
1

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 1

Real-time graphics I I

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 2

Contents

n Visibility processing of complex scenes
n OCTREE
n BSP-trees
n OBB, AAOB

n Shadows
n Ray intersect collision

2

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 3

Visibility processing

n Scene partitioning important for view frustum intersection
n We don’t want to compare every little detail/polygon with

the VF.
n During visibility processing an object may intersect the VF

n Parts of it is inside and part outside
n We might decide we want to subdivide the object.

n Compare to WTK:s scene graph, either an object is inside
(partially or full) and is rendered or it is outside and is
ignored.

n Step one is always to group the objects in an spatially
optimized way (see RG I lecture)

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 4

Why trees?

n In all cases we build a tree as a pre-process.
n Then descend this tree in real time to find out:

n Of two objects occupy the same spatial partitions, collision
n To find out if the space of an object and the VF are disjoint, which

eliminates the entire object from further processing.

n Most of these operations reduce to tree descent or
traversal – a fast linear time operation

3

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 5

Space subdivision hierarchies

n Brute force
n Divide all world space into regular or cubic voxel and label it.
n Each voxel that contain an object is given the identity of the object that

occupies it.

n Very memory consuming
n Classic for ray tracing.

n Instead of asking the expensive question, does this ray intersect with any object
in the scene?

n We pose the question which objects are intersected as we track the ray trough
the voxel space.

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 6

OCTREE

n Describes how the objects in the scene are distributed
throughout the tree-dimensional space occupied by the
scene.

n Organizes the voxels into a hierarchy.
n The process of creating a OCTREE:

1. Root of tree is a cube region covering the whole scene (bounding
box).

2. Because the box is occupied by objects, it is subdivided into 8 sub-
regions.

3. Any region that is occupied by an object is further subdivided.
4. Termination:

1. No objects within a region.
2. Cells of minimum size that are occupied by part of an object.

4

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 7

OCTREE

n To divide the whole scene into the smallest component
(polygons, or even vertices) would take too much memory

n Instead, the objects are stored in a normal way (vertex,
face list) and the OCTREE is used for the distribution of the
objects in the scene.

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 8

n Quadtree (2-
dimensional OCTREE)
representation of a two-
dimensional scene down
to the level of cells
containing at most a
single node.

n Terminal nodes for cells
contains a pointer to the
data structure
representing the object

e = empty
r = rod
b = box
c = circle

e

5

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 9

BSP trees

n Binary space partitioning tree
n Partitions by dividing two parts at each level by using a

splitting plane.

1 2 3 4

X= 0 X= 1023

y=0

y= 1023

3

1 2

4

Y < 512

1 2

x < 512 x ≥ 512

Y ≥ 512

3 4

x < 512 x ≥ 512

Quadtree
(two-dimensional
octree)

BSP tree

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 10

BSP trees

n Using cubic cells makes BSP perform about the same as
OCTREE

n Selecting another splitting scheme makes it potentially
perform much better.

n The process of building a BSP tree takes time, usually pre
computed before rendering.

n Due to this, it suits static objects, buildings, walls, etc.

6

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 11

BSP trees

n The process of building a BSP tree
1. The first polygon in the scene is read, the plane of the polygon is

used as a partitioning plane
2. The process recurses with each of the two sets of polygons
3. Termination

1. a maximum depth is reached
2. Number of polygons in a leaf node is below a threshold
3. Only one polygon at a leaf node

4. Polygons that are at both sides of the partitioning plane is either
1. Divided into two polygons (generates more polygons)
2. Insert the polygon in both sub-trees, and flag it during traversal

(drawing, collision detection etc.) Saves memory.

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 12

Partitioning plane

n To determine a plane from a polygon we evaluate its coefficients as
follows. A plane has the equation:

Ax + By + Cz + D = 0 [1]

where A, B, C are the coordinate values of its normal vector, calculated
from any three (non-collinear vertices).

Cross product of two vectors V and W is defined as:

X= V×X= (v2w3-v3w2)i + (v3w1-v1w3)j-(v1w2-v2w1)k

Where i,j and k are the standard unit vectors. A, B and C are thus:
A= v2w3-v3w2

B= v3w1-v1w3

C= v1w2-v2w1

D is obtained by substituting a point known to lie on the plane (a vertex) into
eq. 1.

7

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 13

Partitioning plane

n Classifying a point with respect to a plane is the
foundation of all simple operations that use BSP
trees.

n It is done by substituting the point into eq. 1. (x,
y, z)

n If the result is positive
n On the positive side (with respect to the splitting

polygons normal)
n If the result is negative

n On the negative side (normal)
n If the result is = 0

n The tested point lies on the plane
n To test if a polygon lies on one side or another,

we have to test all vertices (points) for the
polygon
n Either all is on the positive side, negative or the

values goes from negative to positive (the
polygon is intersecting the split plane).

+
-

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 14

Partitioning plane

n The pair of vertices of edges that cross the splitting plane
(from positive to negative or vice versa) are detected and
the intersection points are computed by solving the
line/plane equation as follows:

x=x1+ (x2-x1)t
y= y1+ (y2-y1)t
z=z1+ (z2-z1)t

Where (x1, y1, z1) and (x2, y2, z2) are the two vertices of the
edge that crosses the plane at intersection point(x, y, z)

A(x2-x1)+B(y2-y1)+C(z2-z1)

Ax1+ By1+ Cz1+ D
t=

8

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 15

Culling against the view frustum

n BSP tree can be used to cull polygons against a view
frustum.

n At a node the View Frustum is compared with the
partitioning plane. If the appropriate culling condition is
fulfilled, the entire sub-tree associated with that node can
be eliminated.

n Each vertex of the view frustum (5) is injected into
equation 1 and should return the same sign.

Partitioning plane

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 16

BSP in practice

n Two important choices
n How do we choose the partition plane?
n When is the partition terminated?

n A common application is the cell-like scene found in
building interiors and games (Quake, etc.)

n Here it makes sense to use wall-aligned partitioning planes.
n Subdividing can continue the space within a room.
n Partitioning can terminate at room level, object level or

objects themselves can be subdivided.
n If a leaf contains a cluster of polygons, the BSP tree is used

for fast culling of objects outside the VF and exact visibility
is performed using standard Z buffer.

9

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 17

Interaction methods
n Definitions

n Axis Aligned Bounding Box (AABB)
n A lot of empty space enclosed, but easy to calculate

n Oriented Bounding Box (OBB)
n Less empty space, more complicated to calculate

n k-Dop (discrete oriented polytope)
n Least empty space, and most complicated to calculate

Y

X

Y

X

Y

X

(AABB) (OBB) (AABB)

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 18

Rules of Thumb

n Perform computations and comparison that might trivially reject or
accept various types of intersections to obtain an early escape from
further computations

n If possible, exploit the results(s) previous test(s)
n If more than one rejection or acceptance test is used, try changing

their internal order, since speed-up may result.
n Postpone expensive calculations (square roots, trigonometric functions

and divisions) until truly needed.
n Try to reduce the dimension of the problem from three to two or even

one dimension.
n If a single ray or object is being compared to many other objects, look

for pre-calculations done only once before the testing begins.
n Make your code robust, (work for all special cases, and insensitive for

floating point precision errors).

10

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 19

Ray Sphere Intersection

n A sphere is defined by center point c and a radius r.
n The implicit formula for a sphere is then

f(p)=p-c-r=0 [2]
where p is any point on the sphere’s surface.

n To solve a ray/sphere intersection, the p is replaced by the formula for
a ray

r(t) = o+td
n After simplification we get:

t2+2tb+c=0 [3]
where b=d•(o-c) and c=(o-c)•(o-c)-r2

n The solutions for the second order eq. 3 is:

n I f b2-c<0 the ray misses (no real roots).
t=-b±√ b2-c

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 20

Ray Sphere Intersection

O

d

O

d

t1

t2

O

d

t1= t2

n Ray misses and consequently (b2-c<0)

n Ray intersects sphere at two points (b2-c>0)

n Ray intersects sphere at one point (b2-c=0)

C

C

C

11

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 21

Optimized Ray/Sphere

n Trivially reject
n Center of sphere is behind origon of

ray a hit is impossible

n Trivially accept
n Origin of ray is within sphere, always a

hit

O

d

C

l l·d<0

O
d

C

l
l2=l·l<r2

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 22

Algorithm for Optimized Ray/Sphere intersection

RaySphereIntersect(o, d, c, r)
Returns ({REJECT, INTERSECT}, t, p)
1. l=c-o
2. d=l ·d
3. l2=l ·l
4. if (d<0 and l2>r2) return (REJECT, 0, O)
5. m2=l2-d2

6. if(m2>r2) return (REJECT, 0, O)
7. q=sqrt(r2 –m2)
8. if (l2>r2) t=d-q
9. else t=d+q
10. return (INTERSECT, t, o+td)

12

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 23

Different kind of intersections

n Ray/Box
n Ray/Triangle
n Ray/Polygon
n Plane/Box
n Triangle/Triangle
n Cube/Polygon
n BV/BV

n Sphere/Box
n AABB/AABB
n K-DOP/k-DOP
n OBB/OBB

n Line/Line
n 3-Planes intersection

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 24

Shadows

n It is better to have an inaccurate shadow, than none at all
(Wanger).

n They eye is fairly forgiving about the shape of the shadow.
n A blurred black circle applied as a texture on the floor can

anchor a person to the ground.

n Umbra
n Totally shadowed

n Penumbra
n Partially shadowed (soft shadow)

shadow umbra penumbra

lightsource

occluder

13

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 25

Planar shadows

n A simple method is to project all the occluders vertices
onto a flat surface according to the light position and
render the resulting geometry black.

n Works for non-intrusive geometries
n There will be no shadows on geometries other than the shadow

plane.

n One light source (or two as long as the shadows dont
interfere with each other).

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 26

Planar shadows

n Light source l, casts a shadow onto the plane y=0. The
vertex v is projected onto the plane. The projected point is
called p.

n Each vertice v in geometry G is then transformed by the
following matrix M to render the geometry at the plane
y=0

y

l

v

p
y=0

−
−

−

=

y

yz

xy

l
ll

ll

M

010
00
0000
00

14

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 27

Planar shadows

n Two shadow planes.
n The shadow is drawn

using only ambient
lightning, color { 0, 0, 0,
0}

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 28

Shadow volumes

n Hedimann 1991
n Can cast shadows

onto arbitrary
objects by use of
the stencil buffers.

15

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 29

Textured Soft shadows

n Heckbert and Herf
n Gooch et al.

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 30

References

n Real-time rendering, Möller, Haines, A K Peters, 1999
n 3D Games, Real-time rendering and Software Technology,

Watt, Policarpo, Addison-Wesley, 2000

16

2000-12-11 © Anders Backman, Dept. Computing Science, VR00 - RG II 31

That's it folks!

nNo more THEORY
nKeep on labbing!

