
SPH survival kit 
 
Although SPH is an excellent method in many cases, it is fairly hard to find a set of 
parameters that give stable and realistic simulations, and it can also be difficult to find 
parameters that rescale a simulation (e.g. from 0.1 l of water to 10 l of water). 
 
Here, we propose some improvements that will give more stable simulations. 
However, note that it is indeed possible to get stable simulations with the previously 
given parameters, but the timestep must be held perhaps too small for the simulation 
to be interactive. 
 

Parameters 
Although one would like the SPH parameters to have direct correspondence to the 
real world, this is in general not the case. The main problem when simulating water is 
that the speed of sound is usually set to a value much smaller than the real value (e.g. 
1 m/s instead of 1500 m/s). This results in a compressible system, and in turn this 
results in water with a too high density.  
 
Therefore, for a given sound velocity and timestep, try to lower the mass per particle 
so that the computed average density becomes closer to 1000 kg/m3, i.e. so that the 
pressure, p = c2 (ρ – ρ0)  fluctuates around zero. 
This will also affect the resulting volume, and thus the density has a non-linear 
dependence on the particle mass, but by testing a couple of times you should at least 
find a much better value.  
 
Just to complicate this a bit ☺ 
If the density is lowered and particles are more sparse, one might need to use a larger 
smoothing length. This will also affect the computed density, since, in particular, the 
self contribution from the center particle depends a lot on the smoothing length (short 
smoothing length = large self contribution, and there is also a lower bound, i.e. the 
self contribution to the density should not be larger than ρ0). 
 

Different ways of computing field differentials 
 
When computing forces/acceleration in SPH, Newton’s third law tells us that in order 
to conserve linear momentum (“rörelsemängd”), pairwise forces must be equal in size 
with opposite sign. Therefore the differentials in Navier Stokes equations that give 
rise to these forces, must also be symmetrized. This can be done in several ways, 
leading to different types of averages, and in the end it can affect the simulation, in 
particular in extreme situations, e.g. near a boundary, or at very short distances. 
 
Referring to the SPH lecture notes, the gradient in the SPH pressure force can thus 
take at least the two following different forms (in fact, there is a very recent article 
looking into this![1]): 
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as previously discussed in the lecture notes, or, 
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According to Ref [1], this latter expression gives more accurate differentials, and this 
is also my own experience, in particular near boundaries where densities can be small 
due to lack of neighbours on the boundary side. 
 

Kernel functions 
Kernel functions smoothes out the field on each particle by averaging it over several 
particles. The averaging is weighted by the kernel function and therefore the choice of 
kernel function will have some effect on the simulation. Kernel functions most fulfil a 
number of requirements, e.g. having limited range (“compact support”), being 
normalized, being differentiable, etc. and there is a wide choice of functions satisfying 
this. It is also possible to use different kernels depending on what is computed, i.e. 
one for the pressure gradient, one for the density, one for the viscosity. 
 
As an alternative to just using poly6 for everything, the following choice is know to 
have some advantages. 
 
For the density use poly6, i.e. 
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For the pressure gradient, use a “spiky kernel”, or rather its gradient,  
 

( )

( )

3
6

^2
6

15( )

45grad( ( ))

K r h r
h

K r h r
h

π

π

= −

= − − r
  (zero for r > h) 

 
For the viscosity use another polynomial kernel, or rather its Laplacian, 
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These choices give more repulsive pressure at short distances, and thus avoids 
clustering. It also gives a more stable viscosity, and this in turn makes it possible to 
damp the simulation better, which often is required when doing interactive 
simulations with fairly large timesteps. Note that the above expressions assume  



that rij = ri – rj . With rij = rj – riinstead, there will be a sign change in the gradient 
expression due to the inner derivative. 
 
/Kenneth 
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