Real-time graphics II

Contents

- Visibility processing of complex scenes
- OCTREE
- BSP-trees
- OBB, AAOB
- Shadows
- Ray intersect collision

Visibility processing

- Scene partitioning important for view frustum intersection
- We don't want to compare every little detail/polygon with the VF.
- During visibility processing an object may intersect the VF - Parts of it is inside and part outside
- We might decide we want to subdivide the object.
- Compare to WTK:s scene graph, either an object is inside (partially or full) and is rendered or it is outside and is ignored.
- Step one is always to group the objects in an spatially optimized way (see RG I lecture)

Why trees?

- In all cases we build a tree as a pre-process.
- Then descend this tree in real time to find out:
- Of two objects occupy the same spatial partitions, collision
- To find out if the space of an object and the VF are disjoint, which eliminates the entire object from further processing.
- Most of these operations reduce to tree descent or traversal - a fast linear time operation

Space subdivision hierarchies

- Brute force
- Divide all world space into regular or cubic voxel and label it.
- Each voxel that contain an object is given the identity of the object that occupies it.
- Very memory consuming
- Classic for ray tracing.

- Instead of asking the expensive question, does this ray intersect with any object in the scene?
- We pose the question which objects are intersected as we track the ray trough the voxel space.

OCTREE

- Describes how the objects in the scene are distributed throughout the tree-dimensional space occupied by the scene.
- Organizes the voxels into a hierarchy.
- The process of creating a OCTREE:

1. Root of tree is a cube region covering the whole scene (bounding box).
2. Because the box is occupied by objects, it is subdivided into 8 subregions.
3. Any region that is occupied by an object is further subdivided.
4. Termination:
5. No objects within a region.
6. Cells of minimum size that are occupied by part of an object.

OCTREE

- To divide the whole scene into the smallest component (polygons, or even vertices) would take too much memory
- Instead, the objects are stored in a normal way (vertex, face list) and the OCTREE is used for the distribution of the objects in the scene.

BSP trees

- Binary space partitioning tree
- Partitions by dividing two parts at each level by using a splitting plane.

2000-12-11
© Anders Backman, Dept. Computing Science, VR00-RG II

BSP trees

- Using cubic cells makes BSP perform about the same as OCTREE
- Selecting another splitting scheme makes it potentially perform much better.
- The process of building a BSP tree takes time, usually pre computed before rendering.
- Due to this, it suits static objects, buildings, walls, etc.

BSP trees

- The process of building a BSP tree

1. The first polygon in the scene is read, the plane of the polygon is used as a partitioning plane
2. The process recurses with each of the two sets of polygons
3. Termination
4. a maximum depth is reached
5. Number of polygons in a leaf node is below a threshold
6. Only one polygon at a leaf node
7. Polygons that are at both sides of the partitioning plane is either
8. Divided into two polygons (generates more polygons)
9. Insert the polygon in both sub-trees, and flag it during traversal (drawing, collision detection etc.) Saves memory.

Partitioning plane

- To determine a plane from a polygon we evaluate its coefficients as follows. A plane has the equation:

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{1}
\end{equation*}
$$

where A, B, C are the coordinate values of its normal vector, calculated from any three (non-collinear vertices).

Cross product of two vectors \mathbf{V} and \mathbf{W} is defined as:

$$
\mathbf{X}=\mathbf{V} \times \mathbf{X}=\left(v_{2} w_{3}-v_{3} w_{2}\right) \mathbf{i}+\left(v_{3} w_{1}-v_{1} w_{3}\right) \mathbf{j}-\left(v_{1} w_{2}-v_{2} w_{1}\right) \mathbf{k}
$$

Where \mathbf{i}, \mathbf{j} and \mathbf{k} are the standard unit vectors. A, B and C are thus:
$A=v_{2} w_{3}-v_{3} w_{2}$
$\mathrm{B}=\mathrm{v}_{3} \mathrm{w}_{1}-\mathrm{v}_{1} \mathrm{w}_{3}$
$\mathrm{C}=\mathrm{v}_{1} \mathrm{w}_{2}-\mathrm{v}_{2} \mathrm{w}_{1}$
D is obtained by substituting a point known to lie on the plane (a vertex) into eq. 1.
2000-12-11
© Anders Backman, Dept. Computing Science, VR00-RG II

Partitioning plane

- Classifying a point with respect to a plane is the foundation of all simple operations that use BSP trees.
- It is done by substituting the point into eq. 1. (x, y, z)
- If the result is positive
- On the positive side (with respect to the splitting polygons normal)
- If the result is negative
- On the negative side (normal)
- If the result is $=0$
- The tested point lies on the plane
- To test if a polygon lies on one side or another, we have to test all vertices (points) for the polygon
- Either all is on the positive side, negative or the values goes from negative to positive (the polygon is intersecting the split plane).

Partitioning plane

- The pair of vertices of edges that cross the splitting plane (from positive to negative or vice versa) are detected and the intersection points are computed by solving the line/plane equation as follows:

$$
\begin{aligned}
& t=\frac{A x_{1}+B y_{1}+C z_{1}+D}{A\left(x_{2}-x_{1}\right)+B\left(y_{2}-y_{1}\right)+C\left(z_{2}-z_{1}\right)} \\
& x=x_{1}+\left(x_{2}-x_{1}\right) t \\
& y=y_{1}+\left(y_{2}-y_{1}\right) t \\
& z=z_{1}+\left(z_{2}-z_{1}\right) t
\end{aligned}
$$

Where $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ are the two vertices of the edge that crosses the plane at intersection point(x, y, z)

Culling against the view frustum

- BSP tree can be used to cull polygons against a view frustum.
- At a node the View Frustum is compared with the partitioning plane. If the appropriate culling condition is fulfilled, the entire sub-tree associated with that node can be eliminated.
- Each vertex of the view frustum (5) is injected into equation 1 and should return the same sign.

BSP in practice

- Two important choices
- How do we choose the partition plane?
- When is the partition terminated?
- A common application is the cell-like scene found in building interiors and games (Quake, etc.)
- Here it makes sense to use wall-aligned partitioning planes.
- Subdividing can continue the space within a room.
- Partitioning can terminate at room level, object level or objects themselves can be subdivided.
- If a leaf contains a cluster of polygons, the BSP tree is used for fast culling of objects outside the VF and exact visibility is performed using standard Z buffer.

Interaction methods

- Definitions
- Axis Aligned Bounding Box (AABB)
- A lot of empty space enclosed, but easy to calculate
- Oriented Bounding Box (OBB)
- Less empty space, more complicated to calculate
- k-Dop (discrete oriented polytope)
- Least empty space, and most complicated to calculate

(AABB)
2000-12-11

(OBB)

(AABB)

Rules of Thumb

- Perform computations and comparison that might trivially reject or accept various types of intersections to obtain an early escape from further computations
- If possible, exploit the results(s) previous test(s)
- If more than one rejection or acceptance test is used, try changing their internal order, since speed-up may result.
- Postpone expensive calculations (square roots, trigonometric functions and divisions) until truly needed.
- Try to reduce the dimension of the problem from three to two or even one dimension.
- If a single ray or object is being compared to many other objects, look for pre-calculations done only once before the testing begins.
- Make your code robust, (work for all special cases, and insensitive for floating point precision errors).

Ray Sphere Intersection

- A sphere is defined by center point \boldsymbol{c} and a radius r.
- The implicit formula for a sphere is then

$$
\begin{equation*}
f(\boldsymbol{p})=\|\boldsymbol{p}-\boldsymbol{c}\|-r=0 \tag{2}
\end{equation*}
$$

where \boldsymbol{p} is any point on the sphere's surface.

- To solve a ray/sphere intersection, the \boldsymbol{p} is replaced by the formula for a ray

$$
\boldsymbol{r}(t)=\boldsymbol{o}+t \boldsymbol{d}
$$

- After simplification we get:
$t^{2}+2 t b+c=0$
where $b=\boldsymbol{d} \cdot(\boldsymbol{o}-\boldsymbol{c})$ and $c=(\boldsymbol{o}-\boldsymbol{c}) \cdot(\boldsymbol{o - c})-r^{2}$
- The solutions for the second order eq. 3 is:
- If $b^{2}-c<0$ the ray misses (no real roots).

$$
t=-b \pm \sqrt{b^{2}-c}
$$

Optimized Ray/Sphere

- Trivially reject
- Center of sphere is behind origon of ray a hit is impossible

- Trivially accept
- Origin of ray is within sphere, always a hit

Algorithm for Optimized Ray/S phere intersection

RaySphereIntersect(o, d, c, r)
Returns (\{REJECT, INTERSECT $\}, t, \mathbf{p})$

1. $\mathbf{l}=\mathbf{c}-\mathbf{0}$
$d=\mathbf{l} \cdot \mathbf{d}$
$l^{2}=\mathbf{l} \cdot 1$
if $\left(d<0\right.$ and $\left.l^{2}>r^{2}\right)$ return (REJECT, $\left.0, \mathbf{O}\right)$
$m^{2}=l^{2}-d^{2}$
if $\left(m^{2}>r^{2}\right)$ return (REJECT, $\left.0, \mathrm{O}\right)$
$q=\operatorname{sqrt}\left(r^{2}-m^{2}\right)$
if $(12>r 2) t=d-q$
else $t=d+q$
2. return $($ INTERSECT, $t, \mathbf{o}+t \mathbf{d})$

Different kind of intersections

- Ray/Box
- Ray/Triangle
- Ray/Polygon
- Plane/Box
- Triangle/Triangle
- Cube/Polygon
- BV/BV
- Sphere/Box
- AABB/AABB
- K-DOP/k-DOP
- OBB/OBB
- Line/Line
- 3-Planes intersection

Shadows

- It is better to have an inaccurate shadow, than none at all (Wanger).
- They eye is fairly forgiving about the shape of the shadow.
- A blurred black circle applied as a texture on the floor can anchor a person to the ground.
- Umbra
- Totally shadowed
- Penumbra
- Partially shadowed (soft shadow)

Planar shadows

- A simple method is to project all the occluders vertices onto a flat surface according to the light position and render the resulting geometry black.
- Works for non-intrusive geometries
- There will be no shadows on geometries other than the shadow plane.
- One light source (or two as long as the shadows dont interfere with each other).

Planar shadows

- Light source l, casts a shadow onto the plane $y=0$. The vertex \mathbf{v} is projected onto the plane. The projected point is called \mathbf{p}.
- Each vertice \mathbf{v} in geometry \mathbf{G} is then transformed by the following matrix \mathbf{M} to render the geometry at the plane $y=0$

$$
M=\left(\begin{array}{cccc}
l_{y} & -l_{x} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -l_{z} & l_{y} & 0 \\
0 & -1 & 0 & l_{y}
\end{array}\right)
$$

Planar shadows

- Two shadow planes.
- The shadow is drawn using only ambient lightning, color $\{0,0,0$, 0\}

Textured Soft shadows

- Heckbert and Herf
- Gooch et al.

References

- Real-time rendering, Möller, Haines, A K Peters, 1999
- 3D Games, Real-time rendering and Software Technology, Watt, Policarpo, Addison-Wesley, 2000

That's it folks!

- No more THEORY
- Keep on labbing!

