )

(Note that the first line belongs to the class-specific part of the definition of an iter-
ator. As always, this has to be preceded by something like “generators.iterator:”
or “generators.iterator("iterated top-down tree transducer"):” in order to tell
the system that this is meant to define an iterator.)

4.3 Algebras

So far, none of the available classes of algebras provides a command except the standard
commands delete node and reload file. Furthermore, in most classes all instances behave
alike, so that the syntax just consists of the empty string. Below, in these cases syntax is
not mentioned explicitly.

4.3.1 The boolean algebra (class algebras.booleanAlgebra)

The boolean algebra interprets the following symbols in the standard way: true:0,
false:0, not:1, and:2, or:2, and xor:2.

4.3.2 The chain-code algebra (class applications.lineDrawings.chainCodeAlgebra)

The chain-code algebra (cf. [Dre98b]) is one of the two types of line-drawing algebras
available so far, the other type being the turtle algebra described below. Such an algebra
yields line drawings, two-dimensional pictures consisting of a sequence of unit lines and
an endpoint. The concatenation of two line drawings works in the obvious way. First, the
second argument is translated, moving its origin to the endpoint of the first (including a
corresponding translation of its endpoint). Then, the two sequences are concatenated, the
new endpoint being the (translated) endpoint of the second argument. Concatenation of
n line drawings works alike (notice that the concatenation operation is associative).

The chain-code algebra interprets all symbols of rank n ∈ N as n-ary concatenation
operations (in particular, n = 0 yields a constant denoting the empty line drawing whose
endpoint is the origin), except a few symbols which have a special meaning:
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• The symbols l:0, r:0, u:0, and d:0 are interpreted as lines starting at the origin
and extending one unit to the left, to the right, up, and down, respectively (which
also determines their endpoints). Synonyms for these symbols are w:0, e:0, n:0,
and s:0 standing for west, east, north, and south, respectively.

• The symbol hide:n is interpreted like an n-ary concatenation operation, the differ-
ence being that all lines of the resulting line drawing are discarded. In other words,
this operation yields the empty line drawing whose endpoint is obtained by summing
up the endpoints of its arguments. (One may alternatively say that the lines are
made transparent, so that they become invisible.)

• Finally, symbols of the form h-scaler:n, v-scaler:n, and scaler:n, where r is a
<rat+>, are interpreted as n-ary concatenation operations which, in addition, scale
their result by the factor r horizontally, vertically, or in both directions, respectively.

4.3.3 Collage algebras (class applications.collages.collageAlgebra)

Collage algebras [Dre96, Dre98b] deal with objects called collages. In the current im-
plementation a collage is a finite list of two-dimensional geometric parts, which may be
coloured. The colour of a part is either static (which means that it is not affected by
the colour operations described below) or determined by the value of so-called colour at-
tributes. In any case, the actual colour is given by three numbers between 0 and 1 which
are interpreted in the rgb colour model. Symbols of rank greater than 0 can denote two
different kinds of operations on collages, so-called collage operations and the mentioned
colour operations.

The most basic variant of a collage operation 〈f1 · · · fn〉 is given by n affine transformations,
as follows. For argument collages C1, . . . , Cn

〈f1 · · · fn〉(C1, . . . , Cn) =
⋃

i=1,...,n

fi(Ci).

Thus, the ith argument Ci is transformed using the ith transformation fi. Afterwards,
the union of the resulting collages is taken. (Here, the union is actually list concatenation,
which makes a difference when collages with overlapping parts of different colours are
drawn. In this case the resulting picture consists of the overlay of all parts in the order
in which they occur in the list. Consequently, if parts overlap the colour of the last one
will prevail.) In a slightly more general form of collage operations, the transformations
f1, . . . , fn in its definition are interspersed with an arbitrary number of constant collages
(which does not affect the arity of the operation). These collages will then, in addition to
the transformed argument collages fi(Ci), be added to the resulting collage in the given
order.

A colour operation modifies colour attributes, thus affecting the rgb values of those parts
which use these attributes to determine their colour. More precisely, a colour operation
F = colourOperation(name|f : d) is determined by the respective attribute name and two
real numbers f, r between 0 and 1. Here, ‘f ’ stands for ‘fraction’ or ‘force’ and ‘d’ stands
for ‘destination’. For every part, if the value of the given attribute currently is x, then its
new value will be x+(d−x) ∗ f . Intuitively, this means that the value is drawn towards d
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by the fraction f (with respect to the distance between x and the destination value d). For
example, if f = 2/3, d = 1/4, and x = 1/2 then the new value will be 1/3, which is 2/3
nearer to 1/4 than 1/2 is. The variant F ′ = colourOperation(name||f : d) is defined in the
same way, but substituting 1− x for x. In other words, F ′ first mirrors x at 1/2 and acts
like F afterwards. For convenience, several triples of the form f : d(name) or f : : d(name)
may be combined in one colour operation, separated by commas, if the respective names
are pairwise distinct.

Colour operations of the form just described can also be higher order. In this case, f and/or
d are replaced by names of attributes, say af and ad. For each particular application of
such an operation to a given part, f and d will then be given by the current values of af
and ad.

The colour operations described above are badly disguised affine transformations. By
rewriting the definition one easily checks that the transformations that can be expressed
by operations of the forms colourOperation(name|f : d) and colourOperation(name||f : d)
are exactly the one-dimensional affine transformations that map the interval [0, 1] to itself.
In addition to these, collage algebras provide a much more general class of colour oper-
ations, namely all transformations of the n-dimensional space of attribute values, which
can be expressed by a certain set of arithmetic operations (see below). This type of colour
operation need not even assign values in the interval [0, 1] to all attributes. However,
whenever some x /∈ [0, 1] is to be interpreted as a red, green, or blue value this is done by
continuously “folding” R into [0, 1]: If ⌊x⌋ is even then the resulting value is x−⌊x⌋, oth-
erwise it is ⌊x⌋+1−x. (This operation, called fold, is also among the primitive operations
that can be used to modify attribute values.)

Syntactically, the definition of a collage algebra starts with an optional list of attribute
names according to the following syntax:

attributes <name> (, <name>)∗;

If the list of attributes is omitted then the attributes r, g, b are automatically defined
(which is not done if attributes are defined explicitly).

The remaining part of the syntax is a set of definitions, each definition assigning a meaning
to a name. The syntax of these definitions is the following (where <expr> denotes an
expression yielding a <rat>; the exact syntax of expressions is described below).

<definition> ::=
<name> = ( <const> | <collage-union> | <transformation> | <operation> )

<const> ::= const ( <expr> )

<collage-union> ::= <collage> (+ <collage>)∗

<collage> ::= (<part-set> | #<name>) ((transformed | coloured) by <name>)∗

(where the first <name> refers to a previously defined collage and the second
to a previously defined transformation or colour operation)

<part-set> ::= { [ <part> (, <part>)∗ ] } (i.e., a <part-set> is a set of parts)
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<part> ::= <part-def> [ <colour> ]
[ width <expr> ] ((transformed | coloured) by <name>)∗

<part-def> ::=
(curve | polyline) ( <bezier point> (, <bezier point>)∗ )

| (closedCurve | polygon) ( <bezier point> (, <bezier point>)∗ )

| (filledCurve | filledPolygon) ( <bezier point> (, <bezier point>)∗ )

(the polygon/polyline versions are obsolete but exist for reasons of backwards
compatility)

| ellipse( <expr>, <expr>, <expr>, <expr> )

| filledEllipse( <expr>, <expr>, <expr>, <expr> )

(parameters of ellipses: coordinates of centre, horizontal radius, vertical radius)
| arc( <expr>, <expr>, <expr>, <expr>, <expr> )

| closedArc( <expr>, <expr>, <expr>, <expr>, <expr> )

| filledArc( <expr>, <expr>, <expr>, <expr>, <expr> )

| pie( <expr>, <expr>, <expr>, <expr>, <expr> )

| filledPie( <expr>, <expr>, <expr>, <expr>, <expr> )

(parameters of pies and arcs: coordinates of centre, radius, start angle, angle)
| "<string>" [[ <font options>∗]] size <expr> at <coordinates>
(string in default or specified font with given font size and centered at given point)

<bezier point> ::= <coordinates> [ left <coordinates> ] [ right <coordinates> ]

<font options> ::= ( "<string>" | bold | italic | outlined )∗

(any combination of font name and attributes bold, italic, outlined)

<coordinates> ::= ( <expr>, <expr> )

<colour> ::=
[ <expr> [, <expr>, <expr>] ]
(static rgb values between 0 and 1, will not be affected by colour operations)
| < <expr> [, <expr>, <expr>] >
(use default attributes r,g,b; assign them values between 0 and 1. Only available
if no user-defined attributes are used!)
| < <name>, <name>, <name> [; <name>=<expr> (, <name>=<expr>)∗ ]
(attributes determining the part’s colour; optional assigment of values between 0 and
1 to attributes (default is 0). Only available if user-defined attributes are used!)

<transformation> ::= <primitive transformation> (. <primitive transformation>)∗

<primitive transformation> ::=
translate ( <expr>, <expr> ) (a translation)
| scale ( <expr> [, <expr> ] ) (a uniform/non-uniform scaling)
| matrix ( <expr>, <expr>, <expr>, <expr> )

(matrix(a,b,c,d) denotes the linear transformation given by the matrix
(

a b

c d

)

)

| map ( <coordinates> -> <coordinates>,
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<coordinates> -> <coordinates>
[, <coordinates> -> <coordinates> ] )

(map(c1 -> c′1, c2 -> c′2, c3 -> c′3) denotes the affine transformation that maps c1
to c′1, c2 to c′2, and c3 to c′3; for this, c1−c3 and c2−c3 must be linearly independent.
In other words, the points c1, c2, c3 must not lie on the same straight line. If c3 =
(0, 0) = c′3 then the last pair of points can be omitted.)

| similarity ( <coordinates> -> <coordinates>,
<coordinates> -> <coordinates> )

(similarity(c1 -> c′1, c2 -> c′2) denotes the similarity transformation that maps
c1 to c′1 and c2 to c′2 without changing orientation; for this, c1 and c2 must be
distinct.)

| use ( <name> ) (use a previously defined transformation)

<operation> ::=
< [ (<name> | <collage-union>) (, (<name> | <collage-union>) )∗ ] >
| colourOperation( <spec> (, <spec>)∗ )

<spec> ::= <simple spec> | <generalized spec>

<simple spec> ::=
<name> (| | ||) (<expr> | val(<name>)) : (<expr> | val(<name>))

<generalized spec> ::= <name> := <attr expr>
(see below for the definition of <attr expr>)

The four types of definitions have the following meaning.

A definition c = const(<expr>) defines a numerical constant c which can be used in
subsequent expressions. Primitive expressions are numbers (i.e., <rat>’s), the constant e,
and expressions of the form #c, where c is (the name of) a constant defined earlier. More
complex expressions can be built using the binary operators +, −, ∗, and / (which are
left associative and follow the usual precedence rules), a unary −, parentheses, and the
functions

• min(x,y) (the minimum of x and y)

• max(x,y) (the maximum of x and y)

• sin(x) (sine of x degrees)

• cos(x) (cosine of x degrees)

• tan(x) (tangent of x degrees)

• sqrt(x) (square root of x)

• max(x,y) (the maximum of x and y)

• power(x,y) (yielding xy)

• ln(x) (natural logarithm of x)

• ifneg(x,y,z) (y if x < 0, otherwise z)
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Note that spaces are necessary to separate #c from a subsequent operator since, e.g.,
length-5 is a valid name for a constant. Thus, #length-5 refers to that constant whereas
#length - 5 denotes the expression which subtracts 5 from the value of the constant
length.

A definition f = <collage-union> means that the collage algebra will interpret the symbol
f:0 as a collage. A collage may be defined as a union (using the symbol +) of sets of parts
and other, already defined collages (referred to as #C, where C is the name of the collage).
Note that there are several way to define the colour of a part:

1. Rgb values in square brackets are static colours that are not affected by colour
operations. Specifying no colour at all is equivalent to specifying [0,0,0] (which,
in turn, is equivalent to [0]), i.e., black.

2. Colours specified between angel brackets are determined by attribute values and are
thus subject to colour operations. If no explicit attributes have been defined, one
simply specifies the numerical values of the three default attributes r, g, b. If a user-
defined set of attributes is used, one first specifies the names of the three attributes
that determine the colour, and then, separated by a semicolon, the values of nonzero
attributes.

If present, width x determines the line width used in drawing the part (which has no effect
on filled polygons and curves). Curves (possibly closed or filled) are Bézier curves (see
[FDF+97]). Each of the main points p0, . . . , pn−1 of the curve can optionally be assigned
a left and a right control point. The segment between pi and pi+1mod n is a curve that
leaves pi into the direction given by the right control point of pi and approaches pi+1mod n

from the direction given by the left control point of pi+1mod n. (This implies that the left
control point of p0 and the right one of pn−1 have no effect unless the curve is closed
or filled.) The coordinates of control points are given relative to the coordinates of the
corresponding main point (which makes it easy to move points around without having to
change the control points all the time). If only one control point is given, the other one is
obtained by mirroring at the respective main point (which yields a smooth curve unless
the control points coincide with the main one). If neither of the two control points are
given explicitly, they are assumed to be identical to the main point, so leaving out both
left and right is equivalent to left (0, 0) right (0, 0). Note that a curve becomes a
polyline if all control points coincide with their respective main points.

An ellipse is specified by the coordinates of its centre, the horizontal radius, and the
vertical radius. (The axes of an ellipse are always parallel to the coordinate axes. To
obtain other ellipses, a transformation must be applied.) An arc is a section of a circle
given by the coordinates of the centre of the circle, its radius, the angle where the section
begins, and the angle of the section itself. Closed arcs are obtained by adding a chord
connecting the two end points. A pie is similar to an arc except that it is always closed,
namely by lines connecting the two endpoints with the centre of the circle (rather than by
a chord).

A part can be a string, in a default or explicitly given font, possibly with one or more of the
attributes bold, italic, and outlined. Available fonts depend on the Java installation,
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but the standard Java fonts Dialog, DialogInput, Monospaced, Serif, SansSerif, and
Symbol are guaranteed to be available. Note: Internally, a string is immediately converted
into the corresponding set of curves using methods from the respective Java libraries. If
the font size is small, the result may not be very nice. An easy remedy is to choose a
larger font size and to scale down afterwards, e.g.,

scaleDown = scale(1/12),

"This is nicer than font size 1" size 12 at (0,0) transformed by scaleDown

A definition of the form f = <transformation> makes f denote an affine transformation
f1 . · · · . fn composed of primitive transformations f1, . . . , fn, which are applied from left
to right. Such a definition is not directly visible from the outside.

A definition f = < f1, . . ., fn >, where f1, . . . , fn are the names of transformations defined
earlier in the file, means that the collage algebra will interpret the symbol f:n as the
collage operation 〈f1 · · · fn〉. The case n = 0 yields a constant denoting the empty collage.
Thus, f = < > is equivalent to f = { }. Any fi can in fact also be a <collage-union>
rather than a transformation. These collages are then added to the result whenever the
operation is applied. For instance, if the definition reads f = < f1, #col, f2 >, where
col is the name of a collage defined earlier, then f is the operation of arity 2 given by
f(C1, C2) = f1(C1) ∪ col ∪ f2(C2). (Notice that collage displays will draw the three sub-
collages one after another. Therefore, it can make a difference where col is placed if they
overlap.)

Finally, f = colourOperation(· · ·) defines a symbol f of rank 1 that changes the respective
colour attributes in the way explained earlier. In its generalized form, <attr expr> is
a superset of <expr> in the sense that folding (as explained above) is available as an
additional operation fold(<rat>) and val(<name>) can be used to refer to the value
of an attribute.

It is allowed to use equal names for different operations as long as their arities differ.
The name space used for transformations is a separate one. Of course, the names of
transformations should be pairwise distinct. For example, the following would be a correct
definition of a collage algebra:

{ f1 = scale(.5),

f2 = scale(.8) . rotate(12) . translate(3,-2),

f3 = map((1,0) -> (1,0), (0,1) -> (.5,1)),

flip = scale(-1,1),

C = { filledCurve((0,-2), (-1,0), (0,2), (1,0))<.2,.3,.4> },

% a polgon, in fact

F = <f1, f2, f3>,

flip = <flip>,

darken = colourOperation(r|.2:0, g|.2:0, b|.2:0) }

Every symbol s:n which is not defined explicitly is interpreted as a union of collages, i.e.,
as 〈id · · · id〉, where id is the identity.

26



4.3.4 The geometric-world algebra (class applications.geoWorld.geoWorldAlgebra)

This is a simple class implementing an algebra whose domain consists of geometric objects.
There are two primitive objects. Given two objects, they can be arranged horizontally or
vertically. Moreover, given an arbitrary arrangement of objects, they can be composed
into one object by capturing them by a rectangular frame. The algebra interprets

• the symbols a:0 and b:0 as the two primitive geometric objects (a squarish one resp.
an octagonal one),

• the symbols h:2 and v:2 as operations that take as input two arrangements x, y of
objects and place x to the left of y resp. x below y (separated by a small gap and
centered vertically resp. horizontally),

• the symbol c:1 that captures an arrangement by means of a rectangular shape, thus
creating a composed object.

In addition, every symbol A:0 with A /∈ {a, b} is interpreted as a square with the string
A in its centre. The font size is appropriate for symbol names of length 1 but can be
adjusted interactively by the commands smaller font, larger font, and reset font.

4.3.5 Grid collage algebras (class applications.collages.gridAlgebra)

This class implements the two-dimensional case of the algebras investigated in [Dre96]. A
grid collage algebra (grid algebra, for short) is a special collage algebra. Such an algebra
interprets a predefined set of symbols, which means that the syntax gets much simpler as
there is no need to define the meaning of symbols. Basically, the defining parameter of a
grid algebra is simply a positive integer, its grid size. A grid algebra of grid size n is also
called an n-grid algebra.

The only non-empty collage available as a constant is the unit square sq (i.e., the collage
having as its only part the black unit square). The available collage operations, which are
called grid collage operations, are defined as follows. Divide the unit square by a regular
n×n-grid, so that n2 smaller squares of equal size are obtained. Now, the n-grid algebra
contains all collage operations F consisting of m similarity transformations f1, . . . , fm,
such that each fi maps sq to one of the small squares in the grid.

Remark. In [Dre96] it is also required that fi(sq) 6= fj(sq) for all i 6= j, i.e., that an
operation addresses every subsquare at most once. This restriction is dropped, here.
Moreover, instead of considering the unit square, in the implementation everything is
enlarged and centred at the origin, because this fits better with the default area shown by
collage displays.

In an n-grid algebra each of the aforementioned operations can be denoted using a standard
symbol, but the syntax also provides the opportunity to introduce more concise synonyms.
The standard symbols for an n-grid algebra are determined as follows.

One of the standard symbols is sq:0, which denotes the unit square. The other standard
symbols denote grid collage operations. For this, number the n2 subsquares of the grid
from the bottom left one to the top right one, starting with 0, and denote the corners of
the unit square by a, b, c, and d (counterclockwise, starting at the lower-left corner). For
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example, for n = 3 we get the following picture:

d c

6 7 8

3 4 5

0 1 2

a b

Now, consider one of the admissible transformations of an n-grid operation. Such a trans-
formation is composed of a rotation and/or reflection f about the centre of the square
that maps sq to itself, and a scaling and translation that maps sq to one of its subsquares.
Thus, the whole transformation is uniquely determined by the string ixy, where

(1) i is the index of the addressed subsquare and

(2) x, y ∈ {a, b, c, d} are the images of a and b under f .

For example, if n = 3 then 5bc denotes the transformation that rotates sq by 90 degrees
and maps it to square number 5 in the figure above. Let F be an m-ary operation of the
n-grid algebra and let s1, . . . , sm be the strings denoting the individual transformations
that define F . Then, every symbol of rank m whose name has the syntactic form

-∗s1-
∗ · · · -∗sm-

∗

is interpreted as F . Thus, the name of the symbol is composed of the strings si, optionally
separated by some -’s. In particular, all symbols which solely consist of -’s denote the
empty collage. As another example, the 3-grid algebra interprets 1ab-5dc-8cd:3 as the
collage operation whose first transformation maps sq to square number 1 without rotating
or reflecting it, whose second transformation maps sq to square number 5, reflecting it at
the horizontal axis, and whose third transformation maps sq to square number 8 while
rotating it by 180 degrees.

For reasons of backward compatibility, transformations may also be denoted by a number
followed by three rather than two symbols in {a, b, c, d}, these three being the images of
a, b, and c (where the last one provides redundant information).

In addition, symbols of rank 1 or 0 which are not standard (and are not used as synonyms
either, see below) are interpreted as follows. Symbols of rank 1 are simply interpreted as
the identity. Symbols of rank 0 yield a unit grey square with an inscribed arrow indicating
the order a → b → c → d → a of corners. This yields a graphical representation of
nonterminals similar to the one employed in [Dre96].

The syntax of a grid collage algebra either consists of a single non-zero <nat>, the grid
size, or is a pair consisting of the grid size and a set of definitions of two kinds. Definitions
of the form <name> = <name> allow the user to introduce a synonym (the left-hand
side) for some standard symbol (the right-hand side). Note that ranks are not given
explicitly because they are uniquely determined by the name of the given standard symbol.
The synonyms introduced in this way should be pairwise distinct, and they must not
themselves be standard symbols. Thus, it is not allowed to define 1ab-3bc = 2ab-1ab
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(since 1ab-3bc:2 is a standard symbol), but it is allowed to define 1ab-3bc = 2ab (since
1ab-3bc:1 is not standard). Defining both F = 1ab and F = - is allowed (because it results
in symbols of different ranks), but having both F = sq and F = - is incorrect.

The second type of definitions has the form <name> += <part-set>, where <part-set> is
defined as for general collage algebras (but with static rgb values only). It changes the
appearance of non-standard symbols of rank 0, i.e., those which are normally represented
as grey squares with inscribed arrows, by replacing the arrow with user-defined parts.
The definition exa += C thus results in exa being interpreted as a grey square with C on
top of it. For this to work as expected, it is important to know that grid collage algebras
actually work with squares whose corners are (−20,−20), (20,−20), (20, 20), (−20, 20). For
instance, to interpret exa as a grey square with an inscribed red circle, one should use the
definition exa += { filledEllipse(0,0,20,20)[1,0,0] }.

4.3.6 The integer algebra (class algebras.intAlgebra)

The integer algebra interprets every symbol of the form <int>:0 as the respective integer.
Furthermore, it interprets the following symbols as operations on integers in the usual
way: -:1, abs:1, s:1 (successor), max:2, min:2, +:2, -:2, *:2, div:2, and mod:2.

4.3.7 Link algebras (class applications.links.linkAlgebra)

In terms of generative power (together with a suitable class of tree generators), link alge-
bras generalize the chain-code algebra, turtle algebras, and collage algebras. A link is a
pair consisting of a collage and an affine transformation. The concatenation of links 〈C,α〉
and 〈C ′, α′〉 yields 〈C ∪τ(C ′), τ ◦τ ′〉. The syntax of link algebras is the same as for collage
algebras, except that

1. colours, colour operations, and the like are missing, and

2. the definition of collage operations is turned into the definition of links, the syntax be-
ing the same as the one for defining a collage operation consisting of a collage and the
name of a previously defined transformation: <link> ::= < <collage-union> ,

<name> >.

Similar to the chain-code algebra, a link algebra interprets all unknown symbols of
rank n as n-ary concatenation operations. In addition to the links defined in the file
describing a link algebra, four special symbols of rank 0 are known by default: [ and ]

and their synonyms push and pop (note that [ and ] have to be enclosed in double
quotation marks if they are used as symbols in a grammar). Intuitively, a matching
pair of brackets has an effect similar to the operation enc of a turtle algebra, i.e.,
the transformation component of the link inside is replaced by the identity. The real
definition is slightly more complicated. It makes sure that concatenation is defined
and associative even if brackets are ill-placed as in L · [. Thus, e.g., concatenating
L · [ with L′ · ] · L yields the expected result. To ensure this, a link is internally
defined to be a structure of the form Ln] · · ·L1]L0[L

′

1 · · · [L
′

m.

Links can be displayed by the collage display (which will display 〈C,α〉 as C).
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4.3.8 The string algebra (class algebras.stringAlgebra)

The string algebra interprets every symbol f:0 as the string given by f . Furthermore,
every symbol of rank n ≥ 1 is interpreted as n-ary string concatenation. (Thus, using
common terminology, the interpretation of a tree with respect to the string algebra is its
yield—the string of leaf symbols read from left to right.)

4.3.9 The free term algebra (class algebras.termAlgebra)

As usual, the free term algebra interprets every symbol f:n as the n-ary operation on
trees (i.e., terms) that maps t1, . . . , tn to f [t1, . . . , tn]. Thus, the interpretation of a tree
is the tree itself.

4.3.10 Turtle algebras (class applications.lineDrawings.turtleAlgebra)

Besides the chain-code algebra, the turtle algebra is the second sort of line-drawing algebra
available so far (see also [Dre98b]). The syntax of turtle algebras is either of the form

(α0,α [ <synonyms> ] )

where α0, α are positive angles given in degrees (two <rat>’s), or it is simply given by the
angle α (without the parentheses). In the latter case, α0 is set to 90 degrees. The optional
part <synonyms> is described later.

Like the chain-code algebra, a turtle algebra interprets every n-ary symbol as n-ary con-
catenation of line drawings. However, there are the following exceptions of symbols with
a special meaning:

• F:0 is interpreted as the line drawing consisting of a single line extending from the
origin one unit into the direction given by α0 (i.e., upward by default); f:0 is its
“invisible” counterpart. It denotes the empty line drawing having the same endpoint
as F:0.

• hide:n is interpreted as in the chain-code algebra. It concatenates the arguments
and makes all lines of the resulting line drawing invisible.

• h-scaler:n, v-scaler:n, and scaler:n, where r is a <rat+>, are interpreted in
the same way as in the case of chain-code algebras.

• enc:n concatenates its arguments and then sets the endpoint to (0, 0).

• +:n concatenates its arguments and rotates the resulting line drawing by α degrees
counterclockwise; -:n is interpreted alike, but rotates clockwise.

• enc+:n combines the two above. Thus, it is interpreted like +:n, but sets the
endpoint of the resulting line drawing to (0, 0), in addition. Again, enc-:n is similar,
but yields a clockwise rotation.

• +branch:n and -branch:n are synonyms for enc+:n and enc-:n, respectively.

• For convenience, each ‘+’ or ‘−’ in one of the aforementioned operations may be
preceded by a factor k > 0, a <nat>, which affects the angle α used. The symbol
is interpreted in the same way as if it was not preceded by k, except that the angle
kα is used.

30



There is, in fact, another type of operation which allows to go beyond pure line drawings:

fillr-g-b:n

(where r, g, b are rgb values between 0 and 1) concatenates its arguments and fills the
resulting polygon (taking into account both visible and invisible lines) with the colour
determined by r, g, b. The symbol fillv:n abbreviates fillv-v-v:n.

The optional part <synonyms> of the syntactic definition makes it possible to specify two
signatures of symbols of rank 0 that the algebra interprets like F and f, respectively. The
syntax is

<synonyms> ::=
with

F-synonyms { [ <name> (, <name>)∗ ] },
f-synonyms { [ <name> (, <name>)∗ ] }

where either the F-synonyms part or the f-synonyms part can be left out.

4.3.11 YIELD algebras (class algebras.YIELDAlgebra)

A YIELD algebra (see, e.g., [ES77, ES78, DE98]) provides certain operations on trees,
substitution being the most important one. The following are the standard symbols that
all YIELD algebras interpret in a special way:

• const-f-k:0, where f is a <name> and k a <nat>,

• proj-i:0, where i is a <nat>, and

• subst:n, where n > 0 is a <nat>.

The interpretation of const-f-k:0 is f [x1, . . . , xk], proj-i:0 is interpreted as xi, and
the interpretation of subst:n yields the function g on trees such that g(t0, t1, . . . , tn−1) is
obtained from t0 by substituting ti for xi, i = 1, . . . , n− 1.

As in the case of grid algebras the syntax allows to introduce synonyms for the sym-
bols above. Thus, syntactically, a YIELD algebra is a set of definitions of the form
<name> = <symbol>. The meaning of these definitions as well as the restrictions that
apply are similar to the case of grid algebras. Notice, however, that the right-hand side
is a symbol in this case. This is necessary because, unlike the case of grid algebras, the
name of a symbol does not determine its rank in a unique way.

For convenience, all symbols f:n which do not have a special meaning (i.e., which do not
belong to the three types above and have not been defined as a synonym) are interpreted
as in the free term algebra. In other words, the application of f to terms t1, . . . , tn yields
f [t1, . . . , tn]. As an example, the evaluation of

f[subst[g[f[proj-2],proj-2],const-h1-2,const-h2-2]]

yields f[g[f[h2[x1,x2]],h2[x1,x2]]], discarding the evaluation result of const-h1-2
since the first argument of subst does not contain proj-1. Note that a symbol const-f-n
can always be replaced with f[proj-1,. . .,proj-n] unless f:n has a special meaning or is
used as a synonym.
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4.4 Displays

4.4.1 Collage displays (class applications.collages.collageDisplay)

A collage display can either automatically zoom the displayed collage to an appropriate
size and centre it in its window, or let the user resize and position the picture manually.
The latter is the default mode, providing the commands zoom in, zoom out, auto zoom,
and reset (reset the view). Furthermore, in this mode the user can

• use horizontal and vertical scroll bars if the picture is larger than the visible part,

• drag the picture by holding down the first mouse button and moving the mouse
(instead of using the scroll bars), and

• zoom into a desired area by holding down the second or third mouse button and
dragging the mouse over the area in question.

The area shown initially is the square with lower left corner (−25,−25) and side length 50.
In auto zoom mode one can switch back to the default mode using the command manual
zoom.

In addition to producing a picture on the screen a collage display can be set up in order
to produce PostScript files which describe the displayed collages. In such a PostScript
picture, one centimetre corresponds to one unit in the collage.

The syntax of collage displays is

<collage display> ::=
[background <rat>,<rat>,<rat>]
(postscript disabled | <PostScript settings>)

<PostScript settings> ::=
pathname "<directory name>", filename "<file name>"
[, linewidth <rat> (cm | mm | pt)]

The optional part at the beginning, signified by the keyword background, defines the
background colour. The colour model used is the rgb model; the numbers are required
to belong to the interval [0, 1]. If no background colour is given, the default background
colour of the Java runtime environment is used (normally white).

In the remainder of the syntax, the keywords postscript disabled will disable PostScript
output. Otherwise, the path name (which is, unless it is an absolute path, interpreted rel-
ative to the directory in which Treebag was started) determines the directory into which
the PostScript files will be written. Here, the separator character for directory names is
always ‘/’, regardless of the platform on which Treebag is running. In the file name the
character ‘#’ is regarded as a special symbol. Every time a PostScript file is produced,
each occurrence of this character is replaced by a running number. Thus, for example,
out-# would result in output files named out-1, out-2, etc. Optionally, one can define the
with of lines in centimetres, millimetres, or points. The default line width is “as narrow
as possible”.
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If PostScript output is enabled, the following additional commands are available: ps-
output/no ps-output (start/stop producing an output file whenever an input tree with a
defined value is received), reset ps-output (reset the number of the next file to 1), and
clipping on/clipping off. Without clipping, the whole collage is written to the PostScript
file and the bounding box is set up accordingly. When clipping is active, only those parts
are written to the file of which at least one point lies in the display window. In this
case, the bounding box will correspond to the window area. (For LATEX users: Note that
packages for the inclusion of PostScript pictures, like graphicx, usually have a clip key
that allows you to clip off parts lying on the boundary of the viewing window.)

4.4.2 The geometric-world display (class applications.geoWorld.geoWorldDisplay)

This display class is intended to display the geometric arrangements produced by the
algebra applications.geoWorld.geoWorldAlgebra. It works in a similar way as a collage
display (see above) since it is actually a subclass of that class.

4.4.3 Line-drawing displays
(class applications.lineDrawings.lineDrawingDisplay)

Line drawing displays are able to visualise the line drawings produced by chain-code and
turtle algebras. A line drawing display behaves similar to a collage display in auto zoom
mode. Thus, the picture is always centred and scaled to an appropriate size. Line drawing
displays are able to produce PostScript in the same way as collage displays do. The syntax
of line drawing displays is the same as the one for collage displays; the available commands
are the commands to control PostScript output as described above for the collage display.

4.4.4 The textual display (class displays.textualDisplay)

Textual displays can visualise every kind of object, using its string representation. This is
sensible for strings, numbers, truth values, and trees. If the character sequence \\ occurs
in a displayed string it is interpreted as a line break (but it is also possible to include
newline characters in the string, directly.) The syntax for textual displays is the empty
string. The available commands are larger (enlarge the font size), smaller (reduce the font
size), and adjust window size (adapt the window size to the size of the displayed text).

4.4.5 Tree displays (class displays.treeDisplay)

A tree display visualises trees in the usual way, applying a simple layout algorithm. These
displays are not really suitable for very large trees (more than 212 nodes, say), because
the standard Java classes that do the actual painting seem to deal incorrectly with large
coordinates. In these cases it usually helps to reduce the font size.

The available commands are larger (enlarge the font size), smaller (reduce the font size),
smallest (reduce the font size as much as possible, which is useful in order to view the
structure of large trees), and reset view (return to the default view and font size). In
addition to these commands the user can drag the picture using the mouse or use scroll
bars to achieve a similar effect (if parts of the tree lie outside the visible area).

By default, every symbol in a displayed tree is shown in black. It is possible, however, to
assign individual colours to certain symbols. For this, the syntax of tree displays requires
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a set of colour definitions of the form <symbol> [<rat>, <rat>, <rat>], where the three
numbers are rgb values between 0 and 1. For example, if the definition of a tree display
contains the expression foo:2[0,0,.3], then the symbol foo:2 will be shown in dark
blue colour.
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A Lists of available classes of TREEBAG components

A.1 Tree Grammars

Component Class name

Regular tree grammar generators.regularTreeGrammar

Parallel det. total tree grammar generators.pdtGrammar

ET0L tree grammar generators.ET0LTreeGrammar

branching tree grammar generators.BSTGrammar

A.2 Tree Transducers

Component Class name

Deterministic bottom-up tree
transducer

generators.dbuTransducer

Top-down tree transducer generators.tdTransducer

Tolerant top-down tree trans-
ducer

generators.ttdTransducer

YIELD transduction generators.YIELDTransduction

YIELD transduction generators.YIELDTransduction

Tolerant macro tree transducer generators.tmtTransducer

Iterator generators.iterator

A.3 Algebras

Component Class name

Boolean algebra algebras.booleanAlgebra

Chain-code algebra applications.lineDrawings.chainCodeAlgebra

Collage algebra applications.collages.collageAlgebra

Geometric-world algebra applications.geoWorld.geoWorldAlgebra

Grid collage algebra applications.collages.gridAlgebra

Integer algebra algebras.intAlgebra

Link algebras applications.links.linkAlgebra

String algebra algebras.stringAlgebra

Free term algebra algebras.termAlgebra

Turtle algebra applications.lineDrawings.turtleAlgebra

YIELD algebra algebras.YIELDAlgebra

A.4 Displays

Component Class name

Collage display applications.collages.collageDisplay

Geometric-world display applications.geoWorld.geoWorldDisplay

Line-drawing display applications.lineDrawings.lineDrawingDisplay

Textual display displays.textualDisplay

Tree display displays.treeDisplay
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