
NeoClassic User's Guide

Version 1.0

Peter F. Patel-Schneider, Lori Alperin Resnick, Deborah L. McGuinness,

Elia Weixelbaum, Merryll Abrahams, Alex Borgida

July 15, 1998

1 Introduction

The classic family of Description Logic-based Knowledge Representation Sys-
tems represent information about a domain in terms of descriptions, concept,
roles, rules, and individuals. This family emphasizes simplicity of the description
language along with completeness and tractability of its inference algorithms.

NeoClassic is the most recent member of the classic family, and fea-
tures a tight integration with the C++ programming language, allowing close
control of its knowledge representation capabilities without compromising their
integrity. NeoClassic currently provides three interfaces: a C++ application
programming interface, a graphical user interface, and a character stream inter-
face.

In a Description Logic-based Knowledge Representation System such as
NeoClassic, a model of a domain consists of a description of the concepts

(kinds of individuals) that exist in the domain plus a description of each of
the individuals in terms of these concepts and relationships between individuals
(represented as roles and their �llers).

The classic family extends these basic notions of description logics with
rules, simple forward-chaining rules of inference. NeoClassic introduces the
idea of multiple, independent knowledge bases, where each knowledge base con-
tains a related collection of concepts, roles, rules, and individuals.

In the classic family, some individuals belong to the domain being modeled,
i.e., particular wines, in a knowledge base that reasons about wines. (These
individuals are said to belong to the CLASSIC realm, and are called CLASSIC
individuals.) Other individuals are used to help describe CLASSIC individuals,
i.e., ages may be represented as integers, and names may be represented as
strings. (These individuals are said to belong to the HOST realm, and are
called HOST individuals.)

This user's guide describes the above notions in NeoClassic, and gives
examples of their creation and use. Examples and syntax are generally given as

1



in the character interface|for details on the C++ interface see theNeoClassic
reference manual.

2 Descriptions

Descriptions are the most important notion in Description Logic-based Knowl-
edge Representation Systems. In NeoClassic, a description is built up using
expressions that contain other descriptions (including concepts) as well as roles
and individuals. Descriptions cannot use concepts, roles, or individuals from
di�erent knowledge bases. A grammar describing all the ways of building de-
scriptions in the character interface is given in Appendix .

Descriptions are applied to individuals (in the manner that one-place pred-
icates are applied to constants in predicate logic). An individual is said to be
an instance of, or satisfy, a description if the information known about the in-
dividual implies the description. In the classic family, descriptions can be in
either the CLASSIC realm or the HOST realm, depending on which type of
individuals they describe.

For example, one could describe \people between the ages of 30 and 40 with
at most 5 friends and all of whose friends are doctors" as

(and Person

(all age (and (minimum 30) (maximum 40)))

(atMost 5 friend)

(all friend Doctor))

If jill is known to be a Person with age 35, with at most 2 friends, and with
friends bill and jack; and both bill and jack are known to be Doctors;
then jill would satisfy the above description.

2.1 Building CLASSIC Descriptions

The CLASSIC and operator forms the conjunction of some number of CLAS-

SIC descriptions. Its syntax is1

(and ClassicDescription+)

For example, a VegetarianPersonmight be someone who is both a Vegetarian
and a Person:

(and Vegetarian Person)

A CLASSIC oneOf description enumerates a set of classic individuals, which
are the only possible instances of the description. The syntax is

(oneOf ClassicIndividual+)

1All NeoClassic input here is given in the syntax of the NeoClassic character stream
interface. For details on how to build descriptions and perform NeoClassic operations in the
C++ application programming interface, see the NeoClassic Reference Manual.

2



For example, (oneOf White Red Rose), de�nes a set of three CLASSIC indi-
viduals.

The four operators all, atLeast, atMost, and �lls form special types of de-
scriptions known as role restrictions, that restrict the �llers of a role. Depending
on the kind of role restriction, either the type of the �llers can be restricted (all
restrictions), the number of �llers can be restricted (atLeast and atMost re-
strictions), or some of the actual �llers can be speci�ed (�lls restrictions).

A value restriction, or all restriction, has the syntax

(all Role Description)

An all restriction speci�es that all the �llers of a particular role must be indi-
viduals described by a particular description. For an individual I to satisfy the
value restriction (all r C1), either all the �llers of r on I must be known and
all of them must satisfy C1; or there must be a derivable all restriction2 on I,
(all r C2), such that C1 subsumes (is more general than) C2.

For example, the instances of

(all food Plant)

must have all their �llers for food be instances of plant, such as, for example,
LeafLettuce.

It is possible for the description in an all restriction to be incoherent (i.e.,
a description that can have no instances because it contains conicting infor-
mation). This means that the role can have no �llers, which is �ne as long as
there is not a (positive) atLeast restriction on the role. For example, suppose
that Male and Female are two disjoint primitive concepts in the same disjoint
grouping. Now suppose the concept IllegalChildren were de�ned as

(all child (and Male Female))

Since no individual can be described by both Male and Female, this would be
equivalent to the concept of someone with no children:

(atMost 0 child)

An atLeast restriction speci�es the minimum number of �llers allowed for a
given role on a concept or individual. Its syntax is

(atLeast PositiveInteger Role)

For example, a Parent might be de�ned to have at least 1 child:

(atLeast 1 child)

2A derivable restriction is one that was either stated as part of the de�nition, or can be
deduced from other information.

3



For an individual I to satisfy the atLeast restriction (atLeast n1 r), either at
least n1 �llers for r on I must be known, or there must be a derivable atLeast
restriction on I, (atLeast n2 r), such that n2 is greater than or equal to n1.

An atMost restriction speci�es the maximum number of �llers allowed for
a given role on a concept or individual. The syntax is

(atMost NonNegativeInteger Role)

For example, an Orphan might be de�ned to have no parents:

(atMost 0 parent)

For an individual I to satisfy the atMost restriction (atMost n1 r) there must
be a derivable atMost restriction on I, (atMost n2 r), such that n2 is less than
or equal to n1.

The �lls operator speci�es that a particular role is �lled by the speci�ed
individuals. The syntax is

(�lls Role Individual+)

where an individual is either the name of a CLASSIC individual, e.g., (�lls
brother Fred Sam) says that the brother role is �lled with the individuals
Fred and Sam), or a string or an int or a oat, e.g., (�lls address "123 Main

Street") says that the address role is �lled with the given string). A �lls

description requires that an individual satisfying it must have the given role
�lled with the given value(s) (and possibly other values also).

For example, MaleFriendOfSue might be

(and Person (�lls friend Sue)

(�lls gender Male))

where the �ller of the friend role is the CLASSIC individual Sue, and the �ller
of the gender role is theCLASSIC individual Male. The concept PersonNamedSam
could be

(and Person (�lls first-name "Sam"))

where the �ller of the first-name role is the string "Sam".

It is possible to extend the description-forming capabilities of NeoClassic
by writing C++ code that determines whether a CLASSIC individual is an
instance of a CLASSIC description. The syntax is

(testC ClassicTestGenerate Parameter*)

ClassicTestGenerate is a NeoClassic name for a C++ object that embodies
the procedural test. It must have a member function called run, that takes a
CLASSIC individual and two sets of individuals (that are modi�ed to indicate
dependencies|see Section ) and returns one of three values:

testFalse: the individual is inconsistent with this description;

4



testMaybe: the individual is currently consistent with this description, but if
information is added to the individual, the individual may become either
inconsistent with the description or de�nitely described by the description;
or

testTrue: the individual de�nitely satis�es this description.

The run function also has access to the parameters of the test.
For details on how to write these C++ objects, see Section .

2.2 Building HOST Descriptions

The HOST and operator forms the conjunction of some number of HOST
descriptions. Its syntax is

(and HostDescription+)

For example, a PRIME-NUMBER might be an integer that is prime

(and INTEGER (testH prime))

A HOST oneOf description enumerates a set of host individuals, which are
the only possible instances of the description. The syntax is

(oneOf Individual+)

For example, (oneOf 3 5), de�nes a set of two HOST individuals.

A minimum description speci�es that an individual must be a number with
a given lower bound. The syntax is

(minimum Number)

For example, the description (minimum 5) speci�es that the value must be
greater than or equal to 5.

A maximum description speci�es that an individual must be a number with
a given upper bound. The syntax is

(maximum Number)

For example, the description (maximum 5) speci�es that the value must be less
than or equal to 5.

Intervals are often used for all restrictions. For example,

(all age (and Integer (minimum 18)

(maximum 65)))

restricts someone's age to be an integer between 18 and 65.

There is a method for extending HOST descriptions in the same way as
CLASSIC descriptions can be extended. Its syntax is:

5



(testH HostTestGenerate Parameter*)

HostTestGenerate is a NeoClassic name for a C++ object that embodies the
procedural test. The run function is similar to the run function for classic tests,
but does not have the extra dependency arguments.

For details on how to write these C++ objects, see Section .

2.3 Building Other Descriptions

It is possible to create incoherent descriptions|descriptions that can never have
any individuals that belong to them. Usually this happens as a result of speci-
fying conicting information, such as

(and (atLeast 3 r) (atMost 2 r))

However, there is a direct way of stating an incoherent description, and this
description is neither a CLASSIC nor a HOST description. The empty oneOf

description speci�es an empty set. The syntax is

(oneOf)

It is sometimes necessary to provide a universal description|a description
that allows any individual, CLASSIC or HOST, as an instance. Such a de-
scription is formed using the universal and operator. Its syntax is

(and)

3 Concepts

A concept in NeoClassic is a named description, possibly with some extra
primitiveness information. A concept is part of a knowledge base, and its de-
scription must not use concepts, roles, or individuals from other knowledge
bases. As descriptions come in both realms, CLASSIC and HOST, so do con-
cepts.

When a concept is de�ned, a name, such as C, is associated with its de�n-
ing description. For example, suppose that Vegetarian has been de�ned as
\something all of whose food is of type Plant",

(all food Plant)

Then VegetarianPerson could be de�ned as \a Vegetarian and a Person",

(and Vegetarian Person)

which is equivalent to \a Person, all of whose food is of type Plant".

6



PERSON

YOUNG-PERSONOLD-PERSON MAN WOMAN

age gender

Sally

Figure 1: A hierarchy with disjoint groupings.

3.1 Primitive and De�ned Concepts

All HOST concepts are completely de�ned by the description associated with
them, but CLASSIC concepts can be primitive, in that their de�nition includes
something beyond the description associated with them. Such concepts are
called primitive concepts, and other concepts are called de�ned concepts.

Suppose that a Vegetarian is de�ned as someone who eats only Plants, and
a GreenPlantVegetarian is de�ned as someone who eats only green Plants.
NeoClassic will infer that GreenPlantVegetarian is a more speci�c concept
than (is subsumed by) Vegetarian. Also, if an individual Fred is known to eat
only Squash, and Squash is known to be a Plant, NeoClassic will determine
that Fred must be a Vegetarian.

Consider on the other hand, primitive concepts. If Mammal is de�ned as a
primitive concept, no other concept will be deduced to be more speci�c than
Mammal unless it directly or indirectly mentions Mammal as a superconcept. No
other deductions can determine that a concept C is subsumed by Mammal.

For example, suppose the concepts Mammal and Invertebrate are de�ned as
primitive concepts under Animal, and the concept Dog is de�ned as a primitive
concept under Mammal. It is possible to deduce that Dog is subsumed by both
Mammal (this was stated) and Animal (this was inherited), but there is no way
to deduce that Dog is subsumed by Invertebrate.

Some primitive concepts have further, disjointness information associated
with them in the form of a set of disjoint groupings. A disjoint primitive concept
is just like a primitive concept, except that all disjoint primitive concepts that
belong to the same disjoint grouping are known to be disjoint from each other.
Thus, no individual can satisfy two disjoint primitive concepts in the same
disjoint grouping.

7



The following example is depicted as a hierarchy in Figure 1, where the con-
cepts within a given arc represent members of a disjoint grouping: Suppose the
concepts Man and Woman are de�ned as disjoint primitive concepts under Person,
in the gender disjoint grouping, and the concepts OldPerson and YoungPerson

are de�ned as disjoint primitive concepts under Person, in the age disjoint
grouping. This says that no individual can be both a Man and a Woman, and
no individual can be both an OldPerson and a YoungPerson. However, there
could be an individual that is both a Woman and a YoungPerson. Note that no
exhaustiveness assumption is made when reasoning with disjoint primitive con-
cepts (i.e., there could be individuals that are described by Person, but which
are not described by either OldPerson or YoungPerson).

3.2 Creating Concepts

Concepts are created by means of the various forms of the function createCon-

cept. In all cases the concept is not created if the name of the new concept is
already in use as the name of a concept or if the de�nition of the concept is
incoherent.

To create a HOST concept use:3

(createConcept Symbol HostDescription)

where the symbol is the name of the concept being de�ned and the description
is the concept de�nition.

To create a de�ned CLASSIC concept use:

(createConcept Symbol ClassicDescription)

where the symbol is the name of the concept being de�ned and the description
is the concept de�nition.

For example, to de�ne a Vegetarian as a Person who eats only Plants use:

(createConcept Vegetarian

(and Person (all food Plant)))

To create a primitive CLASSIC concept use

(createConcept Symbol Classic Description true)

where the symbol is the name of the concept being de�ned and the description
is the concept de�nition.

To de�ne Mammal as a primitive concept under Animal use:

(createConcept Mammal Animal true)

To create a disjoint primitive concept use:

3In the NeoClassic character interface there is a current knowledge base and concepts are
created in that knowledge base.

8



(createConcept Symbol ClassicDescription

Symbol+)

where the �rst symbol is the name of the concept being de�ned, the description is
the concept de�nition, and trailing symbol(s) specify which disjoint grouping(s)
the concept belongs to.

The following example de�nes the disjoint primitive concepts Man and Woman

under Person in the gender disjoint grouping, and OldPerson and YoungPerson
under Person in the age disjoint grouping:

(createConcept Man Person gender)

(createConcept Woman Person gender)

(createConcept OldPerson Person age)

(createConcept YoungPerson Person age)

3.3 Built-in Concepts

Each knowledge base in NeoClassic comes with a number of built-in concepts.
The concept Thing has as its de�nition a universal description. All de-

scriptions are subsumed by Thing. The concept ClassicThing (also named
classic-thing) has as its de�nition the most-general CLASSIC description.
The concept HostThing (also named host-thing) has as its de�nition the
most-general HOST description. All CLASSIC individuals are instances of
ClassicThing, and all HOST individuals are instances of HostThing.

There are four built-in concepts under HostThing in NeoClassic. They
are Number, Integer, Float, and String. The de�nitions of these concepts
are built-in host test descriptions that recognize numbers, integers, oats, and
strings, respectively.

4 Individuals

Individuals are speci�c instances of concepts. Just as in the case of concepts,
individuals are divided into two realms: CLASSIC and HOST. CLASSIC in-
dividuals are used to represent the real-world objects of a domain, while HOST
individuals are objects in the C++ language. For example, the CLASSIC indi-
vidual Fred might be an instance of the primitive CLASSIC concept PERSON,
while the HOST individuals 10000 and "Harry" would be instances of the
HOST concepts NUMBER and STRING, respectively. HOST individuals cannot
be created or modi�ed, but they can be used in �lls and oneOf descriptions.

When CLASSIC individuals are created, they are given a description. The
language of operators for CLASSIC individual descriptions is identical to that
for CLASSIC concept descriptions. In addition, by means of a function call,
a role on an individual can be closed. This asserts that the currently known
�llers of the role on the individual are provably all the �llers. Just like concepts,
CLASSIC individuals are part of a knowledge base, and their description must
not use concepts, roles, or individuals from other knowledge bases.

9



The function createIndividual is used to create a CLASSIC individual.4

The syntax is

(createIndividual Symbol ClassicDescription)

where the symbol is the name of the individual being created, and the description
is the de�nition of the individual. For example, to create the individual Mary
as a PERSON, use:

(createIndividual Mary PERSON)

To create the individual Sam as a PERSON, both of whose parents are DOCTORS,
and who has a brother Fred and at least 1 sister, say:

(createIndividual Sam

(and Person (all parent Doctor)

(�lls brother Fred)

(atLeast 1 sister)))

There is one other thing that can be stated about an individual|that a
particular role is closed, i.e., it can have no more �llers. For reasons beyond
the scope of this guide5, there is no close operator as part of the language, but
instead, there is a function, closeRole, which is used for this purpose. Its syntax
is

(closeRole Individual Role)

For example, if Sue is 80 years old, has child Joshua, and has no other children,
create Sue as follows:

(createIndividual Sue

(and Person (�lls age 80)

(�lls child Joshua)))

and then call (closeRole Sue child).
Explicitly closing a role is the only way a role can be closed. A role becomes

full on an individual when the atMost restriction is reached by the number
of �llers for the role, i.e., the role can hold no more �llers, but this is di�erent
from the role being closed. For example, if the age role is an attribute (with
an implicit atMost restriction of 1|see Section ), and Mary's age role is �lled
with 25, then the age role on Mary is full, because it can have no more �llers,
but age is not closed on Mary.

An open-world assumption is used in NeoClassic. Unless information to
the contrary is known or deducible, it is assumed that there may be more
values associated with that role for the individual. This a�ects NeoClassic's
deductions in many ways.

4Just as for concepts, the character interface creates CLASSIC individuals in the current
knowledge base.

5For the interested reader, the reason is roughly that this would make concept descriptions
autoepistemic (and thus nonmonotonic).

10



If John has children Mary, Fred, and Sam, all of whom are LAWYERS, there is
no way of knowing that all of John's children are LAWYERS unless it is possible
to independently derive that John satis�es this description, or that John has no
more children. For example, if there is a derivable description on John of at
most 3 children, then NeoClassic deduces that John has no more children
(because he already has 3), and that his child role is full, and thus all restriction
is satis�ed.

By the same principle, suppose that John has friends Jack and Jill.
There is no way of knowing that John has at most 2 friends unless it is possible
to independently derive that John satis�es this description (either because the
friend role had been closed for John, or because there was such an atMost

restriction derivable on John).

5 Roles

Roles are entities that represent the properties of CLASSIC individuals. They
map CLASSIC individuals to other (CLASSIC or HOST) individuals. The
roles of a CLASSIC individual can either be \�lled" by individuals (called the
role �llers) or have their potential �llers restricted by certain concepts (i.e., as
type descriptions), or both, where the �llers and descriptions can be in either
the CLASSIC realm or the HOST realm. Attributes are special types of roles
that have an implicit maximum number of �llers of 1.

The syntax for de�ning a role is:6

(createRole Symbol Boolean)

where the symbol is the name of the role, and the boolean speci�es whether the
role is an attribute (and defaults to false if missing).

A role r can be thought of as a two-place predicate: r(individual1,

individual2), where the role-predicate is TRUE if r on individual1 is known
to have the value (�ller) individual2. For example, brother(Mary, John)

would be TRUE if the brother role on the individual Mary is known to have
the value John. A role on an individual may have any number of values, possibly
none.

6 Rules

NeoClassic provides three di�erent types of forward-chaining rules: simple
rules, which will be referred to as rules; computed description rules; and com-

puted �ller rules.
A (simple) rule consists of an antecedent, which must be a concept, and a

consequent, which is a description. Suppose there is a rule with concept C1

as the antecedent and concept C2 as the consequent (i.e., C1 is the left-hand
side of the rule, and C2 is the right-hand side of the rule). Then as soon as an

6As before, the character interface creates roles in the current knowledge base.

11



individual I1 is known to belong under concept C1, the rule is \�red", and I1

is deduced to belong under C2. A concept or individual does not need to be
described by the consequent C2 in order to be classi�ed under (described by) the
antecedent C1. However, once the rule is �red, the individual may be further
classi�ed based on the new information provided by the rule.

For example, suppose there is a rule with Person as the antecedent and

(and (atLeast 1 social-security-number)

(all social-security-number SSNUM)).

as the consequent. If Mary is created as a Person, then this rule \�res", and
she is known to have a social-security-number that is of type SSNUM. If there
happened to be a concept ThingWith-SocialSecurityNumber, de�ned as

(atLeast 1 social-security-number),

then Mary would ultimately get classi�ed under this concept.
As a second example, suppose that in order to determine that someone is

a Vegetarian, it is enough to know that the only kind of food she eats is of
type Plant. Suppose also that there is a rule stating that anyone who is a
Vegetarian is known to be a HealthyThing. Thus, in order to determine that
someone is a Vegetarian, NeoClassic is only required to know the kind of
food she eats, but once she is known to be a Vegetarian, NeoClassic can
immediately \�re" the rule and infer that she is a HealthyThing.

The function createRule creates a simple rule.7 Its syntax is

(createRule Symbol ClassicConcept

ClassicDescription)

A computed description rule is similar to the simple rule described above,
except that instead of the rule being de�ned with a consequent that is speci�ed
at rule creation time, the rule is de�ned with a function and parameters, which,
when the rule is �red, are used to generate the consequent of the rule. Thus, the
consequent is not speci�ed in advance, but can be based on information that is
known about the individual at the time the rule is �red.

A computed description rule is de�ned with the function createRule. The
syntax is

(createRule Symbol ClassicConcept

(computedDescription Fn Parameter*))

It takes a name (a symbol), a CLASSIC concept for the antecedent, a C++
object representing the function to run for the rule, and, optionally, a list of
parameters for the function.

A computed �ller rule is like a computed description rule, except that in ad-
dition to the function and parameters, it takes a role, and the function generates
a list of �llers for the role when the rule is �red.

A �ller rule is de�ned with the function createRule. The syntax is

7Again, the character interface creates roles in the current knowledge base.

12



(createRule Symbol ClassicConcept

(computedFillers Fn Role Parameter*))

It takes a name (a symbol), a CLASSIC concept for the antecedent, a C++
object representing the function to run for the rule, and, optionally, a list of
parameters for the function.

7 Knowledge Bases

A knowledge base is simply a collection of concepts, individuals, roles, and
rules, and the relationships between them. It is possible to create and destroy
knowledge bases by name and to switch between knowledge bases.

In the character interface, functions work on the current knowledge base, so
it is possible to ignore this aspect of NeoClassic if only one knowledge base is
needed.

8 Updates

Once an individual has been created, it may be updated in one of two ways:
additional information can be added to the individual, or existing information
speci�ed for an individual can be retracted. Both of these types of updates
on individuals are described in this section. The de�nition of a concept also
cannot be modi�ed. The instances of a concept, however, can all get modi�ed
indirectly, if a rule is created which has that concept as the antecedent, because
the rule will then �re on all instances of the concept.

8.1 Addition

An individual can be asserted to have additional parents or descriptions, or new
�llers for a role, with the addToldInformation function. The syntax is

(addToldInformation Individual ClassicDescription)

where the individual is an existing classic individual, and the description is the
information to be added to the individual. For example, to add the information
that the existing individual Mary has child John, say:

(addToldInformation Mary (�lls child John))

It can also be asserted for an individual that the currently known �llers of
a role are the only �llers (via closeRole in Section above).

8.2 Retraction

Information previously asserted about an individual can be retracted.
removeToldInformation retracts information from an individual. The syn-

tax for removeToldInformation is

13



(removeToldInformation Individual ClassicDescription)

For example, to remove the child of Mary above,

(removeToldInformation Mary (�lls child John))

uncloseRole removes the told fact that a particular role is closed on an
individual. The syntax for uncloseRole is

(uncloseRole Individual Role)

Note that retraction only removes the information directly told by means
of individual creation or adding information to individuals. If the information
was independantly derived from other information, the retraction will have no
e�ect.

9 Inference in NeoClassic

In each knowledge base NeoClassic creates a taxonomy of concepts and in-
dividuals, based on the subsumption relationship, so it has to be able to (ef-
�ciently) answer subsumption questions. Determining subsumption in Neo-

Classic is a two-part process, consisting �rst of normalization, and then of
checking whether one normalized concept is more general than another.

To perform normalization, NeoClassic takes the input (told) information
about a concept or individual, and computes an inferred (derived) version. The
derived version contains information from several sources, including rule-�rings
and propagations (for individuals), and from inheritance, classi�cation, and
combining information in a number of ways (for both concepts and individuals).
The derived version contains all the information that could be deduced about
the concept or individual. Functions that retrieve information about concepts
and individuals come in two varieties: one that retrieves told information and
one that retrieves derived information.

NeoClassic is normally only concerned with the normalized (derived) ver-
sion of a concept or individual, except when performing retraction|as only told
information can be retracted, and in explanation|where told information is the
root cause of all information.

This section presents an informal discussion of the normalization and sub-
sumption process so that users can understand how NeoClassic makes certain
inferences. It is not necessary to fully understand this section (especially the
parts on classi�cation) in order to be able to use NeoClassic.

9.1 Concepts

9.1.1 Normalization

The normalization of concepts includes :

� inheriting information from parent concepts,

14



� combining descriptions on the same role,

� eliminating embedded and operators,

� deducing �llers when they are implied by all restrictions,

� deducing �llers when they are restricted to Integers, and they are implied
by a fully-speci�ed interval (minimum and maximum restrictions are
both speci�ed),

� inheriting and combining role restrictions up and down role hierarchies,

� checking the consistency of descriptions, disjoint primitive concepts, etc.,

� combining oneOf descriptions (taking their intersection),

� �ltering oneOf descriptions which are restricted to HOST individuals, by
all applicable test descriptions, since the properties of HOST individu-
als cannot change (this is not done for CLASSIC individuals since their
properties can change).

For example, suppose a HealthyVegetarian is de�ned as

(and Person (all food HealthyThing)

(all food Plant)),

where Person, HealthyThing, and Plant are all primitive concepts. Then the
normalized form of HealthyVegetarian is

(and Person

(all food (and HealthyThing Plant))).

The all restrictions on the food role were combined, and the embedded and,
which was redundant, was removed.

Now de�ne an OldHealthyVegetarian as

(and HealthyVegetarian (all age Old)).

Then the normalized form of OldHealthyVegetarian is

(and Person

(all food (and HealthyThing Plant))

(all age Old))

It inherits the primitive superconcept Person, as well as the all restriction on
food.

Suppose concept C is de�ned as

(all age (and Integer

(oneOf 20 25 30)

(testH evenp)))

15



where evenp is a HOST test function that recognizes even integers. The nor-
malized form of C is

(all age (and Integer

(oneOf 20 30)

(testH evenp)))

Note that, since 25 is not an even integer, it has been �ltered out.
The last part of normalization checks concepts for consistency. Examples of

inconsistent concepts are:

(and (atLeast 2 child) (atMost 1 child));

(and (all child Male) (all child Female))

where Male and Female are two disjoint primitive concepts of the same disjoint
grouping;

(and (�lls child Jack)

(all child (oneOf Mary Sue)))

since Jack is not a member of the set (oneOf Mary Sue);

(and (minimum 3) (maximum 2));

and

(and (�lls age 17) (all age (minimum 18)))

since 17 is inconsistent with the speci�ed interval.

9.1.2 Subsumption

A concept C1 subsumes another concept C2 if C1 is an equivalent concept to
C2, or C1 is a more general concept than C2. Once two concepts have been
normalized, NeoClassic can easily determine whether one concept subsumes
the other. Basically, in order for C1 to subsume C2, for each description on C1

there must be an equivalent or more speci�c description on C2.
For example, there are the primitive concepts Mammal and Plant under the

concept ClassicThing, the primitive concept Person under Mammal, and the
primitive concept Fruit under Plant. Now de�ne the concept VegetarianMammal
as

(and Mammal (all food Plant)),

and the concept FruitEatingPerson as

(and Person (all food Fruit)).

VegetarianMammal subsumes (is more general than) FruitEatingPerson, be-
cause:

� Mammal subsumes Person (Person was de�ned to be more speci�c than
Mammal); and

� the all restriction on food for VegetarianMammal, Plant, subsumes the
all restriction on food for FruitEatingPerson, Fruit.

16



CLASSIC-THING

PERSON ALCOHOLIC-BEVERAGE

WOMAN DOCTOR WINE

Figure 2: Hierarchy for individual subsumption example.

9.1.3 The Classi�cation Process

Classi�cation of a concept involves �nding the parents, children, and direct
instances of the concept, and �ring any rules with this concept as antecedent
on all instances of the concept. NeoClassic �nds the parents (most speci�c
subsumers) of C as follows: First start at the top of the concept hierarchy (with
either ClassicThing or HostThing, depending on the realm of C|assume it is
a CLASSIC concept for the sake of this example). For each concept Ci that is
known to subsume C (starting with ClassicThing), check each of its children Cj

to see if Cj subsumes C. The lowest such set of concepts in the concept hierarchy
are C's parents.

To �nd C's children (most general subsumees), start with the parents you
have just found for C, and for each child of the parents, see if C subsumes it. If
so, you have found a child; if not, try its children until you have found a child
of C, or a concept has no children.

To �nd C's instances (direct instances, not descendant instances), look at
each individual which is a descendant instance of one of C's parents, but is not
a descendant instance of one of C's children. If C subsumes it (see Section ), it
is an instance of C.

Now any rules with C as antecedent are �red on C's instances (descendant
instances, i.e., all instances), and these individuals are reclassi�ed (see Section
below).

9.2 Individuals

9.2.1 Normalization

The normalization of an individual includes all the steps involved in the normal-
ization of a concept. In addition, it involves running any test functions on the
individual (for checking its consistency), and propagating information to other
individuals when new facts are implied by all restrictions.

After inheriting information from all its parents, an individual is checked for
consistency. The examples of inconsistent concepts from Section would also

17



cause inconsistent individuals. The following are some additional examples of
inconsistent individuals:

� John contains (all child Male) and (�lls child Mary), where Mary is
a Female, and Male and Female are two disjoint primitive concepts of the
same disjoint grouping;

� Jack contains (atLeast 2 child) and (�lls child Jill) (and no other
�lls statements), and the child role is then closed with cl-ind-close-role;

� Sally has 2 �llers for the child role, Fred and Sam, and contains the
description (atMost 1 child);

� Harry contains (all age Integer) and (�lls age 25.5).

9.2.2 Propagation

Whenever an individual, i, that has �llers for any role is normalized. These
�llers are then given the value restriction for this role on i. This process is
referred to as propagation, since information has been propagated from i to the
�ller.

For example, consider:

(createConcept ProudParent

(and Person

(atLeast 1 child)

(all child Doctor)))

(createIndividual Ben)

(createIndividual MrsCasey

(and ProudParent (fills child Ben)))

When MrsCasey is normalized, NeoClassic recognizes that MrsCasey has a
child �ller, Ben, and that all child �llers must be Doctor. Therefore, Neo-
Classic propagates Doctor to Ben. If it turned out that Ben had other infor-

mation that was contradictory to Doctor, then an error would be generated due
to the contradiction, and the entire operation would be cancelled.

Propagation only occurs on individuals that have a value restriction and a
�ller(s) on the same rule, and not on concepts that have a value restriction and
a �ller(s) on the same role. For example, suppose that Doctor and Bum were
de�ned as disjoint primitive concepts:

(createConcept Doctor ClassicThing job)

(createConcept Bum ClassicThing job)

Now de�ne two concepts, ProudParentOfBen and EmbarrassedParentOfBen,
that would cause Ben to be a Doctor and a Bum respectively.

(createConcept ProudParentOfBen

(and (all child Doctor)

18



(fills child Ben)))

(createConcept EmbarrassedParentOfBen

(and (all child Bum)

(fills child Ben)))

While these two concept de�nitions seem to be contradictory, they are both
legal and allowed to exist at the same time. However, once an individual is
de�ned to be an instance of one of the above two concepts, no individual could
be de�ned as an instance of the other. For example, suppose one tried to de�ne
the following two individuals:

(createIndividual MrsCasey ProudParentOfBen)

(createIndividual MrCasey EmbarrassedParentOfBen)

Then following the �rst creation, NeoClassic would propagate Doctor to Ben.
Following the second creation, NeoClassic would attempt to propagate Bum to
Ben, which would generate an error since Bum and Doctor are disjoint concepts.
As a result, MrCasey would not be added to the knowledge base.

9.2.3 Subsumption

An individual I is subsumed by, or satis�es, or is an instance of a concept C if
I is described by C, i.e., if I satis�es every description on C. Once an individual
has been normalized, NeoClassic can easily determine whether or not it is
subsumed by, or satis�es, a concept. Basically, in order for concept C to subsume
a normalized individual I, each description on C must be satis�ed by I, either
because there is an equivalent or more speci�c description on I, or because the
description on C can be derived from the descriptions, �llers, and closed roles
on I.

For example, suppose there are the primitive concepts Person and Alcoholic-
Beverage under the concept ClassicThing, the primitive concepts Woman and
Doctor under the concept Person, and the primitive concept Wine under the
concept Alcoholic-Beverage (see Figure 2).

Now de�ne the concept C1 as a Person with at least 1 child, all of whose
children are Doctors, and all of whose friends drink only Alcoholic-Beverages:

(and Person

(atLeast 1 child)

(all child Doctor)

(all friend

(all drink AlcoholicBeverage)))

Suppose that Fran is a Woman with exactly 2 children, Jack and Barbara,
both of whom have been previously asserted to be Doctors; all her friends

drink only wine; and Susy is one of her friends:

(and Woman

(�lls child Jack Barbara)

19



(atMost 2 child)

(all friend (all drink Wine))

(�lls friend Susy)).

Then C1 subsumes Fran, because each description on C1 is satis�ed by Fran:

� Person subsumes Woman;

� Fran has at least 1 child|in fact, she has 2 children (and both are
known);

� all her children are Doctors (all of them are known, and they have all
been previously asserted to be Doctors);

� all her friends drink only AlcoholicBeverages|in fact, they all drink
only Wine, which is subsumed by AlcoholicBeverage.

The extra fact known about Fran|that Susy is her friend|does not a�ect
this question of subsumption.

9.2.4 The Classi�cation Process

Classi�cation of an individual involves �nding the parents of the individual,
propagating any information from that individual to other individuals and re-
classifying them, and �ring any appropriate rules on the individual. The parents
of an individual are found in the same way as the parents of a concept, using
the subsumption check for individuals described above (an individual has no
children, and of course, no instances).

If the individual has any new parents as a result of being classi�ed, all
rules with the new parents or their ancestors as antecedents are �red on the
individual, and the individual is reclassi�ed. For example, if Mary is classi�ed
as a VegetarianPerson, then any rules with VegetarianPerson or Person as
antecedents are �red.

Information may be propagated from this individual to other individuals

(see the example in Section above, where Jim's favorite food was inferred to be
Lasagne). Any a�ected individuals are reclassi�ed.

10 Incompleteness in NeoClassic

There are several types of incompleteness in NeoClassic that need to be men-
tioned. For concept processing, subsumption is incomplete in several ways.
Some of these incompletenesses also apply to individual processing. In addi-
tion, there are some incompletenesses in rule processing and propagations for
individuals. These types of incompleteness are all discussed below.

20



10.1 Concept Processing

There are a few ways in which concept subsumption is incomplete.
Test descriptions are treated as black boxes, in the same way as primitive

concepts are. In fact there is really no way for NeoClassic to determine the
meaning of test descriptions. For example, the built-in HOST concept Integer
contains the test description (testH integerp). If the concept EvenInteger is
de�ned as (testH evenp), then it will not be classi�ed under Integer, because
NeoClassic does not know that anything which satis�es the evenp test must
also be an Integer. To truely de�ne EvenInteger it must be de�ned using
Integer (see Sections and ), as EvenInteger is:

(and Integer (testH evenp))

The only exception to treating test functions as black boxes is that (testH

integerp) and (testH oatp) are subsumed by (testH numberp).
Also, with respect to concept subsumption, CLASSIC individuals are treated

as having no properties. The reason for this is that the concept hierarchy should
not change when individuals change (concept de�nitions cannot change). This
impacts the two operators �lls and oneOf. If the individual Mary is known to
be an Athlete, and concept C is the description of someone whose only child is
Mary

(and (�lls child Mary) (atMost 1 child))

then C is not subsumed by the concept of someone all of whose children are
athletes

(all child Athlete)

This applies to CLASSIC oneOf descriptions as follows: if it is known that
Joe and Mary are both Mammals, (oneOf Joe Mary) is not classi�ed below
Mammal. Thus, a CLASSIC concept containing only a oneOf description will
be classi�ed directly below either ClassicThing or another concept containing
only a oneOf description, but never below a concept containing any other type

of description.
Even if the properties of individuals are implied by the presence of these

individuals in concept descriptions, NeoClassic doesn't take these properties
into account. For example, suppose that concept C1 is de�ned as

(and (�lls child Sally) (all child Athlete)

(�lls friend Sally) (atMost 1 friend))

and concept C2 is de�ned as (all friend Athlete). NeoClassic does not

infer that C1 is subsumed by C2.
As a more complex example, suppose that Susan is known to have Bob as a

client and David is known to have Bill as a client. Let C1 be de�ned as

(and Company

21



(atLeast 1 employee)

(all employee (�lls client Jack))

(all employee (oneOf Susan David))

(all contractor (atMost 1 client))

(all contractor (oneOf Susan David)))

and let C2 be de�ned as

(atMost 1 contractor)

NeoClassic does not infer that C1 is subsumed by C2, because the establish-
ment of the subsumption would require the use of contingent properties of Susan
and David.

The above non-subsumptions are not really incompletenesses in NeoClas-

sic, as the standard de�nition of subsumption ignores contingent properties of
individuals. However, NeoClassic is incomplete with respect to this standard
de�nition because it ignores properties of individuals that are implied by their
presence in descriptions. For example, if C3 was de�ned as

(and Company

(atLeast 1 employee)

(all employee (fills client Jack))

(all employee (oneOf Susan David))

(all contractor (atMost 1 client))

(all contractor (oneOf Susan David))

(�lls r Susan) (all r (�lls client Bob))

(�lls s David) (all s (�lls client Bill)))

NeoClassic would not infer that it was subsumed by C2, even though this
inference does follow from the standard de�nition of subsumption.

To detect this subsumption, NeoClassic would have to determine that
either Susan or David must be an Employee; if Susan is an Employee, then she
can't be a Contractor because she has to have at least 2 clients; if David is
an Employee, then he can't be a Contractor because he has to have at least
2 clients. This reasoning by cases is computationally di�cult, which is one
reason it is not implemented in NeoClassic.

As another example, suppose that the concept C4 is de�ned as

(and (�lls child Sally) (all child Athlete)

(�lls friend Sally) (atMost 1 friend))

and concept C5 is de�ned as (all friend ATHLETE).NeoClassic does not infer
that C4 is subsumed by C5.

HOST oneOf descriptions do not have the same types of incompleteness
as CLASSIC oneOf descriptions, because the properties of HOST individuals
do not change. A HOST concept containing only a oneOf description may
be classi�ed under a concept containing a test description, if all the HOST

individuals in the oneOf description satisfy the test description. In addition,

22



a HOST concept containing only a oneOf description can be classi�ed under
a concept containing an interval description, if the oneOf description contains
only numbers, and they are all within the speci�ed interval.

10.2 Individual Processing

The incompletenesses in concept subsumption can appear when determining
whether or not an individual satis�es a concept description. This is because
all restrictions on individuals are handled as concepts, not as descriptions of
individuals. Suppose that the individual Sam is known to be a Vegetarian, and
that the individual Mary is de�ned as someone all of whose friends have Sam as
a teacher, and no one else:

(all friend (and (�lls teacher Sam)

(atMost 1 teacher)))

Mary will not be found to satisfy the concept described by

(all friend (all teacher Vegetarian))

because the properties of Sam, speci�cally that he is a Vegetarian, are not taken
into account when doing the subsumption test.

Both rules and propagations are performed only on known instances. Thus,
if NeoClassic knows that all Mary's sisters are Athletes, and she has at
least 1 sister, it does not create a skolem individual representing the sister,
in order to reason about it.

Rules in NeoClassic are treated only as forward-chaining inferences, not as
logical inferences. Thus, there is a rule stating that if someone is a Vegetarian,
then he is known to be a HealthyThing, and NeoClassic knows that Joe is
an UnhealthyThing (a concept disjoint from HealthyThing), it does not infer
that Joe is not a Vegetarian.

11 Error Handling

There appear to be three kinds of errors that can occur in NeoClassic: syn-
tax errors in NeoClassic input, such as mismatched parentheses; evaluator
errors, such as providing the wrong kind of argument to a function; and knowl-
edge errors, such as creating an inconsistent individual. However, the �rst two
kinds of errors are really errors in the interface to NeoClassic and not really
NeoClassic errors at all. These errors are discussed along with the interface.

Real NeoClassic errors result from syntactically valid calls to NeoClas-

sic functions that attempt to perform illegal knowledge operations. There are
three main kinds of illegal operations in NeoClassic: incorrect uses of names,
attempts to create incoherent concepts, and attempts to make a knowledge base
inconsistent.

Incorrect uses of names include attempts to look up objects by name, when
no object of that type with that name exists; and attempts to create a second

23



object of a given type with a given name. For example, if a concept with the
name Person already exists in a knowledge base, a call of the form

(createConcept Person ...)

would be illegal. Functions calls that use names incorrectly do not perform the
intended operation. Instead they return a \null" pointer of the type normally
returned.

Attempts to create incoherent concepts do create a concept, but the concept
is not actually added to the knowledge base. An incoherent concept is created
and returned, but this concept is not part of any knowledge base. An example
of this kind of knowledge error is

(createConcept Person (and (atLeast 3 r)

(atMost 2 r)))

Attempts to make a knowledge base inconsistent include attempts to create
or modify an individual that would result in some individual inconsistent, and
attempts to create a rule that would make an individual inconsistent. The
creation functions do create an individual or rule, but this individual or rule
is not added to the knowledge base. The individual or rule returned from
attempts to make the knowledge base inconsistent encodes the (inconsistent)
state of the knowledge base that would have resulted if the operation would
have been performed, but the knowledge base ends up e�ectively unchanged.
An example of this kind of knowledge error is

(cl-create-ind Mary

(and (atMost 0 son)

(�lls son Jack)))

(assuming the son role has already been de�ned).
Incoherent concepts and inconsistent individuals have associated with them

the inference that caused the concept to become incoherent or the individual to
become inconsistent. Inconsistent rules have associated with them an inconsis-
tent individual that caused the rule to become inconsistent. The inference can
be examined and printed in the same manner that any other inference resulting
from explanation can be examined and printed.

12 Explanation

To be provided later.

A The CLASSIC Grammar

The following de�nes the syntax for typing in a classic concept or individual
description:

24



Description ::= ThingDescription j

ClassicDescription j

HostDescription j

IncoherentDescription

ThingDescription ::= Thing j

(and)

Cla ::= ClassicThing j

ClassicConcept j

(andClassicDescription+) j

(oneOf ClassicIndividual+) j

(atLeast PositiveInteger Role) j

(atMost NonNegativeInteger Role) j

(�lls Role ClassicIndividual+)

(�lls Role HostIndividual+) j

(all Role Description) j

(testC ClassicTestGenerate Parameter*)

HostDescription ::= HostThing j

Number j Integer j Float j String j

HostConcept j

(and HostDescription+) j

(oneOf HostIndividual+) j

(minimum Number) j

(maximum Number) j

(testH HostTestGenerate Parameter*)

IncoherentDescription ::= (one-of)

Role ::= Symbol

ClassicConcept ::= Symbol

HostConcept ::= Symbol

Rule ::= Symbol

ClassicIndividual ::= Symbol

HostIndividual ::= "string" j int j oat

ClassicTestDetail ::= Symbol

HostTestDetail ::= Symbol

Number ::= int j real

Parameter ::= NeoObject

B Extending NeoClassic

NeoClassic can be extended by means of C++ code. Such code is used in test
descriptions and computed rules.

25



B.1 Writing Test Functions

A test function is required for classic test descriptions and host test descriptions.
A test function is actually a C++ class with several member functions, only one
of which need be written by the user.

The simplest kind of test function takes no parameters. For example, a test
function that tests integers for primality would be written

HostTestFunction0(PrimeTest,primep);

TestVal

PrimeTest::run(const HostIndividual& ind)

const {

int n = (int)ind;

if (n <= 1) {

return testFalse;

}

int bound = (int) sqrt((double)n);

for (int i = 2; i <= bound; i++) {

if (((n / i) * i) == n) {

return(testFalse);

}

}

return testTrue;

}

The �rst line of this example is a macro that sets up a C++ class for the test
function, along with most of the data members and member functions. It also
creates a generator for this test function, named primep and adds this name
to the collection of host test function generators. The only part that need be
written is the run function, which is a function that takes (in this case) a HOST
individual and returns an element of TestVal.

This test function would be used in a host test description as follows:

(testH primep)

In general a test function is set up using a macro of the form

KindTestFunctionParamno (Class,Name,Type1,...,TypeN);

where Kind is either Host or Classic, Paramno is the number of parameters
the test function has, Class is the name of the class for the test function, Name
is the name of the test function in the character interface, and TypeI is the type
of the i'th parameter for the test function. Paramno can range from 0 to 2. It
can also be su�xed with an L to indicate that the last parameter is constructed
from the trailing parameters used in the test description.

The run function for such a test class is written

26



ClassicTestFunction2(AtLeastTest,atLeast,unsigned int,Role);

TestVal AtLeastTest::run(const ClassicIndividual& ind,

Set<ClassicIndividual>* pdeps,

Set<ClassicIndividual>* ndeps) const {

ClassicIndividualDescription def = ind.getDefinition();

unsigned int indmin = def.derivedAtLeast(arg2);

unsigned int indmax = def.derivedAtMost(arg2);

if (indmin >= arg1) {

return testTrue;

} else if (indmax < arg1) {

return testFalse;

} else {

return testMaybe;

}

}

Figure 3: atLeast test function

TestVal

Class::run(const HostIndividual& ind) const {

...

}

or

TestVal

Class::run(const ClassicIndividual& ind,

Set<ClassicIndividual> *pdeps,

Set<ClassicIndividual> *ndeps)

const {

...

}

this function can refer to data members arg1 and so on to refer to the actual
parameters used in the test description. The run member functions ofCLASSIC
test functions have two extra arguments, that are used to compute dependencies
if necessary.

For example, the test function in Figure 3 mimics the atLeast description
constructor.

The run function, when applied to an individual, must return one of the
three possible elements of the TestVal class:

testFalse: the individual is inconsistent with this description;

testMaybe: the individual is currently consistent with this description, but if
information is added to the individual, the individual may become either

27



inconsistent with the description or de�nitely described by the description;
or

testTrue: the individual de�nitely satis�es this description.

To guarantee correct behavior, test functions must follow these requirements,
which are not enforced by NeoClassic:

� When information is added to an individual I, the result of applying a
test function f to I may change from testMaybe to either testTrue or
testFalse, but it may never change from testTrue to testFalse, or vice
versa. (This requirement does not hold during the retraction of informa-
tion from the individual|see Section .)

� When a HOST test run function is applied to a HOST individual, the
function must return either testTrue or testFalse, because HOST in-
dividuals are unchanging, by de�nition.

� A CLASSIC test function must compute dependencies as necessary, pro-
vided that the pdeps and ndeps arguments are non-null. If adding in-
formation to some other CLASSIC individual could cause the answer
returned from the test function to change, then that individual must be
added to the pdeps argument, provided that that argument is non-null; if
removing information from some other CLASSIC individual could cause
an answer returned from the test function to change, then that individual
must be added to the ndeps argument, provided that that argument is
non-null.

Normally, test descriptions are not used alone, but are used as part of and
descriptions (see Sections and ). For example, suppose the user de�nes the
concept EvenInteger as a subconcept of Integer (a built-in concept|see Sec-
tion ), with a test function (evenp) that decides whether or not the integer is
even:

(and Integer (testH evenp))

NeoClassic will �rst test to see if the individual is an integer, and then an even
integer. Test functions can depend on this and can safely perform operations
that are dangerous to objects that do not belong to the parents (i.e., the function
evenp might blow up if called on a String, but this will never happen since
before running the evenp function on an individual, NeoClassic will �rst
run the integerp function, which the concept EvenInteger inherits by being a
subconcept of Integer, and if this test fails, evenp will not be called). Thus,
the test descriptions inherited from the parent concepts are always guaranteed
to be run before the told test descriptions on a concept, although there is no
way of determining the ordering of the test descriptions between the di�erent
parents, or the ordering between the di�erent told descriptions for a concept.

Consider de�ning an Employee as a Person with at least 1 employer, and
who has an age between 18 and 65. First use the above mechanisms to write a
C++ class whose run function checks to see if an integer is within a range.

28



HostTestFunction2(RangeCheck,rangeCheck,int,int);

TestVal

RangeCheck::run(const HostIndividual& ind)

const {

int i = ind;

if (ind >= arg1 && ind <= arg2 ) {

return testTrue;

} else {

return testFalse;

}

}

Next de�ne the concept Employee by the following concept description:

(and Person

(atLeast 1 employer)

(all age (and Integer

(testH rangeCheck 18 65))))

Note that Integer must be speci�ed as part of the all restriction, because the
conversion to int would not be valid if the host individual was not an int.
Note: this concept could have been de�ned using an interval (see Section ), but
a test function was used for illustrative purposes.

The following is a more complicated example, requiring a three-valued test
function. Consider de�ning a SuccessfulParty as a Party where the number of
male guests is the same as the number of female guests. First create a C++ class
that takes two roles. It returns testTrue if both roles provably have exactly
the same number of �llers, testFalse if both roles provably have a di�erent
number of �llers, and testMaybe otherwise. Note that \provably" here involves
the roles being closed, or some provable generic relation between the atLeast
and atMost descriptions on the roles.

Next de�ne the concept SuccessfulParty by the following description:

(and Party (testC sameNumberFillers

maleGuests femaleGuests))

If the individual party1 is a Party with exactly 8 maleGuests and exactly 8

femaleGuests (whether the guests are known, or just known to exist), then it
will be classi�ed as a SuccessfulParty. If the individual party2 is asserted to
be a SuccessfulParty, then as long as the same-number-�llers test does not
return testFalse on party2, it is consistent for it to be a SuccessfulParty.

B.2 Allowable Operations in User Functions

User functions are not allowed to change the knowledge base in any way what-
soever, nor can they depend on the order in which inferences are performed,
except as detailed here.

29



ClassicTestFunction2(SameNumberFillers,sameNumberFillers,Role,Role);

TestVal SameNumberFillersf::run(const ClassicIndividual& ind,

Set<ClassicIndividual> *,

Set<ClassicIndividual> *) const {

int min1 ind.derivedAtLeast(arg1);

int min2 ind.derivedAtLeast(arg2);

int max1 ind.derivedAtMost(arg1);

int max2 ind.derivedAtMost(arg2);

if ( min1==max1 && min2==max2 && min1=min2 ) {

return testTrue;

} else if ( min1<max2 || min2<max1 ) {

return testFalse;

} else {

return testMaybe;

}

}

Figure 4: The sameNumberFillers function

The simplest thing to do within a user function is to ask questions about the
properties of the current individual (see the sameNumberFillers test function
above). The user can assume that the individual has been completely normalized
(see Section ), and all local inferences have been done (i.e., those not involving
any other individuals, and those that don't depend on the �ring of rules).

It is trickier to access the properties of related individuals in the knowledge
base, since not all inferences may have been done when the test function is
run. In addition, if the properties of related individuals change, then unless a
test function returns dependencies (see the discussion later), there is no way for
NeoClassic to know that it must reclassify the a�ected individual (since a test
function is like a black box, and NeoClassic cannot automatically calculate
dependency relationships based on information in a test function).

For example, consider de�ning the DoctorChild concept as someone who has
at least 1 child who is a doctor. First de�ne a test function, doctorChildFn,
which checks to see if any �ller of the child role is an instance of the Doctor

concept.

ClassicTestFunction0(DoctorChildFn,doctorChildFn)

TestVal

DoctorChildFn::run(const ClassicIndividual & ind

Set<ClassicIndividual> *,

Set<ClassicIndividual> *) const {

Role role = "child";

Concept doctor = "Doctor";

30



IndividualSet fillers =

ind.derivedFillers(role);

...

doctor.subsumes(filler);

...

Then de�ne the concept DoctorChild as (testC doctorChildFn). If Mary is
created as a Doctor, and John is created as someone whose child is Mary,
then John will be correctly classi�ed under DoctorChild. However, if Fred is
created as someone whose child is Harry, and it is later asserted that Harry is
a Doctor, then NeoClassic will not know to reclassify Fred, and thus will not
discover that Fred is now a DoctorChild. At some later point, if information
is added to Fred, he will be reclassi�ed under DoctorChild.

It is acceptable to produce side e�ects within test functions, as long as the

side e�ects are outside of NeoClassic. However, test functions are run when-
ever NeoClassic determines that they need to be run, and this may depend
on current implementation details. Thus, it is not meaningful to increment a
counter every time a test function is run. The user must not write test functions

which produce side e�ects within NeoClassic. It is not acceptable for a test
function to call any NeoClassic functions that modify the knowledge base.

B.3 Dependencies for Test Functions

*Warning*: For Advanced Users Only

During classi�cation, NeoClassic calculates and keeps track of certain de-
pendency relationships. For example, if all of Mary's children's children are
known, and they are all Athletes, then Mary would be classi�ed under the con-
cept GrandparentOfAthletes. However, if one of her grandchildren, say Fred,
stops being an Athlete at any point (the parent concept Athlete is removed
from him), NeoClassic must know to reclassify Mary so that she is no longer
under the concept GrandparentOfAthletes. Thus, when Mary is classi�ed un-
der GrandparentOfAthletes, all her children and grandchildren are stored as
negative dependencies of Mary, which means that if any information is removed
from them, Mary needs to be reclassi�ed.

In addition, if Mary is not classi�ed under GrandparentOfDoctors, because
two of her grandchildren, Lou and Sarah, are not known to be Doctors, then
Lou and Sarah are stored as positive dependencies of Mary, which means that if
any information is added to them, Mary needs to be reclassi�ed.

Since test descriptions are basically black boxes to NeoClassic, i.e., Neo-
Classic has no way of knowing what goes on inside them, NeoClassic can-
not automatically calculate dependencies when an individual is being tested
for subsumption against a concept containing a test description. Thus, if a
test description uses information about other individuals when it is run on an
individual, then if things change about those other individuals, NeoClassic
somehow needs to know to reclassify that individual.

This can be done if a test function provides dependency information. Test

31



functions can modify the positive and negative dependency sets passed in to
them. As an example of a test function that returns dependencies, see the
function cl-test-all-closed?, in library.lisp, which takes a list of roles and/or
role-paths, and returns whether or not all the role-paths are closed on the indi-
vidual. If all role-paths are closed, then any intermediate individual along any
path is on the ndeps list (if information is removed from one of these individu-
als, speci�cally, that the role is closed, then this test function should no longer
return testTrue). Otherwise, if any role-path is non-closed, then

� The individual which doesn't have the closed role is the only individual in
the pdeps list.

� All intermediate individuals leading up to and including that individual
are on the ndeps list (if any of these �llers is removed, then the pdeps
need to be recalculated).

B.4 Writing Functions for Computed Rules

The functions for computed rules are similar to test functions, except that they
are always run on CLASSIC individuals and return either a Description (for a
computed description rule) or an Individual Set (for a computed �llers rule).

B.4.1 Computed Description Rules

A computed description function class is created

ComputedDescriptionParamno (Class,Name,Type1,...,TypeN);

The run function for a computed description function takes as arguments a
CLASSIC individual. When the rule is �red on a CLASSIC individual, the run
function is called on the individual, and it produces a NeoClassic description,
which is then added to the individual. The function must be written so that
once it is run on an individual, it will always produce the same result, even if
new information is added to the individual.

B.4.2 Computed Fillers Rules

A computed �llers function class is created

ComputedFillersParamno (Class,Name,Type2,...,TypeN);

The run function for a computed �llers function takes as arguments a CLASSIC
individual. When the rule is �red on a CLASSIC individual, the run function
is called on the individual, and it produces an IndividualSet, whose elements
are then added as �llers of the role given in the rule. This role is an implicit
�rst parameter of the function class, and so it can be obtained as the value of
arg1. The function must be written so that once it �res on an individual, it will
always produce the same list of individuals, even if new information is added to
the individual.

32



An illegal use of a �ller rule would be a rule that �res, and the function
generates an empty set as the result, but if more information were added to the
individual, the function will generate a non-empty set of individuals.

33


