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Abstract. In an earlier paper, we proposed a learning algorithm for regular
tree languages in the Minimal Adequate Teacher model and investigated its
complexity from a theoretical perspective. Here, we focus on more practical is-
sues. We discuss a concrete implementation made available on the web, which
includes two extensions of the basic algorithm. In the paper, the usefulness of
these extensions is studied in an experimental setting, by running the variants
of the algorithm against target languages with different characteristics.

1 Introduction

This paper contributes to the field of algorithmic learning, where the aim is to derive a
formal description (an automaton, say) of a language U which is only implicitly available in
the form of examples or similar information. Often, this situation lacks natural termination
criteria, which led to the notion of ‘identification in the limit’ [Gol67]. To obtain a finite
time bound, one can resort to so-called Probably Accurate Learning. In this setting,
real values ε and δ, representing the desired accuracy and confidence, respectively, are
chosen from the interval [0, . . . , 1]. The learning component (the learner) processes available
examples until the probability that Perr exceeds ε is less than δ, where Perr is the probability
that the learner will classify an element incorrectly [RN03].

Another approach is to consider a restricted class of languages and use active learning,
where U is learned with the help of an oracle (the teacher). This makes it possible to avoid
probabilistic arguments, resulting in algorithms that are guaranteed to discover a correct
description of U in a finite number of steps. A popular model for such learning situations
is the Minimal Adequate Teacher (MAT) model introduced by Angluin [Ang87]. Here, the
teacher can answer two types of queries: a membership query asks whether a given object
is a member of U . An equivalence query proposes an automaton A and asks whether the
recognised language L(A) is equal to U . If not, the teacher returns a counterexample – an
object belonging to the symmetric difference of L(A) and U .

Several learning algorithms based on the MAT model have been studied in the literature.
In this paper, we continue our study of an efficient algorithm for learning regular tree
languages. Thus, both the learner and the teacher deal with trees and (deterministic)
bottom-up finite-state tree automata. The algorithm mentioned was proposed in [DH06],
following ideas by Angluin and Sakakibara [Ang87, Sak90]1, with a focus on theoretical
issues, namely a formal correctness proof and a detailed complexity analysis.

The present paper serves two purposes. Firstly, it shows how the ideas discussed in
[DH06] can be turned into a concrete implementation without loosing efficiency. Secondly,

1For a more detailed discussion of related work and further references, see [DH06].
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aiming at a reduction in the number of equivalence queries needed to learn a language, we
propose two extensions and investigate their usefulness in an experimental setting.

In [DH06], the effort made by the teacher is disregarded; queries are assumed to be
answered instantaneously. In a more realistic setting, one may expect that equivalence
queries are considerably harder to answer than membership queries (although this need
not be true for all applications). This motivates the investigation of extensions that reduce
the number of equivalence queries needed, even at the expense of increasing the number
of membership queries. Here, we propose and explore two such extensions. Intuitively, the
learner described in [DH06] discards a counterexample t as soon as it has extracted one
piece of information from it. It then continues by asking for a new counterexample. In a
real setting, this behaviour can be wasteful because t may still be a counterexample. The
learner can check this without the help of the teacher, and could thus reuse t as long as
possible. This yields the first extension proposed in this paper: reuse each counterexample
as long as possible; discard it only when it is recognised correctly. However, this behaviour
may be wasteful as well. This is because, later on, and in the light of new facts, t may again
become a counterexample.2 Therefore, our second extension is: reuse each counterexample
as long as possible, but also save all old counterexamples and return to them later.

In the worst case, neither of the two extensions will reduce the number of equivalence
queries, even if the teacher finds counterexamples that contain as much information as
possible (see [DH06]). However, we want to find out how the algorithm is likely to behave
in practice. Our hypothesis is that it will benefit from reusing, and even more from saving
counterexamples, on average in many practical cases. Therefore, we choose an experimental
setting. We explore how the three variants of the learner behave when counterexamples
are picked at random, using as U several tree languages with different characteristics.
Our results indicate that the extensions indeed have the desired effect. The reuse of
counterexamples leads to a significant reduction of the number of equivalence queries;
saving old counterexamples increases this effect even more, though not to the same extent.

To be able to conduct the experiments, a Java implementation of the learner has been
created (together with a component realizing the teacher). The implementation can be
downloaded from http://www.cs.umu.se/~johanna/learning.

In the next section, we explain the learner proposed in [DH06]. In Section 3, we discuss
a concrete implementation, as well as the two extensions mentioned. Section 4 explains
the setup of our experiments, while Section 5 presents their results.

2 An informal explanation of the learner

This section discusses informally the learner introduced in [DH06], where a more formal
presentation can be found. We begin by recalling trees and tree automata.

Trees Trees are built over ranked alphabets, i.e., each symbol f has a rank k ∈ N. To
indicate that f has rank k, we may write f (k). The set TΣ of all trees (or terms) over a
ranked alphabet Σ is defined as usual. It is the smallest set such that f [t1, . . . , tk] ∈ Σ,

2Note how this mirrors a real learning situation: as we learn more, we may realize that the interpretation
of experiences made earlier was incorrect, although it happened to lead to the correct conclusion.
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for all f (k) ∈ Σ and t1, . . . , tk ∈ TΣ. If k = 0, we write f rather than f []. A set T of trees
is called a tree language. We identify T with the corresponding predicate on trees, i.e.,
T (t) = true if t ∈ T , and T (t) = false, otherwise. For a tree language T and a ranked
alphabet Σ, we let Σ(T ) = {f [t1, . . . , tk] | f (k) ∈ Σ, t1, . . . , tk ∈ T}.

We reserve the symbol 2(0) /∈ Σ for a special purpose. A tree c ∈ TΣ∪{2} in which 2

occurs exactly once as a leaf is called a context. The set of all contexts over Σ is denoted
by CΣ. For c ∈ CΣ and s ∈ TΣ, c[[s]] denotes the tree obtained by substituting s for 2 in c.

Tree automata A (deterministic, but possibly partial) bottom-up finite-state tree au-
tomata (fta, for short) is a tuple A = (Σ, Q, δ, F ), where Σ is the ranked input alphabet,
Q is the finite set of states (which are viewed as symbols of rank 0), δ : Σ(Q) → Q is the
(possibly partial) transition function, and F ⊆ Q is the set of accepting or final states.

The canonical extension of δ to trees yields the partial function δ : TΣ → Q with
δ(t) = δ(f [δ(t1), . . . , δ(tk)]) for t = f [t1, . . . , tk] ∈ TΣ. Naturally, the set of trees accepted
by A is L(A) = {t ∈ TΣ | δ(t) is defined and belongs to F}. For t ∈ TΣ, we also write
A(t) instead of L(A)(t). A tree language of the form L(A) is called a regular tree language.

The learner To discuss the learner, let U be some regular tree language to be learned.
Thus, the aim is to build an fta A such that L(A) = U . As explained in the introduction,
the learner is assumed to have access to a teacher, an oracle that can answer membership
queries (“Is the tree t an element of U?”) and equivalence queries (“Does the fta A recognise
U? – If not, return a counterexample, i.e., a tree t such that A(t) 6= U(t).”).

In order to understand how the learner works, suppose A = (Σ, Q, δ, F ) is an fta with
L(A) = U . The states of A divide the subtrees of trees in U into finitely many equivalence
classes: trees t, t′ are equivalent if δ(t) = δ(t′). The major task of the learner is to detect a
unique representative for each of these classes. It exploits the fact that δ(t) = δ(t′) implies
δ(c[[t]]) = δ(c[[t′]]) for every c ∈ CΣ. Thus, if t and t′ are equivalent, then A accepts c[[t]] if
and only if it accepts c[[t′]], regardless of c. This means that t and t′ must be considered
inequivalent in every fta recognising U if U(c[[t]]) 6= U(c[[t′]]) for some c ∈ CΣ. Conversely, if
U(c[[t]]) = U(c[[t′]]) for all c ∈ CΣ, then t and t′ may safely be considered to be equivalent.3

From the given counterexamples, the learner extracts trees representing equivalence
classes and, at the same time, contexts witnessing their pairwise inequivalence. These
two sets of trees are called S and C, resp. Thus, at all times during the execution of
the algorithm, and for each pair of distinct elements s, s′ of S, there exists c ∈ C with
U(c[[s]]) 6= U(c[[s′]]). In addition to the sets S and C, a set R of trees is collected, whose
elements represent transitions. The triple T = (S, R, C) is called an observation table.4

The sets S and R are related by a nice invariant: we always have S ⊆ R ⊆ Σ(S).
To see how the information collected in T can be used to build an fta, let C =

{c1, . . . , cn}, where the ordering on the elements of C is arbitrary but fixed. Given a
tree s ∈ R, we let stateC(s) denote the sequence U(c1[[s]]) · · ·U(cn[[s]]). This is the state we
associate with s. We can easily make sure that T is complete in the sense that every state

3The formal version of this argument leads to the Myhill-Nerode theorem for regular tree languages.
4In the implementation, T is a real table with rows and columns indexed by R and C, resp. The cell

in row t and column c contains the truth value U(t[[c]]) retrieved by means of a membership query.
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stateC(s) with s ∈ R is in stateC(S) = {stateC(s′) | s′ ∈ S}. For this, we use a procedure
Complete that adds each s ∈ R with stateC(s) /∈ stateC(S) to S. Now, the state set of the
automaton is given by stateC(S). Every s = f [s1, . . . , sk] ∈ R gives rise to the transition
δ(f [stateC(s1), . . . , stateC(sk)]) = stateC(s). Naturally, the accepting states are the states
stateC(s) for which s ∈ U . In summary, the automaton synthesised from the (completed)
observation table T is given by AT = (QT , Σ, δT , FT ), where

• QT = stateC(S) (as stateC is injective on S, this yields |S| pairwise distinct states),
• δT (f [stateC(s1), . . . , stateC(sk)]) = stateC(s) for all s = f [s1, . . . , sk] in R, and
• FT = {stateC(s) | s ∈ S ∩ U}.
The overall structure of the learner is very simple; it repeatedly asks for counterexamples

and uses them in order to enlarge T until the teacher indicates that the proposed fta is
correct (by returning the special symbol ‘⊥’ instead of a counterexample):

T = (S, R,C) := (∅, ∅, ∅);
loop

t := Counterexample(AT ); (construct AT , ask equivalence query)
if t = ⊥ then return A
else T := Extend(T, t)

The actual extraction of new information from t takes place when the call Extend(T, t)
is executed. Since t is a counterexample, we have U(t) 6= AT (t). To find the cause for this
discrepancy, the learner proceeds with a step-by-step simulation of a run of AT on t. It
repeatedly chooses a subtree s = f [s1, . . . , sk] ∈ Σ(S) \ S, thus decomposing t into c[[s]].
Now, there are three cases. If s /∈ R (case 1), the run of AT aborts prematurely as soon as
the computation arrives at the node labelled f , because δT (f [stateC(s1), . . . , stateC(sk)])
is undefined. In other words, s must be added to R.

The second and third cases deal with the situation where s ∈ R. Let s′ be the element
of S such that stateC(s′) = stateC(s). Thus, AT (c[[s]]) = AT (c[[s′]]). Now, the learner
checks (using membership queries) whether U(c[[s]]) = U(c[[s′]]). If so (case 2a), the tree
c[[s′]] is a counterexample, too, and Extend repeats the whole process using c[[s′]] instead of
t. Otherwise (case 2b), we have U(c[[s]]) 6= U(c[[s′]]). This means that s′ is not equivalent
to s, as is witnessed by the context c. Therefore, Extend adds s′ to S and c to C. In
pseudocode notation, this looks as follows:

procedure Extend(T, t) where T = (S, R,C)
loop

decompose t into t = c[[s]] where s = f [s1, . . . , sk] ∈ Σ(S) \ S;
if s /∈ R then return Complete(S, R ∪ {s}, C) (case 1)
else

let s′ ∈ S be such that stateC(s′) = stateC(s);
if U(c[[s′]]) = U(c[[s]]) then t := c[[s′]]) (case 2a)
else return Complete(S ∪ {s}, R, C ∪ {c}) (case 2b)

Termination of Extend is guaranteed since, in case 2a, c[[s′]] contains fewer subtrees in
TΣ \ S than does t. A detailed correctness proof of the learner is found in [DH06], where
it is shown that the fta returned by the learner is the minimal partial fta recognising U .
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3 Implementation and extensions of the learner

An implementation of the learner could, of course, directly follow the description given in
the previous section. However, the resulting implementation of Extend would be rather
inefficient because the decomposition of the counterexample t into c[[s]], which would typi-
cally involve a recursive search for a subtree in Σ(S)\S, is done in each iteration. Moreover,
recursive tests for equality of trees should preferably be avoided as such tests occur fre-
quently in order to check whether s ∈ Σ(S) \S and whether s ∈ R. In [DH06], an efficient
variant of Extend is sketched to the extent necessary for estimating its (theoretical) com-
plexity. The idea is to combine the loop of Extend and the repeated decomposition of
a counterexample into a single bottom-up process. Another important issue is that the
elements of R are stored in a shared structure, a directed acyclic graph (dag) in which each
tree is represented by a unique node. Thus, the equality test for trees in R boils down to
a comparison of references. Here, we describe roughly how this idea has been realized in
our Java implementation of the learner, thus showing how the theoretical considerations
of [DH06] can be turned into a concrete implementation.

The observation table is an instance of a class in which Extend is a method. Similarly,
the dag is an instance of a class providing suitable lookup and update methods. The idea
behind the modified version of Extend is to check cases 1, 2a, and 2b during the recursive
decomposition of the counterexample t. For this, Extend is called with the arguments c
(initially 2) and s = f [s1, . . . , sk] (initially t). Extend starts by calling itself recursively
with the arguments c[[f [2, s2, . . . , sk]]] and s1. This recursive call may return null, which
indicates that the desired information was found and the table has been updated. Oth-
erwise, the recursive call returns the tree s′1 ∈ S (as a reference to a node in the dag)
such that stateC(s′1) = δT (s1). Further recursive calls examine c[[f [s′1, 2, s3, . . . , sk]]] and
s2, yielding s′2 (or null), and so on.

Eventually, for each si the corresponding tree s′i ∈ S stored in the dag has been found.
Now, the question is whether f [s′1, . . . , s

′
k] ∈ R, i.e., whether this tree is already represented

in the dag. Since s′1, . . . , s
′
k are dag references, this can be checked efficiently by a lookup

method that returns either the sought tree s (in the form of a dag reference) or null.
Now, there are four possibilities corresponding to the three cases of the original version of
Extend, and the additional possibility that f [s′1, . . . , s

′
k] is not only in R but even in S:

1. The lookup method returned null. In this case, f [s′1, . . . , s
′
k] is added to R and

inserted into the dag (by creating a new f -node with references to the subtrees
s′1, . . . , s

′
k), and Extend returns null.

2. The lookup method returned s 6= null, where s /∈ S. Hence, there is a unique tree
s′ ∈ S (again given in the form of a dag reference) such that stateC(s′) = stateC(s).
2a. If U(c[[s′]]) = U(c[[s]]), then Extend returns s′.
2b. Otherwise, s is added to S, c is added to C, and Extend returns null.

3. The lookup method returned s 6= null, where s ∈ S. In this case, Extend simply
has to return s.

The corresponding pseudocode is given below.
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method Extend(c, s), where s = f [s1, . . . , sk]
for i = 1, . . . , k do

s′i := Extend(c[[f [s′1, . . . , s
′
i−1,2, si+1, . . . , sk]]], si);

if s′i = null then return null;
s := dag .LookUp(f, s′1 · · · s′k);
if s = null then (case 1)

s′ := dag .Insert(f, s′1 · · · s′k);
AddToTable(null,s′,null);
return null;

elsif s /∈ S
let s′ ∈ S be such that stateC(s′) = stateC(s);
if U(c[[s′]]) = U(c[[s]]) then return s′ (case 2a)
else (case 2b)

AddToTable(s′,null,c);
return null;

else return s; (case 3)

The learner, as introduced in [DH06] and discussed up to this point, retrieves exactly
one piece of information (i.e. a tree in S or R, yielding a state or a transition) from each
counterexample given, before discarding it. As argued in [DH06], there are tree languages
that make it impossible to provide more than one piece of information per counterexample.
Thus, in general, we cannot even expect to benefit from adopting another strategy if the
teacher is assumed to select “rich” counterexamples. However, from a practical point of
view, it is nevertheless interesting to explore how much is typically gained by exploiting the
received counterexamples in a more exhaustive way. This becomes particularly important
in settings where the effort spent by the teacher in order to construct counterexamples is
significantly larger than the effort spent in order to answer membership queries.

In the following, we consider two such extensions of the plain learner. The first one,
which we may call the reusing learner, continues to process the given counterexample as
long as it happens to be a counterexample. Eventually, the counterexample is recognised
correctly, and only then it is discarded. The second extension, called the saving learner, ex-
tends this strategy by not only reusing the most recent counterexample as long as possible,
but also saving it. The rationale behind this is that, just as in real life, how much infor-
mation the learner can retrieve from a counterexample depends on how much it already
knows. In other words, as the learner discovers some new state (i.e., inserts a new tree in
S), a former counterexample may become a counterexample, again. Therefore, the saving
learner revisits the stored examples each time the examination of another counterexample
has changed S. Note that the saving learner can easily check whether a former counterex-
ample has become a counterexample again. For this purpose, it stores the answer the fta
gave when the tree was considered last (which, in fact, tells us whether or not the tree
belongs to U). Later, the learner runs its current fta on the tree and compares the results.
If they differ, the tree must be revisited. The teacher is not involved in this decision.

For a (very simple) example illustrating this effect, consider Σ = {f (2), g(1), a(0), b(0)}.
We want to build expressions in which the first subtree of every occurrence of f is a tree
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a
b

g[a]
f [a, a]

(a) Step 1

f [2, a]

a +
f [a, a] −

b −
g[a] +

(b) Step 2

f [2, a]

a +
f [a, a] −

b −
g[a] +

g[f [a, a]] −
f [a, f [a, a]] +

(c) Step 3

Table 1: Observation tables during a run of the saving learner

over g and a, whereas there is no such restriction regarding the second subtree (except that
it, recursively, has the same property). Since the initial fta accepts the empty language,
the teacher may return f [g[a], g[b]] as a counterexample. Reusing this counterexample as
long as possible yields Table 1(a), where S = {a}, R\S = {b, g[a], f [a, a]}, and C = ∅. The
resulting fta simply accepts TΣ. The teacher may now give the counterexample f [f [b, a], a],
which leads to Table 1(b) (where ‘+’ and ‘−’ stand for true and false, resp). In particular,
the learner has discovered the context f [2, a] that distinguishes a from f [a, a] and b.
However, now the fta cannot handle the first counterexample any more, because it does not
(erroneously) identify b with a any more. Instead, b is (correctly) put into the equivalence
class represented by f [a, a], thus making δ(g[b]) undefined. Hence, it makes sense to revisit
the first counterexample, yielding Table 1(c), which is the final one. Note the rationale
behind revisiting old counterexamples (as opposed to, e.g., testing randomly generated
examples every now and then): the addition of a new context in step 2 made it impossible
to accept any tree containing b or f [a, a]. However, the fact that these trees belong to R
proves that they appeared as subtrees of positive counterexamples (see [DH06]). Hence, we
obviously have to gain something by revisiting the saved counterexamples. (In less trivial
examples, revisiting negative counterexamples may reveal new information as well.)

Clearly, the plain learner will always use at least as many counterexamples than the
reusing one, and that one will always use at least as many as the saving learner. However,
while the reusing learner, compared with the plain learner, does not have any significant
disadvantage, the saving learner is less memory efficient since old counterexamples are
stored even if they perhaps never become useful, again.

4 Experimental setup and hypotheses

As mentioned in the introduction, the learners and a suitable teacher have been imple-
mented and made available on the web. Because of the restricted available space, the
implementation cannot be discussed in detail here; the interested reader is referred to the
web site mentioned earlier. However, let us remark that the implementation of the teacher
is based on the well-known fact that, given two ftas A, A′ (corresponding to the fta proposed
by the learner and the one describing the target language), one can effectively construct
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an fta B such that L(B) is the symmetric difference of L(A) and L(A′), i.e., the set of all
counterexamples.) Subject to pragmatic restrictions regarding the size of counterexamples,
an equivalence query is answered by returning a random element of L(B).

The implementation has been used to study experimentally how the learners behave if
they are applied to various target languages with different characteristics. In the following,
we explain briefly some of these languages, why they have been chosen, and the expected
behaviour of the learners. The actual results of the experiments are discussed in the next
section. Regardless of the target language, one may expect that both the reusing and the
saving learner ask more membership questions that the plain learner does. Intuitively, the
reason for this is that Extend will ask membership queries (to find out whether U(c[[s′]]) =
U(c[[s]])) at nodes where such questions were asked during prior runs as well. Even though
this check is not useless (because the trees s′ and s are not necessarily the same as in the
earlier runs), one may expect that it will typically yield the same result.

SIMPLE ENGLISH The tree language Simple English is a small school book example
of a simple English grammar inspired by [JM00]. As lexicon, we use a number of non-
sensical words from Lewis Carroll’s poem Jabberwocky [Car72]. The (minimal partial) fta
recognising Simple English has 18 states and 54 transitions.

Simple English is included because of its resemblance to a natural language. Another
reason for including it is the hypothesis that, in this case, the learner will not gain much
by saving counterexamples. This is because, compared with the number of states, there
are relatively few transitions. Even though revisiting old counterexamples may in certain
situations reveal previously unknown states, what we typically expect to find are transitions
(cf. the small example discussed towards the end of the previous section).

FORMULA The tree language Formula contains the parse trees of all sentences in a
first-order predicate logic with terms of types integer and real, over a certain set of symbols
(for details, see the web page mentioned above). Recognising Formula requires an fta
with 14 states and 435 transitions.

This language is included because it represents an important category of tree languages
occurring in many formal contexts (in contrast to Simple English, which stems from the
linguistic area). The structural difference between the two examples is reflected by the
fact that the transition table is not as sparse as the one for Simple English. For this
reason, one may expect that saving counterexamples may be somewhat more beneficial for
this target language. In fact, there are a number of situations where trees t, t′ are allowed
to occur in the same context although they belong to different syntactic categories. (For
example, the operator mod accepts both integer and real operands in its first argument
position.) Intuitively, this should give rise to situations such as the one discussed near the
end of Section 3.

EXPRESSION The tree language Expression consists of all expressions over a certain
set of operators. Expressions can be of four different types: integer, real, string, and
undefined. There is a ternary operator ifdef, the idea being that it selects the second or
third operand, depending on whether or not the first one is defined. As a consequence, the
transition table of the corresponding fta is complete, i.e., the minimal partial fta coincides
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Simple English

Eq Mem RQ RT SQ ST
Plain 71.0 1480 - - - -
Reuse 14.8 2230 17.0 40.2 - -
Save 14.6 2230 17.0 40.4 0 0

Table 2: Statistics from 100 executions for
the target language Simple English

Formula

Eq Mem RQ RT SQ ST
Plain 447 11300 - - - -
Reuse 240 14700 7.34 201 - -
Save 227 14800 6.35 182 1.18 32.2

Table 3: Statistics from 100 executions for
the target language Formula

Expression

Eq Mem RQ RT SQ ST
Plain 106 3250 - - - -
Reuse 18.6 12200 1.46 87.0 - -
Save 13.0 13400 1.34 65.4 .280 27.0

Table 4: Statistics from 100 executions for
the target language Expression

Random Monadic

Eq Mem RQ RT SQ ST
Plain 51.5 831 - - - -
Reuse 13.5 823 28.3 31.8 - -
Save 7.81 878 13.8 15.7 18.8 20.0

Table 5: Statistics from 100 runs for the
target language Random Monadic

with the minimal total one. (The fta has four states, corresponding to the types, and
103 transitions.) Hence, we expect the learner to take even greater advantage of saving
counterexamples than is the case for Formula.

RANDOM MONADIC Our final example, the tree language Random Monadic, con-
sists of at most twenty monadic trees over {f (1), a(0)} of height at most 40. The trees
are chosen at random each time the language is used. Thus, the exact number of states
and transitions needed to recognise Random Monadic varies, but the upper limits of
40 states and transitions will never be surpassed. Even though Random Monadic is a
small language which can be learnt quickly by the plain learner, saving counterexamples is
supposed to be quite beneficial since there is essentially no structural connection between
the trees in Random Monadic, and, hence, none between the counterexamples either.

5 Results

Let us now turn to the results of our experiments. For each of the considered languages,
statistics from 100 executions have been collected, using randomly selected counterexam-
ples. Tables 2–5 show the resulting figures. In each table, the columns show the mean
values of the numbers of equivalence queries (Eq) and membership queries (Mem) asked,
states and transitions found by reusing a counterexample (RQ and RT, resp.), and states
and transitions found by returning to a saved counterexample (SQ and ST, resp.). Tables
including standard deviations can be found on the web. In the following, we denote by,
e.g., EqEnglish

plain the average number of equivalence queries used by the plain learner for the
tree language Simple English.

Unsurprisingly, for all languages studied, reuse leads to a significant reduction of the
average number of counterexamples required. As expected, the plain learner uses the least
number of membership queries. However, the ratio EqU

plain/EqU
reuse is always considerably
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larger than the ratio MemU
reuse/MemU

plain.

By comparing, in Tables 3–5, the values RQU
reuse and RTU

reuse with RQU
save and RTU

save,
resp., we observe an interesting effect: To some extent, saving counterexamples diminishes
the benefit of reusing them. This can be explained as follows. If a new state is discovered,
the reusing learner is likely to find some of the corresponding transitions “by coincidence”
while reusing one of the next counterexamples (rather than finding all of them in the
present one). In contrast, the saving learner may discover the same transitions prior to
requesting and examining the next counterexamples.

Interestingly, EqEnglish
reuse is much smaller than EqEnglish

plain , whereas absolutely nothing is

won by saving counterexamples in this case. As expected, we can observe that EqFormula
save is

strictly less than EqFormula
reuse . However, the reduction of approximately 5.4% is unexpectedly

small. As the tables show, this situation changes if we look at Expressions and Random
Monadic. In these cases, both reusing and saving counterexamples lead to a considerable
reduction in the number of equivalence queries.

In conclusion, our results indicate that, if the learner from [DH06] is to be applied in
practise, reusing counterexamples is a valuable technique. Depending on the structure of
the learned language, saving counterexamples seems to be useful as well, but in this case
the benefit is not as obvious. Future work should aim at formal results that are able to
explain the findings of this paper.
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