
11/25/00 ©Kenneth Holmlund, VRlab, UmU 1

Physics Toolkits for VR and Real-
Time Graphics

Kenneth Holmlund

HPC2N

November 25, 2000 ©Kenneth Holmlund, VRlab 2

Why a Physics Toolkit?

The same advantages as
always with modular
software.

•Reusability
•Evolving
•Generality
•Scalability
•Portability
•Implementation
(mature API’s)
•Documentation
•Quality
•Stability
•Precision

Most programmers,
designers and developers
are not very skilled in
computational physics or
numerical methods!

Not too cleaver to re-
invent the wheel…

November 25, 2000 ©Kenneth Holmlund, VRlab 3

www.havok.com

Games SDK 1.3

MAX Havok plug-in

• Win32 (and Xbox), PS2, MacOS

• Rigid-body dynamics, soft-objects, particles, fluids &
flotation, fracture, collisions, networking

• Rather high abstraction level API, C/C++

• Just aquired another SDK/company, ”Ipion”.

Havok

November 25, 2000 ©Kenneth Holmlund, VRlab 4

www.mathengine.com

Collision Toolkit 1.0 (alpha 0.0.5)

Dynamics Toolkit 2.0 (alpha 0.0.5)

• Irix, Linux, Win32, PS2

• Semi-implicit rigid-body dynamics for explicit forces,
fields, friction, contacts and constraints

• Rather low-level API, mainly for C

• Bridge between Dynamics and Collisions

• Many other features planned

• Plug-in for Softimage

MathEngine

November 25, 2000 ©Kenneth Holmlund, VRlab 5

Other SDK’s

Research prototypes

Inside game engines

Inside VR engines

3D-modelling software plug-ins (Maya, MAX, …)

CAD plug-ins

Proprietary in-house products

Modelica, MatLab/FemLab, FEM, etc. (not really
real-time, or even interactive…)

No Open Source/GPL project yet!

November 25, 2000 ©Kenneth Holmlund, VRlab 6

MathEngine SDK

November 25, 2000 ©Kenneth Holmlund, VRlab 7

MEDT Modules
Mdt

Implements high-level abstractions: rigid bodies, forces, joint
constraints, contact constraints, ”the world”.

MdtBcl
Constructs the Jacobian constraint matrices that are passed to
MdtKea.

MdtKea
The heart. Semi-implicit integrator for the differential algebraic
equations of rigid multibody systems. Optimized for speed
”without” loss of precision and stability.
Takes the Jacobian, list of bodies, their transformation
matrices, and some additional parameters (e.g. time step).

MdtKea and MdtBcl can be used explicitly without Mdt, but we
won’t go into that here.

November 25, 2000 ©Kenneth Holmlund, VRlab 8

ME Viewer
Simple viewer for prototyping and demonstrations.

Win32: OpenGL, Direct3D
Linux, Irix: OpenGL
PS2: Renderware

Pan, rotate, zoom, lightning, shading, stop and restart, keyboard
and mouse events, …

Will be used in my examples, but can easily be replaced with e.g.
WorldToolkit or other rendering engines.

November 25, 2000 ©Kenneth Holmlund, VRlab 9

ME SDK in an Application

November 25, 2000 ©Kenneth Holmlund, VRlab 10

ME Implementation Issues

By tradition the application is driven by the rendering
engine.

Typically the SDK is called from a registered callback
function, e.g. Tick().

Tick() updates the simulation by one (or several)
timesteps, and may also do other things that should be
done during that tick:

Tick()could also add an explicit force/torque or arrange
for human-in-the-loop, e.g. add user related forces.

November 25, 2000 ©Kenneth Holmlund, VRlab 11

ME Documentation

Dynamics Toolkit Developers Guide

Collision Toolkit Developers Guide

Viewer Developers Guide

MathEngine Overview

Reference manuals for MECT, MEV, MEDT.

Source code for MDt

Examples and tutorials.

November 25, 2000 ©Kenneth Holmlund, VRlab 12

ME Getting Started - Example
Simulate a ball that falls through space in a gravity field.

m

mg

Pseudo C code example

November 25, 2000 ©Kenneth Holmlund, VRlab 13

Manage and allocate memory

Include Mdt

#include ”Mdt.h”

Managing and allocating memory for MDt:

extern struct MeMemoryAPI MeMemoryAPIMalloc;

struct MeMemoryOptions opts;

This is black magic:

void *memory;

memory = malloc(10000);

November 25, 2000 ©Kenneth Holmlund, VRlab 14

Initialize the world
MdtWorldID world;

world = MdtWorldCreate(1, 0, memory, 10000);

The four parameters are:

• The maximum number of bodies in the world.

• The maximum number of constraints in the world.

• The block of memory to be used by MdtKea

• The size of that block of memory.

November 25, 2000 ©Kenneth Holmlund, VRlab 15

The memory management API

The memory buffer is used for temporary storage in MdtKea.

MdtKea is highly optimized for Win32 and PS2 memory architecture.

It’s a matter of allocating enough memory.

Get maximum memory requirements from MdtKea:

int MdtKeaMemoryRequired (int * rows_in_partition,
int num_partitions);

In practice, this maximum is never needed – in fact it is a waste of
memory! Instead:

int MdtWorldGetMemoryPoolSize (MdtWorldID w);

Returns max memory used so far in the simulation.

Also: change memory buffer, change size of it, return the adress of the
buffer, register an overflow callback, get a pointer to the callback
pointer.

November 25, 2000 ©Kenneth Holmlund, VRlab 16

Timestep
MeReal step = (MeReal)(0.03);

Step is chosen so that the simulation is fast enough (evolution of
simulation time is interactive or real-time), but still realistic and
stable.

A too large timestep may for example cause a ball to fall straight
through a table since it passes the entire table in a single step!

Using too small timesteps one may loose numerical precision (small
numbers added to large numbers). However, this is very rarely a
problem as such small timesteps often lead to extremely slow
evolution of simulation time.

November 25, 2000 ©Kenneth Holmlund, VRlab 17

Gravity
MdtWorldSetGravity (world, 0, -(MeReal)(9.81), 0);

We define gravity to act in the negative y direction.

November 25, 2000 ©Kenneth Holmlund, VRlab 18

Define the ball

Define a body:

MdtBodyID body;

body = MdtBodyCreate(world);

The memory for this body came out of the memory allocated by the
Memory Manager earlier.

The body has defaults set for mass (1), moment of inertia (identity
matrix), and some other properties.

Enable it:

MdtBodyEnable (body);

November 25, 2000 ©Kenneth Holmlund, VRlab 19

Reset body parameters

Set up a reset function:

void reset(void)

{

MdtBodySetPosition (body, 0, 10, 0);

MdtBodySetLinearVelocity (body, 0, 0, 0);

MdtBodySetAngularVelocity (body, 0, 0, 0);

MdtBodySetQuaternion (body, 1, 0, 0, 0);

}

This function is called before we start the simulation and can also be
called during the simulation to reset it.

November 25, 2000 ©Kenneth Holmlund, VRlab 20

What about body geometry?

The ball doesn’t have a geometry!

This is an approximation that is exact in this simple
example, since no other forces than gravity acts on the
body, and it can’t collide with something.

November 25, 2000 ©Kenneth Holmlund, VRlab 21

Stepping through time

Set up a tick callback function:

void Tick (RRender * rc)

{

MdtWorldStep (world, step);

}

In our main program we may e.g. start the renderer and register the
Tick function as a callback:

RRun(rc, Tick);

November 25, 2000 ©Kenneth Holmlund, VRlab 22

Pseudo renderer…

Pseudo-code for the MathEngine viewer’s RRun:

while no exit-request

{

Handle user input;

call Tick() to evolve the simulation
and update graphics transforms;

Get the body transformations e.g.

sphereG->m_matrix = MdtBodyGetTransformPtr(body);

Draw graphics;

}

November 25, 2000 ©Kenneth Holmlund, VRlab 23

Cleaning up
voind cleanup (void)

{

MdtWorldDestroy(world)

free (memory);

RDeleteRenderContext (rc);

}

November 25, 2000 ©Kenneth Holmlund, VRlab 24

Try it…

m

mg

November 25, 2000 ©Kenneth Holmlund, VRlab 25

Contacts and Collisions

November 25, 2000 ©Kenneth Holmlund, VRlab 26

When and why?

For very simple simulations, e.g., sphere-sphere,
sphere-plane, box-plane, collisions can be handled
with a few lines of code.

For more complicated cases we use a collision engine
(e.g. MECT).

Examples:

bounce.cconvexstairs.c

November 25, 2000 ©Kenneth Holmlund, VRlab 27

MathEngine Collision Toolkit
If using MECT, Mdt can also handle MdtContact
structures for MECT.

MECT detects collisions in two modes:

Farfield module:

Monitors the separation of object pairs

Nearfield module:

Geometrical types for collision models
Intersection tests between each pair

MECT can also be used with other dynamics engines
that are triggered through events.

November 25, 2000 ©Kenneth Holmlund, VRlab 28

MECT: Can also do…
Sensors, triggers and event handling

•Inside a given room

•Inside a ”danger zone”

•Within hearing distance

Rays (do not report intersection data, but instead a
special ray data structure that describes the surface
hit by the ray)

•See

•Occlude

•Shoot

November 25, 2000 ©Kenneth Holmlund, VRlab 29

MECT: Enabling, disabling
Collision detection is extremely important for
enabling and disabling the rigid bodies.

In a world consisting of 10.000+ bodies is important
that the dynamic handles only the active bodies.

In ME, treshold parameters are used to disable
objects while the collision detection, or explicit rules,
are used to enable a body.

topple.c

November 25, 2000 ©Kenneth Holmlund, VRlab 30

MECT: Geometrical types
Primitives:

•Sphere

•Box

•Plane

•Cylinder

•Cone

Non-primitives:

•Convex mesh

•Height Field

•Particle System

November 25, 2000 ©Kenneth Holmlund, VRlab 31

What is a contact?

•When two objects have a point in common

•The location of the contact

•The normal

•An estimate of the penetration depth

November 25, 2000 ©Kenneth Holmlund, VRlab 32

MECT bridged to MEDT

The bridge manages memory, keeps track of collision
events and prepares contact data which it sends to
MEDT.

November 25, 2000 ©Kenneth Holmlund, VRlab 33

Initialize the CT and the bridge
Initiate and load all primitives and all models:
McdInit(McdPrimitivesGetTypeCount());
McdPrimitivesRegisterTypes();
McdPrimitivesRegisterInteractions();

Initialize the bridge and compile the collision space:
McdDtBridgeInit();
McdDtBridgeID bridge = McdDtBridgeCreate();

space = McdSpaceAxisSortCreate(McdAllAxes,
MAX_BODIES, 2 * MAX_BODIES);

McdPairHandlerRegisterSpace(space);
cdHandler = McdDtBridgeCreate();

November 25, 2000 ©Kenneth Holmlund, VRlab 34

Register all objects and models
Specify the collision model for each shape of the MdtBody, e.g.

MdtBodyID ball = MdtBodyCreate();
MdtBodyEnable(ball);

McdModel ballCM;

ballCM = McdModelCreate(McdSphereCreate(radius));
McdDtBridgeSetBody(cdHandler, ballCM, ball);

November 25, 2000 ©Kenneth Holmlund, VRlab 35

Set contact/collision parameters
material0 = McdDtBridgeGetDefaultMaterialID();
params = McdDtBridgeGetContactParams(material0,

material0);

MdtContactParamsSetType(params,
MdtContactTypeFriction2D);

MdtContactParamsSetRestitution(params, 0.5);
MdtContactParamsSetSoftness(params, (MeReal)0.0005);

We may of course define explicit materials for
each type of object if we want to.

Create the collision space:

McdSpaceBuild(space);

November 25, 2000 ©Kenneth Holmlund, VRlab 36

Dynamics of a Collision
In the tick function:

McdPairHandlerUpdate();

Registered spaces are updated, and overlap status of pairs in
all spaces is sent to various response modules.

November 25, 2000 ©Kenneth Holmlund, VRlab 37

More about dynamics

November 25, 2000 ©Kenneth Holmlund, VRlab 38

Adding forces and other

An explicit force can be accumulated to a body and is
used during MdtWorldStep().

Note: To apply a constant force to a body, you must
add it on each timestep!

MdtAddForce()

MdtAddForceAtPosition()

MdtAddTorque()

MdtAddImpulse()

MdtAddImpulseAtPosition()

…

November 25, 2000 ©Kenneth Holmlund, VRlab 39

Friction
There are three main friction modes:
typedef enum

{

MdtContactTypeFrictionZero, //frictionless contact

MdtContactTypeFriction1D, //friction only along
primary direction

MdtContactTypeFriction2D, // friction in both
directions

MdtContactTypeUnknown = -1 //invalid contact type

}

Setting the parameters:
MdtContactParamsSetFriction()
MdtContactParamsSetMaxAdhesiveForce()
…

November 25, 2000 ©Kenneth Holmlund, VRlab 40

Joints and Constraints

Each rigid body has 6 degrees of freedom (DOF)

Joints and constraints reduce the degrees of freedom.

Joints and constraints are ”stiff”, and therefore cannot be
efficiently treated using explicit integration. One integrates
them in an implicit space.

The differential-algebraic and numerical details are beyond
the scope of this course.

November 25, 2000 ©Kenneth Holmlund, VRlab 41

Joints & Constraints in MEDT

Ball-and-socket: MdtBSJoint

Hinge: MdtHinge

Prismatic (piston): MdtPrismatic

Fixed-Path: MdtFixedPath

Fixed-Path-Fixed-Orientation: MdtFPFOJoint

Universal: MdtUniversal

Linear1: MdtLinear1

Linear2: MdtLinear2

Car Wheel: MdtBclCarWheel (structure)

These can be created, enabled, disabled, limited and actuated
(driven). The limits may be stiff or soft.

November 25, 2000 ©Kenneth Holmlund, VRlab 42

Tricks of the trade

In large simulations, make sure that inactive object are disabled.

When adding forces from user interaction, make sure the magnitudes
are limited. Suggestion: connect the user and the simulated objects
via a spring or a joint (example: Havok’s Soft Ball)

If the physical simulation doesn’t behave properly, energy can be
monitored for debugging.

November 25, 2000 ©Kenneth Holmlund, VRlab 43

Networked Physics

What should be sent to optimize synchronization of simulations?

State information

Problem dependent

What if we loose network data (e.g. using UDP)?

Dead reckoning algorithms

Prediction: Intelligent interpolation forward in time

Convergence: Adjut the predicted state to the updated state

Always a competition between complexity/cpu-time and real-
time aspects.

