Blocked In-Place Rectangular Transpose

Fred Gustavson
Umea Univ. || class
May 10, 2007

Main Idea

- Combine Cache Blocking with Point InPlace Transpose on a very tiny matrix
\square use of SB Format is the key idea
$\square C M$-> SB -> $S B^{\top}$-> CM
- Block In-Place Transpose is Very Fast relative to Point In-Place Transpose
- CM <-> SB uses fast vector In-Place Alg.

Summary or Overview

- A is M by .
- $M=m^{*} N B \& N=n * N B$
- CM -> SB by vector IP transpose
- SB <-> SB ${ }^{\top}$ by block IP transpose quse point IP transpose on m by n A1= SB A
- SB $^{\top}$-> CM by vector IP transpose

Vector In-Place Xpose or CM <->SB

- Let A be M by NB with $\mathrm{M}=\mathrm{m}^{*} \mathrm{NB}$
- view A as m by NB A1 with each a1 (i, j) being a column vector of size NB
- apply point IP transpose to A1 to get A2
- A2 is m order NB SB's concatenated
- Apply above subroutine $\mathrm{n}=\mathrm{N} / \mathrm{NB}$ times

Where does the Speed Come From

- Data moved in blocks and vectors gives a 10 to 100 times performance gain
\square uses stride one processing; every line gets fully used when it enters L1 and streaming by algorithmic / automatic pre-fetching works
- SMP parallelism is easy to implement \square disjoint cycle structure
\square long cycles can be broken into pieces

Other Matrix Layouts

- can block transform (in-place) any permutation that can be described by a compact functional description
\square includes all common matrix data layouts
- standard CM / RM rectangular arrays
- standard CM / RM triangular arrays
- standard packed format

A is 500 by 700 in CM order

- CM A has LDA = 500
- A has 7 column swaths: 500 by 100 each
- A1 is 5 by 100 matrix of vectors
- In-place transpose with $q=499$
- repeat above 6 more times
- A is now in SB format of size 5 by 7

Details of CM to SB Vector

- 0 and $\mathrm{m}^{*} \mathrm{n}-1=499$ are singleton cycles
- 499 is prime and \# d=2;1\&499
- $\mathrm{q}=\mathrm{m}^{*} \mathrm{n}-1$ is the mod value
- for problem 499, phi $=498$ \& cl = 249; leaders are 1, 2
- for problem $1, \mathrm{phi}=1 \& \mathrm{cl}=1$ at 499

Details of SB to SB^{\top}

- $q=5^{*} 7-1=34=2^{*} 17$
- q = sum over divisors of phi
$\square \# d=4 ; 34,17,2,1$; phi's $=16,16,1,1$
- \#d problems gives cycles of length 16, 16, 1, 1 starting at $1,2,17,34$

Details of SB^{\top} to CM

- $\mathrm{m}=100, \mathrm{n}=7, \mathrm{q}=699=3^{*} 233$
- \# d = 4; 699, 233, 3, 1; phi's 464, 232, 2, 1
- cl's are 166, 166, 1, 1
- leaders are 1, 2, 5, 10; 3, 9; 233, 466; 699

The 500 by 700 A as a point matrix

- $\mathrm{q}=\mathrm{m}^{*} \mathrm{n}-1=349,999=13^{* *} 2^{*} 19^{*} 109$
- \# d's $=3^{*} 2^{\star} 2=12$:
- sum of phi(d) = q
- twelve phi's are $303264,23328,16848,2808$, 1944, 1296, 216, 156, 108, 18, 12, 1
- twelve cl's are $468,36,156,468,18,12,36$, 156, 6, 9, 12, 1
- ratio's give \# of leaders: 648, 648, 108, 6,108, $108,6,1,18,2,1,1$: sum $=1655$

500 by 700 A as point matrix

- hand-out has cycle of length 12 at $\mathrm{ij}=247$
$\square \mathrm{ij}$ is $(247,0)$ element of A ; next element in cycle is $\bmod \left(247^{*} 700, \mathrm{q}\right) ; 247$ | q so we get cycle is $\mathrm{i}<-\bmod \left(700^{*}, 1417\right)$:
$\square 247^{*}(1,700,1135,980,172,1372,1091$, $1244,762,608,500,1) \bmod (q)$

