
1

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 1

Introduction to WorldToolKit

Only way to learn is to do
and do
and do
and do
and do

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 2

WorldToolKit

n INTRODUCTION TO WORLDTOOLKIT
n THE UNIVERSE CLASS
n UNDERSTANDING SCENE GRAPHS
n NODES
n MOVABLE NODES
n NODE PROPERTIES
n GEOMETRY PROPERTIES
n MAKING OBJECTS MOVE
n WTK SENSORS
n MOTIONLINKS
n LIGHTING
n MATERIAL TABLES
n NODEPATHS
n TEXTURES
n PICKING GRAPHICAL OBJECTS



2

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 3

Introduction to WorldToolKit

n Portable, cross-platform software development system for building high-
performance, real-time, integrated 3D applications for scientific and
commercial use.

n >  900 high-level functions for configuring, interacting with, and controlling
real-time simulations. 

n WTK replaces the need to develop device drivers, file conversion filters, 3D
functionality and other utilities with a well structured, easy to understand, and
flexible API. 

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 4

WTK intro

n WTK is structured in an object-oriented manner, although it does
not use inheritance or dynamic binding.

n WTK functions are object-oriented in their naming conventions.
n They are grouped into classes. Classes include:

• Universe (WTuniverse_* )
• Geometry (Wtgeometry_* )
• Viewpoints (WTviewpoint_* )
• Sensors (WTsensor_* )
• Paths (WTpath_* )
• Lights (WTnode_* )



3

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 5

Naming Conventions
• Each class of object has a typedef defining an object of that

type:
q WTsensor is a sensor object
q WTuniverse is a universe object
q WTviewpoint is a viewpoint object

• Objects are always dealt with through the use of pointers.
• State of an object is accessed through get and set functions.
• All methods of a given class have a naming convention that

begins with the class name such as:
q WTuniverse_new
q WTviewpoint_setposition

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 6

“Sample” - Part I
#include "wt.h" // include this in every WTK application

// Main function
void main(int argc, char *argv[]) {

// Create a new default universe
WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT);

// Tie actionfn to the new universe
// actionfn will be called for each frame during execution
WTuniverse_setactions(actionfn);

setupScene(); // Build the scene hiearchy
setupSensor(); // Setup sensors (if any) to control the simulation

WTwindow_zoomviewpoint(WTuniverse_getwindows()); // Zoom window to fit
all objects

WTuniverse_ready(); // Initiate WTK stuff

WTuniverse_go(); // Starts simulation loop

// Clean up when the loop stops (after WTuniverse_stop)
WTuniverse_delete();

}



4

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 7

“Sample” - Actionfn

//--------------------------
// This function is called for each rendered frame

static void actionfn(void)
{

// Take care of the users keyboard actions
handleKeyPress( WTkeyboard_getkey());

// Insert any other calls to functions here
}

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 8

“Sample” - HandleKeyPress
//---------------------------
// Called from the action function to handle users keyevents
void handleKeyPress ( short key )
{

switch(key) {

// Quit the simulation loop
case 'q':

WTuniverse_stop();
break;

// Zooms so that all the objects in the scene gets visible
case 'z':

WTwindow_zoomviewpoint(WTuniverse_getwindows());
break;

default:
break;

}
}



5

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 9

“Sample” - SetupScene
//--------------------------
// Creates the graphical objects in the scene
void setupScene( void ) {

WTnode *root;
Wtnode *node;

root = WTuniverse_getrootnodes();

// Add a point light to the scene positioned at origo (0, 0, 0)
WTlightnode_newpoint(root); 

// Load a vrml-file containing a car
node = WTnode_load(root, “car.wrl” , 1.0f);

}

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 10

“Sample” - SetupSensor
//--------------------------
// Ties the mouse to the viewpoint to make it controllable
void setupSensor ( void )
{

WTsensor *mouse;
WTviewpoint *view;

// Create the mouse sensor
mouse = WTmouse_new();
if (!mouse)

WTerror("Unable to create mousesensor");

// Get a pointer to the viewpoint
// This viewpoint is created by default by the WTuniverse_new function
view = WTuniverse_getviewpoint();
if (!view)

WTerror("Unable to pointer to first viewpoint");

// Attach the sensor to the viewpoint
WTviewpoint_addsensor(view, mouse);

}



6

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 11

“Sample” - Result

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 12

WTuniverse_new

• Must be the first WTK function call in a program;
exceptions are the WTinit functions

• Can only be called once -- NEVER in the action function
• Performs the following functionality:
q Initializes the graphics device
q Configures for a particular output device
• Creates:

q A default viewpoint
q A default ambient light
q A default root node
q A window type



7

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 13

WTuniverse_delete

• Should be the last call in your main program
• Frees all of the objects in the universe.
• Including those that have been "removed" from the

simulation
• Cleans up and closes the graphics hardware or WTK display

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 14

WTuniverse_ready

• Prepares the application for entry into the main loop
• Should be called BEFORE entering the simulation loop for

the first time
• Should be called AFTER all graphical entities have been

created.
• Assists in providing smooth frame-rates when objects come

into view.
• For each new graphical entity added to the scene graph,

WTuniverse_ready MUST be called.



8

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 15

WTuniverse_go

• Enters the simulation loop
• Loop is not exited until a call to WTuniverse_stop is made

(usually from the universe action function).
• Must be called AFTER WTuniverse_new and

WTuniverse_ready
• Is not reentrant.  I t MUST NOT be called from the

universe action function

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 16

Understanding the Simulation Manager

• Heart of all WTK applications
• Entered by calling WTuniverse_go

or WTuniverse_go1
• Loop is broken with a call to

WTuniverse_stop
• Order of events can be altered

using WTuniverse_seteventorder



9

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 17

Event order

n Change the event order so that objects are updated BEFORE any
actions is taken.

n Especially useful for intersection testing as you want to update the
objects positions before you test for intersection 

// Create a new default universe
WTuniverse_new(WTDISPLAY_DEFAULT, WTWINDOW_DEFAULT); 

short myevents[4];
myevents[0] = WTEVENT_OBJECTSENSOR;
myevents[1] = WTEVENT_TASKS;
myevents[2] = WTEVENT_PATHS;
myevents[3] = WTEVENT_ACTIONS;

WTuniverse_seteventorder(4, myevents);

WTuniverse_ready(); // Initiate WTK stuff
WTuniverse_go(); // Starts simulation loop

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 18

WTuniverse_setactions

• Used to define and control the activity in the simulation.
• Actions involving any WTK objects, graphical or otherwise, can be

specified
• Is called by the simulation manager once each time through the

simulation loop.
• Examples of actions which might occur in the action function:

q Program termination
q Simulation activities
q Changes to rendering parameters
q Handling sensor button input
q Handling keyboard input

• Should be called AFTER WTuniverse_new and BEFORE
WTuniverse_ready.



10

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 19

WTK coordinate systems

n Right hand axes - X, Y and Z
n WorldToolKit uses a right-hand coordinate system. If the fingers of the right hand

are pointed along the positive X axis, with the palm facing the positive Y axis, then
the thumb points along the positive Z axis. This means that X is normally to the
right, Z straight ahead, and Y points DOWN.

n For rotations, if the thumb of the right hand points in the positive direction along an
axis, then the fingers curl in the direction of positive rotation about that axis. Note
that this applies to axes at any angle, not just the X, Y, and Z coordinate axes.

Figure: Illustration of right-hand rule

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 20

WTK Scene-graphs

n See lecture notes from Real-time graphics.
n Advantages of Scene Graphs

n Object grouping
n Level of detail switching
n Instancing of geometry and entire scene graph’s sub-trees, providing

better memory usage
n More powerful culling and more efficient database representation provides

higher frame rates
n Support for VRML and Open Inventor-style formats
n Lights and environmental effects enabled only in parts of database

n Multiple scenes



11

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 21

WTK Scene-graphs

n A number of methods exist for creating scene graphs.
n Parts may be constructed using different methods
n Function calls for:

n Disassembling
n Re-assembling
n Re-arranging

n The methods are:
n Loading a scene graph description from a file. VRML 1.0/2.0, Open

Inventor, and Multigen flt files contain hierarchically arranged data
which correspond to WTK’s scene graph.

n Construct the graph node by node. WTK provides function for creating
nodes and placing them at specific positions in the scene graph.

n WTnode_insertchhild, WTnode_addchild

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 22

WorldToolKit Node Types
n Nodes in WTK can be grouped into 3 distinct types

n Geometry Nodes
n Contain the representation of visible entities (vertices, polygons)
n Node types include:

n Geometry nodes
n Movable Geometry nodes
n 3D text

n Attribute Nodes
n Used to affect the way geometry nodes are rendered (the state).
n Node types include:

n Fog nodes
n Light nodes
n Movable Light nodes
n Transform nodes



12

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 23

WorldToolKit Node Types
n Procedural Nodes

n Used to control the way a scene graph is put together and
processed.

n Node types include:
n Anchor nodes
n Group nodes
n Inline nodes
n LOD nodes
n Movable LOD nodes
n Switch nodes
n Movable Switch nodes
n Separator nodes
n Movable Separator nodes
n Transform Separator nodes

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 24

Scene Graph State
n The state of the scene graph can be described as how your geometry is being rendered

at any particular point in the scene graph.

n In figure 1 the Light Node would light the geometry in the GEO node since its state is
pushed onto the stack before the geometry node is traversed. The transform node would
also affect the state of the geometry since it precedes it in the scene graph.

n In figure 2 a light node is added at the end of the scene graph. This node
WILL NOT affect the state of the geometry since it is traversed after the
geometry node; therefore the geometry node will not be affected by this light.

Figure 1 Figure 2



13

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 25

State accumulation
n Because the current transformation state at some point in a scene graph is a

concatenation of the transform nodes processed up to that point, and the current lighting
state includes all the lights activated by processing light nodes up to that point, you can
say that transform and light state “accumulate” as the scene graph tree is traversed, as
shown in figure:

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 26

Managing the state
n Separator and Transform Separator Nodes are used to manage the state of the scene

graph by isolating the effects of the attribute nodes.
n Note that neither actively modifies the state of the scene graph, they prevent the

descendant attribute nodes from affecting the state of the sibling nodes.
n The figure shows the use of the Separator nodes when localizing the affect of lights.



14

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 27

Managing the state

n Transform separators are used to localize the affect of transformations. The
Light 2 in figure will affect (Geo 1). But the transform(Xform 2) won’t.

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 28

Node types

Node Definition Can it have children? Does it effect state?

Geometry
Displays a set of
polygons, together with a
material

NO NO

Fog
Simulates fog, smoke, or
mist NO YES

Light Specifies a light (point,
directed, or spot) NO YES

Transform
Sets position and/or
orientation information NO YES

Anchor

Contains a string
property. Used of URL’s
for non-geometric
information

YES NO

Group Has children by no other
properties YES NO

Inline Children are read in from
a file YES NO



15

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 29

Node types
Node Definition Can it have children? Does it effect state?

Level of Detail (LOD)
Swaps in objects as a
function of the viewpoint
distance

YES NO

Root

Acts as the topmost node
in a scene graph. Each
scene graph can have
only one root node. This
node CANNOT be
shared with any other
graph. As the top node in
its hierarchy, this node
can have no parent node

YES NO

Separator

Prevents state
information from
propagating from its
descendant nodes to its
sibling nodes

YES NO

Switch Controls which of its
children will be traversed YES NO

Transform Separator

Prevents just the
transform state from
propagating from its
descendant node to its
sibling node

YES NO

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 30

Finding individual nodes

n By using WTnode_setname a node can be given an individual name.
n By using WTuniverse_findnodebyname the node is located in the scene-

graph.
n Example:

WTnode *test = WTnode_load(root, “test.3ds”, 1.0f);
WTnode_setname(test, “TESTNODE”);
WTnode *test2 = WTuniverse_findnodebyname(“TESTNODE”, 0);

n After this is: test  == test2



16

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 31

Creating primitives

n When creating primitives it is important to note that all primitives are
constructed using their local coordinate system, (0,0,0) being the center or
midpoint of the geometry.

n Therefore when the geometry is inserted into the scene graph it is inserted at
the World center (0,0,0). 

n WTK provides functions for creating the following primitive types:

Type of Primitive Function Explanation
BLOCK WTgeometry_newblock creates a rectangular box
CYLINDER WTgeometry_newcylinder creates a cylinder
CONE WTgeometry_newcone creates a cone
SPHERE WTgeometry_newsphere creates a sphere
HEMISPHERE WTgeometry_newhemisphere creates the top half of a sphere
RECTANGLE WTgeometry_newrectangle creates a single rectangle
TRUNCATED CONE WTgeometry_newtruncone creates a truncated cone
EXTRUSION WTgeometry_newextrusion extrudes a contour into a geometry

TEXT3D WTgeometry_newtext3d creates a geometry representing a
character (text) string

NOTE: When a primitive is created it is assigned a default material of matte white.

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 32

Node Instances
n WTK allows the user to create an efficient database through the use of "instances" of

nodes instead of complete copies.
n By creating multiple references to a single node instead of creating copies of it, memory

usage is greatly reduced.  

root = WTuniverse_getrootnodes();
WTgeometrynode_new(root, WTgeometry_newcylinder(2, 1, 10, FALSE, TRUE));
WTgeometrynode_new(root, WTgeometry_newsphere(1, 10, 10, FALSE, TRUE));
WTgeometrynode_new(root, WTgeometry_newsphere(1, 10, 10, FALSE, TRUE));

Root = WTuniverse_getrootnodes();
WTgeometrynode_new(root, WTgeometry_newcylinder(2, 1, 10,

FALSE, TRUE);
WTnode *sphere = WTgeometrynode_new(root,

WTgeometry_newsphere(1, 10, 10, FALSE, TRUE);
WTnode_addchild(root, sphere);



17

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 33

Transformations

n WTxformnode_new
n Syntax:

n WTnode * WTxformnode_new(WTnode * parent);
n Arguments:

n parent -- The node will be inserted as the last child of the parent specified. If NULL is
specified as the parent argument then the node is created as an "orphan" and can be
added or inserted later.

n Return Type:
n A pointer to a WTnode object containing the new transform node.

WTnode *root, *node, *transform;
root = WTuniverse_getrootnodes();
WTpointlight_new(root);
WTxformnode_new(root);
WTgeometrynode_new(root, WTgeometry_newcylinder(2, 1, 10, FALSE,

TRUE));

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 34

Setting the Contents of the Transform Node

n Once the transform node is created its contents must be set.
n Transformations in WTK are stored in 4x4 matrices that specify the rotation and

translation that will be applied to the state of the scene graph.
n There are functions that allow the user to set the absolute position and orientation of

transform nodes.
n The following chart lists these functions and gives a brief explanation of their use.

FUNCTION EXPLANATION

WTnode_settranslation Sets only the absolute translation value of the
transformation matrix.

WTnode_setrotation
Sets only the absolute rotation values of the
transformation matrix. The rotation is specified in a 3x3
matrix

WTnode_setorientation Sets the orientation (rotation) of the transformation
matrix. The orientation is specified as a quaternion.

WTnode_settransform Sets the translation and rotation of the transformation
matrix. Values are specified in a 4x4 matrix.



18

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 35

Using a Separator Node
n WTsepnode_new

n Creates a new separator node and adds it as the last child of the parent
specified. If NULL is specified as the parent argument then the node is created
as an orphan that can be added or inserted later.

n Syntax:
n WTnode * WTsepnode_new(WTnode * parent)

n Arguments:
n parent -- The parent node

n Return Type:
n A pointer to a WTnode object containing the separator node.

n WTxformsepnode_new
n Creates a new transform separator and adds it as the last child of the parent

specified. If NULL is specified as the parent argument then the node is created
as an orphan that can be added or inserted later.

n Syntax:
n WTnode * WTxformsepnode_new(WTnode * parent);

n Arguments:
n parent -- The parent node

n Return Type:
n A pointer to a WTnode object containing the transform separator.

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 36

Movable nodes
n There is a special kind of node called Movable that streamlines the process of creating

objects, moving them with transform nodes and isolating them from each other with
separator nodes.

n A movable contains a separator node or transform separator node, a transform
node, and a content node.

Function Type of Content Node Type of Separator Node
WTmovgeometrynode_new Geometry Separator
WTmovlightnode_newpoint Point Light Transform Separator
WTmovlightnode_newdirected Directed Light Transform Separator
WTmovlightnode_newspot Spot Light Transform Separator
WTmovsepnode_new Separator Separator
WTmovswitchnode_new Switch Separator
WTmovlodnode_new LOD Separator
WTmovnode_load Depends upon the file read Depends on the file read



19

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 37

Instancing a Movable Node

n In order to make an instance of a movable node, the function
WTmovnode_instance is provided.

n Simply using WTnode_addchild or WTnode_insertchild isn’t sufficient for use
with movable nodes since all instances would share the identical transformation
component. 

n As a result, all instanced nodes would have the same position, translation and
orientation.

n WTmovnode_instance creates a separate transform component for each
movable node instance while still sharing data for the contents.

n In other words, all information is shared except for the transform.

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 38

WTK Math

n The WTK math library contains functions for managing position and orientation
data.

n The types used in the library is:
n WTp2 - 2D Vector – array of 2 floating point values.
n WTp3 - 3D Vector – array of 3 floating point values.
n WTq - Quaternion – array of 4 floating point values.
n WTpq - Coordinate Frame – structure containing WTp3 and WTq.
n WTm3 - 3D Matrix – 3x3 array of floating point values.
n WTm4 - 4D Matrix – 4x4 array of floating point values.

n Orientations are always stored in quaternion form.
n There exists conversion functions from/to euler angles and transformation

matrices.
n Some of the functions are actually MACROS, beware of calls like:

WTp3_mults(pos, f(pos)); // f(pos) will be evaluated three times



20

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 39

WTK Math

n Example of functions:
n WTp2 (2D vector)

n [MACRO] WTp2_init(WTp2 p); / /Sets p[X]  =  p[Y]  =0
n [MACRO] WTp2_norm(WTp2 p); / /  Normalizes P

n WTp3 (3D vector)
n [MACRO] WTp3_invert(WTp3 pin, WTp3 pout);

n / /  Negates pin, places result in pout

n void WTp3_cross(WTp3 p1, WTp3 p2, WTp3 pout);

n / /  Calculates the cross product between p1 and p2

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 40

Nodepaths

n As several nodes can share the same geometry, we need something that can
separate the nodes apart.

n A nodepath is a mathematical entity that allows you to distinguish between
multiple occurrences of the same node due to instancing. This allows you to
indicate a specific occurrence of a node in the scene graph.

n There are two things you can do with nodepaths:
n Perform intersection tests between specific nodepaths and other nodes in the scene

graph.
n Pick graphical entities rendered into a WTK window. The WTK picking functions

generate the node-path of a picked geometry node.

Nodepath 1

Nodepath 2



21

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 41

Creating Nodepaths

n WTnodepath_new
n Use this function to create a new nodepath. A nodepath is fully specified by giving

the bottom-most node of interest, the ancestor node, and the occurrence number.
n SYNTAX:

n WTnodepath_new(WTnode * node, WTnode * ancestor, int which);
n ARGUMENTS:

n node -- bottom-most node
n ancestor -- The ancestor
n which -- The occurrence of the node.

n RETURN TYPE:
n Returns a pointer to a new WTnodepath

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 42

Making objects move

n To make objects move, you have to write code in the action function. Or you
can create tasks.

n Tasks is associated with a WTK object or a C structure.
n You set it up and WTK will call the task function once for each frame.
n WTtask_new

n SYNTAX:
n WTtask * WTtask_new(void *objptr, WTtask_function fptr, float priority);

n ARGUMENTS:
n objptr -- pointer to an object to which the function (fptr) will be associated
n fptr -- Pointer to the task function.
n priority -- Specifies the order in which the tasks will be called. Lower indicates higher

priority.
n RETURN TYPE:

n Returns a pointer to a new WTtask



22

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 43

Tasks - Example

n For example, to add a task to a light, your application would include code
similar to the following:

WTnode *light;
light = WTlight_newspot(…);
WTtask_new(light, light_task,2.5f);

where light_task is defined as follows:

void light_task(WTnode *light) {
/* code that changes the light */
float v = WTlightnode_ getangle(light);
WTlightnode_setangle(light, 2*v);

}

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 44

What can we do in tasks?

n Anything can be done in a task or in the action function.
n Movement - Translate, rotate objects using Wtnode_setranslation ,...

n Change in appearance - Move textures, change colors, ...
n Testing for intersections - Collision detection, ...
n Triggering other behavior - Play sounds, ...
n Attaching a sensor

n Example:
case 'r':
WTnode_settranslation(node, pos);
WTsound_play(sound);
break;



23

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 45

Time/frame-based simulation
n Framebased

n Lets say we want to move an object forward in x in a constant rate.
n For each frame we could:

n p[X]  =  p[X] + deltaX;
n WTtranslate(object, p)

n This would move the object deltaX units in the X direction for each time the scene
has been rendered.

n Usually this is NOT what we want. If the scene takes different time to render,
depending on the viewpoints position and orientation (something complex gets into
the view frustum) we will get different translation between different frames.

n Therefore we need to have time-based translation:
n deltaX = deltaXperSecond * noSecondsSinceLastFrame;
n P[X]=p[X] + deltaX
n WTtranslate(object, p)

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 46

WTK sensors/Motionlinks

n Sensors are the devices by which we manipulate the simulation
n The easiest to use: the mouse
n Others: Spaceball, Insidetrak, …

n Motionlinks connects objects that generates transformations (sensors and
paths)  to the objects we wish to manipulate: transforms, viewpoints,
movables, nodepath

n Example:

Wtnode *transform = Wtxformnode_new(root);
Wtsensor *mouse = WTsensor_newmouse();
Wtmotionlink *ml = WTmotionlink_new(mouse,  transform, WTSOURCE_SENSOR,

WTTARGET_TRANSFORM);

n A mouse movement will affect the transformation.



24

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 47

Textures

n WTK supports the following texture formats:
n Targa - .tga
n SGI RGB format - .rgb and .rgba
n JPEG – JFIF compliant - .jpg

n Usually objects are textured using a modeling tool.
n But there exists functions to texture geometry's “manually”

n WTgeometry_settexture
n WTpoly_settexture
n WTpoly_settextureuv
n WTgeometry_settextureuv

n And also for manipulating textures
n WTpoly_ rotatetexture
n WTpoly_ scaletexture
n ...

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 48

Picking graphical objects

n WTscreen_pickpoly
n This function obtains a pointer to the frontmost polygon rendered at the

specified 2D screen point.
n SYNTAX:

n WTpoly *Wtscreen_pickpoly (int, screennum, WTp2 pt, Wtnodepath
* * nodepath, WTp3 p);

n ARGUMENTS:
n int screennum – specifies a screen

(WTwindow_getscreen(WTuniverse_getwindows()));
n WTp2 pt – x, y in screen coordinates
n WTnodepath * * nodepath – pointer to a pointer to a nodepath, filled with the

nodepath that contains the picked polygon
n WTp3 p – 3D point in world coordinates at which the selected polygon was

intersected.
n RETURN TYPE:

n Returns a pointer to the picked polygon, null if no hit.

n The following example picks a polygon beneath the mouse and marks the
node associated with that polygon with a bounding box.



25

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 49

Picking - Example
Void PickAndMarkWithBoundingBox( void )
{
WTsensor *mouse = WTuniverse_getsensors();
WTmouse_rawdata *raw = (WTmouse_rawdata *)WTsensor_getrawdata(mouse);

// Get the position of the mouse in the window
WTp2 mousePos = raw->pos[X], raw->pos[Y]};

WTnodepath *nodepath=0;
WTpoly pickedPoly=0;
WTp3 p;
WTnode *pickedNode=0;
// Pick the closest polygon under the screen coordinate mousePos
pickedPoly = WTscreen_pickpoly(WTwindow_getscreen( WTuniverse_getwindows()),

mousePos, &nodepath, p);
if ( pickedPoly ) { // We hit something
pickedNode = WTnodepath_getnode( nodepath,                     

WTnodepath_numnodes( nodepath)-1 );
WTnodepath_delete( nodepath ); // Free the nodepath
nodepath = 0;

}
WTnode_boundingbox(pickedNode, !WTnode_hasboundingbox(pickedNode));

}

2000-11-10 © Anders Backman, Dept. Computing Science, VR00 - WTK 50

Last words

n Look at the WTK tips page
n Can be found from the

http: / /www.cs.umu.se/kurser/TDBD12/HT00/ lab/wtk

n Read all the material on the web-pages.
n Ask!
n Try/ fail/ try/success!!
n Look at demos


