
Umeå university Lab project 1.3 – Pile of boxes
2005-05-10 Visual Interactive Simulation D, 5p
Kenneth Bodin Department of Computing Science, TDBD22

Lab project 1.3 – Pile of boxes

In this programming task you will develop a simulator that can handle a small stack of
boxes. You will implement intersection tests and finds for box-box and box-plane,
and resolve collisions and contacts for these objects. You can get 3 extra bonus
credits on this lab project.

The following is mandatory:

1. Set up the framework you need to represent multiple rigid body boxes and a
plane/halfspace.

2. Implement the intersection test/find code reusing the Box-Box and Box-Plane
code that is used in ODE. See: http://ode.org and
http://sourceforge.net/project/showfiles.php?group_id=24884
Look for e.g. dCollideBoxBox and dCollideBoxPlane in the file
collision_std.cpp. The code dependencies are mainly to the math library and
mainly consist of macros. Use O(N(N-1)/2) tests, i.e. test all objects against all
other objects.
If you instead implement all intersection finds/tests yourself, you will get 1
bonus credit (see below).

3. Use one of the following methods to resolve collisions and contacts. The
methods are described in detail further down in this document.

a. A sequential/iterative impulse method for resolution of collisions and
contacts.

b. A penalty based method.
4. Treat the interaction with the constrained “bone” from project 1.2 in an

approximate way, i.e. just do two body exchanges of collision impulses.
5. Neglect the velocity dependent forces/torques (i.e. assume the inertia tensor

has spherical symmetry so that the gyroscopic term becomes zero).
6. Run the first part of the scene with the “bone” sliding on the wire, hitting the

pile, resulting in falling boxes.
7. Follow the instructions on the course web and write the first half of your lab

report.

It is possible to gain maximum 3 extra bonus credits on this lab project:

1. Instead of using the intersection test/find code from ODE, you may use the
intersection test code from Eberly’s book and add what you need in order
to compute the contact sets. Make sure you handle special cases, like when
the edges are parallel. See lecture notes and discussions in Eberly (chapter
5, second half). See also the examples and improvements suggested in
Kenny Erleben’s PhD thesis:
http://www.diku.dk/~kenny/thesis.pdf (p. 178 – 183)
It is highly recommended that you visualize your contact points and
normals for sanity check and debugging! (1 bonus credit)

2. Test both the impulse method and the penalty based method for resolving
collisions and contacts, and do a brief (visual and/or measured)
comparison of precision, stability and performance for box stacking.
 (2 bonus credits)

Umeå university Lab project 1.3 – Pile of boxes
2005-05-10 Visual Interactive Simulation D, 5p
Kenneth Bodin Department of Computing Science, TDBD22

3. Add functionality for analyzing the box-pile simulation. Compute the total
energy (i.e. translational, rotational and potential) and measure it during
the simulation and plot as a function of time and indicate collision events
(unless you add the plot to the scene you may use e.g. gnuplot, matlab or
your favourite plotting software). Discuss your findings. Also measure
overlaps (or levitation!) and comment on how this can be used to analyze
the quality of your simulator. If working on the impulse-based simulator,
analyze the convergence rate in the iterative steps. If working on the
penalty-based simulator, analyze stability and precision related to timestep,
spring constant and overlap. (2 bonus credit)

4. In case you develop the impulse simulator, add an extra corrective round
of iterations utilizing anchor points (i.e. the fixed plane) and incrementally
let the impulse solver propagate from bottom to top of the stack with zero
restitution coefficient (i.e. smear out errors). See lecture notes for details.
 (1 bonus credit)

5. In case you develop the spring-and-damper simulator, improve the friction
spring by handling static and dynamic friction separately, i.e. if friction
force is within the cone, keep the spring fixed, but otherwise move it to the
appropriate new anchor point (see lecture notes). (1 bonus credit)

Impulse based simulation method
Assuming you have obtained a useful contact set, you will now use the Newton
Coulomb Impulse method described in the lecture notes to resolve collisions and
resting contacts. The simulation will have the following structure:

Advance timestep
• Do an intersection test/find to get contact set.
• Collision loop

o Resolve all non-separating contacts using the Newton Coulomb
impulse method by sequentially looping over rigid body pairs
and their collision points, instantaneously updating your linear
momentum, angular momentum and the corresponding linear
velocities and angular velocities.

o After each full pass, remove all separating contacts completely
from the contact set used in coming passes, so that after 5-10
passes you only have a few or no non-separating contacts left.

o Run the loop 5-10 times.
• Time integrate your linear momentum and angular momentum with

external forces, i.e. gravity (only adds to the momentum) and possibly
air damping (to both angular and linear momentum) and derive the
updated velocities.

• From the previous iteration loop you might still have some non-
separating contacts that must be resolved. In addition, the gravitational
acceleration update of the velocities that you just did also might have
introduced new non-separating contacts.

• Check for remaining non-separating contacts in the original contact set
and treat all of these as resting contacts using Newton Coulomb
impulses by sequentially looping over contact points, exactly as before.
However, now incrementally change the restitution from -1 to 0 over

Umeå university Lab project 1.3 – Pile of boxes
2005-05-10 Visual Interactive Simulation D, 5p
Kenneth Bodin Department of Computing Science, TDBD22

some 10-20 iteration passes to slow down resting contacts. Don’t
remove anything from the contact set this time, but let everything relax
till the restitution is zero. A restitution of -1 means that impulses will
be zero and your momenta and velocities aren’t changed at all (so you
can start with e.g. -0.9 and then do -0.8 etc. down to 0.0). A restitution
of 0 means that all bounciness is removed.

• Update positions using e.g. explicit Euler (you can experiment with
other methods too).

• Advance another timestep.

See lecture notes and Eberly for details about the Newton Coulomb impulse method.
In particular you will need Eqn. 5.27 in Eberly for computing the magnitude of the
impulse, but use the version in the lecture notes where Coulomb friction was added.
The whole thing is implemented in the pseudo code on page 248 in Eberly, but there
is a typo in this code: In the expression for fNumer = …, the last kA should be
replaced by kB!

Be careful about initial conditions. Your simulator might not be a full general purpose
simulator and therefore it might break if you e.g. start with overlapping boxes.

Comment on stability and performance.

Further information (paper, presentation, videos) about this method, developed by
Guendelmann, Bridson and Fedkiw, and published at SIGGRAPH 2003 is found on
their website:

http://graphics.stanford.edu/papers/rigid_bodies-sig03/

In this lab project we are using the simplest version of the methods described in this
paper, where we e.g. just do one intersection test/find and reuse that during the entire
timestep.

Penalty based simulation method
Assuming you have obtained a useful contact set, you will now use a spring-and-
damper method to resolve both collisions and resting contacts.
Your simulator will have the following structure:
 Advance timestep

• Do intersection test/find to get contact set
• Attach a damped spring at the contact point along the normal such that

the force is zero for zero penetration and proportional to the
penetration. Sum up forces and torques (also damping) to the involved
rigid bodies.

• Attach another spring between an anchor point and the current contact
point and implement the simpler version of penalty friction(see lecture
notes). Sum up forces and torques.

• You may also interact with the “bone” using a spring-damper force.
• Integrate the system using e.g. leap-frog or your favourite integrator

and increment time.
• Advance another timestep.

Umeå university Lab project 1.3 – Pile of boxes
2005-05-10 Visual Interactive Simulation D, 5p
Kenneth Bodin Department of Computing Science, TDBD22

Comment on stability and performance and choices of damping coefficient and spring
constant.

