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Abstract

In this paper, we apply the theory of condition developed by Rice to define condition
numbers of the spectral projection. Explicit expressions of the condition numbers are derived,
and some relations between the condition numbers of the spectral projection and the condition
number of the associated invariant subspace are presented. The results are illustrated by a
simple numerical example.
© 2004 Elsevier Inc. All rights reserved.

AMS classification: 15A18; 65F15

Keywords: Spectral projection; First order perturbation expansion; Condition number; First order pertur-
bation bound

1. Introduction

Throughout this paper, Cm×n denotes the set of m× n complex matrices. AT

denotes the transpose of a matrix A, A the conjugate of A, and AH = AT
. A† stands

for the Moore–Penrose inverse of A. In is the identity matrix of order n, and 0 is
the null matrix. R(A) is the column space of A. λ(A) denotes the set of all eigen-
values of a square matrix A. σmin(A) denotes the smallest singular value of A. The

�This work was supported by the Swedish Strategic Research Foundation Grant entitled “Matrix Pencil
Computations in Computer-Aided Control System Design: Theory, Algorithms and Software Tools”.

E-mail address: jisun@cs.umu.se

0024-3795/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2004.06.005

www.elsevier.com/locate/laa
mailto:jisun@cs.umu.se


84 J.-G. Sun / Linear Algebra and its Applications 395 (2005) 83–94

symbol ‖ ‖2 stands for the Euclidean vector norm and the spectral matrix norm, and
‖ ‖F the Frobenius norm. For A = (αjk) = (a1, . . . , an) ∈ Cm×n and a matrix B,
A⊗ B = (αjkB) is a Kronecker product, and vecA is a vector defined by vecA =
(aT

1 , . . . , a
T
n )

T.
Let A ∈ Cn×n, and let U ∈ Cn×n be a unitary matrix such that

A = U
(
A11 A12

0 A22

)
UH , (1.1)

whereA11 ∈ Cm×m (m < n) [4]. Assume λ(A11)
⋂
λ(A22) = ∅. Then the Sylvester

equation

A11M −MA22 = −A12, (1.2)

has a unique solutionM . Taking the solutionM , and letting

S = U
(
Im M

0 In−m

)
= (S1, S2),

(1.3)

T = S−1 =
(
T1
T2

)
, S1, T

T
1 ∈ Cn×m,

we have

A = S
(
A11 0

0 A22

)
S−1, (1.4)

which means that R(S1) is the invariant subspace of A corresponding to λ(A11). The
spectral projection of A corresponding to λ(A11) is defined by

P = S
(
Im 0
0 0

)
S−1 = U

(
Im −M
0 0

)
UH ; (1.5)

i.e., the spectral projection P is the projection onto R(S1) along R(S2). It is known
[1,3,5,10] that the spectral projection P plays an important role in the perturbation
theory for eigenvalue problems.

Take a closed Jordan curve γ that separates the sets λ(A11) and λ(A22) in the
complex plane, and let the domain containing λ(A11) be to the left if we move in the
counterclockwise direction. Then the spectral projection P defined by (1.5) can be
expressed by a complex contour integral along γ [2,5]:

P = 1

2πi

∮
γ

(zIn − A)−1dz. (1.6)

The integral representation (1.6) has been used to develop numerical methods for
computing the spectral projection P and to derive some perturbation bounds for P
(see, e.g., [3, Section 2] and [2, Section 8.3]).

The purpose of this paper is to define condition numbers of the spectral projection
P , and to derive explicit expressions of the condition numbers.
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In Section 2, we apply the theory of condition developed by Rice [6] to define
absolute and relative condition numbers of the spectral projection P , and derive
explicit expressions of the condition numbers by using the matrix representation
(1.5). Some relations between the condition numbers of the spectral projection P
and the condition number of the associated invariant subspace R(S1) are presented
(see Remark 2.4 of Section 2). The results are illustrated by a simple numerical
example in Section 3.

The following result cited from Stewart [7] will be used in Sections 2.

Theorem 1.1 [7, Theorem 4.11]. Let

A11,�A11 ∈ Cm×m, A22,�A22 ∈ C(n−m)×(n−m),
(1.7)

�A12 ∈ Cm×(n−m), �A21 ∈ C(n−m)×m.

Assume λ(A11)
⋂
λ(A22) = ∅, and define

δ = σmin(In−m ⊗ A11 − AT
22 ⊗ Im)− (‖�A11‖F + ‖�A22‖F). (1.8)

If

δ > 0 and
‖�A12‖F‖�A21‖F

δ2
<

1

4
,

then there is a unique solution X ∈ C(n−m)×m to the equation

A11X −XA22 = −�A12 +X�A22 −�A11X +X�A21X

that satisfies

‖X‖F <
2‖�A12‖F

δ
.

Let A11 and A22 be the matrices of (1.7). By Stewart [7], the separation
sepF(A11, A22) of the matrices A11 and A22 is defined by

sepF(A11, A22) = min‖G‖F=1
‖A11G−GA22‖F. (1.9)

Let

� = In−m ⊗ A11 − AT
22 ⊗ Im, (1.10)

and assume λ(A11)
⋂
λ(A22) = ∅. Then from (1.9) we see that sepF(A11, A22) has

the expression

sepF(A11, A22) = ‖�−1‖−1
2 = σmin(�). (1.11)

Thus, (1.8) can be written as

δ = sepF(A11, A22)− (‖�A11‖F + ‖�A22‖F).
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2. Condition numbers of the spectral projection P

Let the matrixA be slightly perturbed to Ã = A+�A, and let the spectral projec-
tion P be perturbed to P̃ = P +�P , correspondingly. By the theory of condition
developed by Rice [6] we may define the absolute and relative condition numbers
cabs(P ) and crel(P ) by

cabs(P ) = lim
δ→0

sup
‖�A‖F�δ

‖�P ‖F

δ
, (2.1)

and

crel(P ) = lim
δ→0

sup
‖�A‖F‖A‖F

�δ

‖�P ‖F

‖P ‖Fδ
. (2.2)

By the definitions (2.1) and (2.2), we have the first order perturbation bounds for P :

‖P̃ − P ‖F�cabs(P )‖�A‖F,
‖P̃ − P ‖F

‖P ‖F
�crel(P )

‖�A‖F

‖A‖F
,

where ‖�A‖F is sufficiently small.
In this section, we will derive explicit expressions of cabs(P ) and crel(P ).
Write

S−1�AS =
(
�A11 �A12
�A21 �A22

)
, �A11 ∈ Cm×m. (2.3)

Combining (2.3) with (1.4) gives

S−1(A+�A)S =
(
A11 +�A11 �A12
�A21 A22 +�A22

)
. (2.4)

Consider the equations

A11X −XA22 = −�A12 +X�A22 −�A11X +X�A21X, (2.5)

and

A22Z − ZA11 = −�A21 + Z�A11 −�A22Z + Z�A12Z. (2.6)

By Theorem 1.1, if ‖�A‖F is sufficiently small, then there is a unique solution X ∈
Cm×(n−m) to Eq. (2.5) that satisfies

‖X‖F = O(‖�A‖F), as ‖�A‖F → 0, (2.7)

and there is a unique solution Z ∈ C(n−m)×m to Eq. (2.6) that satisfies

‖Z‖F = O(‖�A‖F), as ‖�A‖F → 0. (2.8)

Let ‖�A‖F be so small that the unique solutions X and Z satisfy ‖X‖2 < 1 and
‖Z‖2 < 1. Then(

Im X

Z In−m

)
is nonsingular,
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and we have(
Im X

Z In−m

)−1

=
(
(Im −XZ)−1 0

0 (In−m − ZX)−1

)(
Im −X
−Z In−m

)
,

and

(
Im X

Z In−m

)−1
(
A11 +�A11 �A12

�A21 A22 +�A22

)(
Im X

Z In−m

)

=
(
(Im −XZ)−1(A11 + �̂A11) 0

0 (In−m − ZX)−1(A22 + �̂A22)

)
,

(2.9)

where

�̂A11 = �A11 −X�A21 +�A12Z −X(A22 +�A22)Z,

�̂A22 = �A22 − Z�A12 +�A21X − Z(A11 +�A11)X.

Moreover, let ‖�A‖F be so small that

λ
(
(Im −XZ)−1(A11+�̂A11)

)⋂
λ
(
(In−m − ZX)−1(A22 + �̂A22)

)
=∅,
(2.10)

and let

S̃ = S
(
Im X

Z In−m

)
. (2.11)

Then from (2.4) and (2.9) we get

S̃−1(A+�A)S̃

=
(
(Im −XZ)−1(A11 + �̂A11) 0

0 (In−m − ZX)−1(A22 + �̂A22)

)
.

(2.12)

Consequently, from (2.10)–(2.12) we see that the perturbed spectral projection P̃ can
be expressed by

P̃ = S̃
(
Im 0
0 0

)
S̃−1

=S
(
(Im −XZ)−1 −(Im −XZ)−1X

Z(Im −XZ)−1 −Z(Im −XZ)−1X

)
S−1. (2.13)
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Combining (2.13) with (1.5) gives

�P = S
(

XZ(Im −XZ)−1 −X −XZ(Im −XZ)−1X

Z + ZXZ(Im −XZ)−1 −Z(Im −XZ)−1X

)
S−1.

(2.14)

By (2.5) and (2.7), the vector vecX has the first order perturbation expansion

vecX ≈ −�−1vec(�A12), (2.15)

where

� = In−m ⊗ A11 − AT
22 ⊗ Im. (2.16)

By (2.6) and (2.8), the vector vecZ has the first order perturbation expansion

vecZ ≈ �−1vec(�A21), (2.17)

where

� = AT
11 ⊗ In−m − Im ⊗ A22. (2.18)

Substituting (1.3), (2.7), (2.8), (2.15) and (2.17) into (2.14) gives the first order per-
turbation expansion of vec(�P ):

vec(�P )≈vec(−S1XT2 + S2ZT1)

=−(T T
2 ⊗ S1)vecX + (T T

1 ⊗ S2)vecZ

≈(T T
2 ⊗ S1)�

−1vec(�A12)+ (T T
1 ⊗ S2)�

−1vec(�A21). (2.19)

By (1.3) and (2.3) we have

vec(�A12) = (ST
2 ⊗ T1)vec(�A), vec(�A21) = (ST

1 ⊗ T2)vec(�A).

Combining these relations with (2.19) shows

vec(�P ) ≈ �vec(�A), (2.20)

where

� = (T T
2 ⊗ S1)�

−1(ST
2 ⊗ T1)+ (T T

1 ⊗ S2)�
−1(ST

1 ⊗ T2). (2.21)

Further, substituting the expression (2.20) into (2.1) and (2.2) gives

cabs(P ) = sup
‖�A‖F�1

‖�vec(�A)‖2

‖�A‖F
= ‖�‖2, (2.22)

and

crel(P ) = ‖A‖F‖�‖2

‖P ‖F
. (2.23)

Observe that by (1.3) we have the expressions

S1 = U
(
Im
0

)
, S2 = U

(
M

In−m

)
,
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and

T1 = (Im,−M)UH , T2 = (0, In−m)UH .
Substituting these expressions into (2.21) yields

� = (U ⊗ U)
{[(

0
In−m

)
⊗
(
Im
0

)]
�−1 [(MT, In−m)⊗ (Im,−M)

]

+
[(
Im

−M
)

⊗
(
M

In−m

)]
�−1 [(Im, 0)⊗ (0, In−m)]

}
(UT ⊗ UH),

where U ⊗ U and UT ⊗ UH are unitary matrices. Hence, from (2.21) to (2.23) we
obtain

cabs(P ) =
∥∥∥�(0)∥∥∥

2
, crel(P ) = ‖A‖F

∥∥�(0)∥∥2

‖P ‖F
, (2.24)

where

�(0) =
[(

0
In−m

)
⊗
(
Im
0

)]
�−1[(MT, In−m)⊗ (Im,−M)]

+
[(

Im
−MT

)
⊗
(
M

In−m

)]
�−1[(Im, 0)⊗ (0, In−m)]. (2.25)

Overall, we have proved the following result.

Theorem 2.1. The condition numbers cabs(P ) and crel(P ) defined by (2.1) and (2.2)
have the explicit expressions (2.24), where �(0) is the matrix defined by (2.25), in
which M is the unique solution to Eq. (1.2), and � and � are the matrices defined
by (2.16) and (2.18), respectively.

Remark 2.2. Consider a very simple example. Let

A =
(

0 0
0 α

)
with α > 0.

By (1.1), (1.2) and (1.5), we have U = I2 andM = 0, and the spectral projection P
of A corresponding to the eigenvalue λ = 0 is

P =
(

1 0
0 0

)
.

Moreover, by (2.16), (2.18) and (2.25), we have

� = � = −α, �(0) = − 1

α




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 .
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Consequently, by Theorem 2.1, the condition numbers cabs(P ) and crel(P ) can be
expressed by

cabs(P ) = 1

α
and crel(P ) = 1, (2.26)

which mean that the spectral projection P of this example is ill-conditioned in the
absolute sense when α is very small, and P is always well-conditioned for α > 0 in
the relative sense. Note that the condition numbers of (2.26) are attainable. In fact, if
the matrix A is perturbed to

Ã =
(

0 ε

0 α

)
,

then the spectral projection P is perturbed to

P̃ =
(

1 −ε/α
0 0

)
,

and we have

‖P̃ − P ‖F

‖Ã− A‖F
= |ε|/α

|ε| = 1

α
.

Remark 2.3. We now give some estimates of the condition number cabs(P ).
Let

K0 =
(
Im

−MT

)
⊗
(
M

In−m

)
, L0 = (MT, In−m)⊗ (Im,−M), (2.27)

K =
((

0
In−m

)
⊗
(
Im
0

)
,K0

)
∈ Cn

2×2m(n−m), (2.28)

and

L =
(

L0
(Im, 0)⊗ (0, In−m)

)
∈ C2m(n−m)×n2

. (2.29)

Note that the matrix K has full column rank. In fact, the relation Kx = 0 for x =
(xT

1 , x
T
2 )

T with xj ∈ Cm(n−m)(j = 1, 2) can be written as(
Im
0

)
X1(0, In−m)+

(
M

In−m

)
X2(Im,−M) = 0, vecXj = xj , j = 1, 2,

i.e., (
MX2 X1 −MX2M

X2 −X2M

)
= 0,

which impliesX2 = 0 andX1 = 0. Consequently,K has full column rank. Similarly,
we can prove that L has full row rank.
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By using (2.28) and (2.29), the matrix �(0) defined by (2.25) can be expressed by

�(0) = K
(

�−1 0
0 �−1

)
L, (2.30)

where � and � are the matrices defined by (2.16) and (2.18), respectively.
Observe the following facts:
1. From (2.25) we get

‖�(0)‖2 � ‖L0‖2‖�−1‖2 + ‖K0‖2‖�−1‖2,

and from (2.30) we get

K†�(0)L† =
(

�−1 0
0 �−1

)
,

and

max
{
‖�−1‖2, ‖�−1‖2

}
� ‖K†‖2‖L†‖2

∥∥∥�(0)∥∥∥
2
.

2. By (1.9)–(1.11) we have

sepF(A11, A22) = sepF(A
H
11, A

H
22) = sepF(A22, A11).

Consequently, for the matrices � and �, the equality ‖�−1‖2 = ‖�−1‖2 holds.
Hence, by (2.24) and (2.25) we have

‖K†‖−1
2 ‖L†‖−1

2 ‖�−1‖2 � cabs(P ) � (‖K0‖2 + ‖L0‖2)‖�−1‖2. (2.31)

Remark 2.4. For the unitary matrix U of (1.1), let U = (U1, U2), where U1 ∈
Cn×m. By (1.3) we have S1 = U1, and from (1.1) (or (1.4)) we see that the subspace
R(S1) is the invariant subspace of A corresponding to λ(A11). Let A be slightly
perturbed to A+�A, and let S1 = R(S1) be perturbed to S̃1, correspondingly. By
[6] we define the condition number c(R(S1)) of R(S1) by

c(R(S1)) = lim
δ→0

sup
‖�A‖F�δ

ρF(S1, S̃1)

δ
,

where ρF(S1, S̃1) is the generalized chordal metric defined by [7,8]

ρF(S1, S̃1) = 1√
2
‖PS1 − PS̃1

‖F,

in which PS1 is the orthogonal projection onto S1. By [8, Chapter 2, Section 2.2],
the condition number c(R(S1)) can be expressed by

c(R(S1)) = ‖�−1‖2. (2.32)

Combining it with (2.31) gives the relations

‖K†‖−1
2 ‖L†‖−1

2 c(R(S1)) � cabs(P ) � (‖K0‖2 + ‖L0‖2)c(R(S1)), (2.33)

where K0, L0,K and L are the matrices defined by (2.27)–(2.29). Note that for the
matrices K0 and L0 we have
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‖K0‖2 = 1 + ‖M‖2
2, ‖L0‖2 = 1 + ‖M‖2

2. (2.34)

This fact can be proved as follows: Let M = W�QH be a singular value decompo-
sition ofM , whereW andQ are unitary matrices, and

� = diag(σ1, σ2, . . .), σ1 � σ2 � · · · � 0.

Then

K0 =
(

Im
−Q�TWT

)
⊗
(
W�QH

In−m

)

=
[(
W 0
0 −Q

)(
Im
�T

)
WT

]
⊗
[(
W 0
0 Q

)(
�
In−m

)
QH

]

=
[(
W 0
0 −Q

)
⊗
(
W 0
0 Q

)][(
Im
�T

)
⊗
(

�
In−m

)]
(WT ⊗QH),

where the matrices(
W 0
0 −Q

)
⊗
(
W 0
0 Q

)
and WT ⊗QH

are unitary. Consequently, we have

‖K0‖2 =
∥∥∥∥
(
Im
�T

)
⊗
(

�
In−m

)∥∥∥∥
2

= 1 + σ 2
1 = 1 + ‖M‖2

2.

Similarly, we get the second equality of (2.34). Combining (2.34) with (2.33) gives
an upper bound for cabs(P ):

cabs(P ) � 2(1 + ‖M‖2
2)c(R(S1)) ≡ β(P ). (2.35)

Further, the relations (2.32) and (1.10) imply

c(R(S1)) = 1/sepF(A11, A22). (2.36)

Moreover, from (1.2) we get

vecM = −�−1vecA12,

and consequently,

‖M‖2 � ‖M‖F � ‖�−1‖2‖A12‖F = ‖A12‖F/sepF(A11, A22). (2.37)

Substituting (2.36) and (2.37) into (2.35) gives

cabs(P ) � 2

sepF(A11, A22)

(
1 + ‖A12‖2

F

sep2
F(A11, A22)

)
. (2.38)

Remark 2.5. By the theory of condition developed by Rice [6] we may define
condition numbers of the generalized spectral projections associated with a regular
matrix pair. Explicit expressions of the condition numbers are given by [9, Section
3].



J.-G. Sun / Linear Algebra and its Applications 395 (2005) 83–94 93

3. A numerical example

We now use a simple numerical example to illustrate our results of Section 2. All
computations were performed using MATLAB, version 6.5. The relative machine
precision is 2.22×10−16.

Example 3.1. Consider the matrix

A =
(
A11 A12

0 A22

)
with

A11 =

1 1 0

0 1 1
0 0 1


 , A12 =


 1 1 0 0 0

−1 1 1 0 0
0 −1 1 1 0


 ,

and

A22 =




1 − 10−k 1 0 0 0
0 1 − 10−k 1 0 0
0 0 1 − 10−k 1 0
0 0 0 1 − 10−k 1
0 0 0 0 1 − 10−k


 .

Solving the Sylvester equation (1.2) we get M , and then substituting it into (1.3)
and (1.5) gives S, T , and the spectral projection P of A corresponding to the eigen-
value 1. The computed condition numbers crel(P ) and cabs(P ) (by (2.24)), the upper
bound β(P ) for cabs(P ) (by (2.35)), the condition number c(R(S1)) of the invariant
subspace R(S1) (by (2.32)) and the quantity ‖M‖2 are listed in Table 1.

From the results listed in Table 1 we see that the spectral projection P is more
sensitive to small changes in A when k increases. For understanding the results we
point out the fact that for this example the separation sepF(A11, A22) of A11 and A22
decreases with the increasing of k. Combining this fact with the relations (2.36)–
(2.38) shows that c(R(S1)) increases and ‖M‖2 and cabs(P ) may increase with the
increasing of k. Moreover, from the results listed in Table 1 we see that the upper
bound β(P ) for cabs(P ) (see (2.35)) may be much larger than cabs(P ).

Table 1

k −2 −1 0 1 2

crel(P ) 1.3 1.4 3.9×102 5.1×109 6.5×1016

cabs(P ) 1.0×10−2 1.2×10−1 1.1×103 1.2×1016 1.9×1029

β(P ) 2.0×10−2 2.4×10−1 4.6×103 3.3×1022 6.3×1041

c(R(S1)) 1.0×10−2 1.2×10−1 1.5×10 1.2×108 1.5×1015

‖M‖2 1.9×10−2 2.0×10−1 1.3×10 1.2×107 1.5×1013
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