Popular Explanation

1, 2, 3 \& Higher Dimensions

Fred Gustavson
Umea Univ. || class
May 10, 2007

- Line has one dimension: length
- Surface; e.g., a piece of paper has two dimensions: length and width
- Space: e.g., a box has three dimensions: length, width and height
- Simple, clear and inadequate

Problems

- Line is okay
- Plane is okay if it is a rectangle; what about circles and ovals?
\square diameter is one dimensional; ellipses have variable diameters; yet these are 2-D
- Solid such as box is okay; what about a sphere?
\square one radius; yet it is called 3-D
Vague Definitions are Inadequate
- Study 2-D before going further
- Chess board
- City Maps

More on Chess

- Can play without board
- Need to visualize moves
- Label board horizontally and vertically

More on Maps

- Need to be able to identify your location
- Again a rectangle of squares labeled like a Chess board is in common use
- Tourist living in a hotel in Umea
\square finds his square
\square can easily walk to neighboring squares

Key Concept is a Neighborhood

- Does a labeling satisfy the neighborhood property of closeness?
- It will turn out that this notion can be made mathematically correct
- Hence, we will be able to define dimension in a satisfactory manner

Other labeling's

- Try natural Numbers: $1,2,3, \ldots$
- Examples on a Chess Board follow
- Notice: some neighboring squares are widely separated with this single labeling
- Same thing occurs for city maps
- Is this true for all single labeling's?

Five different labels follow

- CM or column major
- RM or row major
- Morton Z or recursive
- Integer to rational number mapping
- Two labels showing satisfaction of the neighborhood property

A metric for a Neighborhood

■ Use a one norm: let $p=(u, v)$ and $q=(x, y)$ be two points

- $\operatorname{Norm}(p, q)=\operatorname{sum}|u-v|+|x-y|$

Cases where Natural Numbers

 suffice- Years
- Temperature
- Milestones on a road

Mathematical Essence of Dimension

- Indexing with single numbers, or simple enumeration is applicable only to those cases where the objects have the character of a sequence
- Simple, single indexing must obey the neighborhood property. These objects are therefore labeled one dimensional

Two Dimensions

- Maps, Chessboards, etc. cannot be labeled by a simple sequential order
- Reason: the neighborhood property is violated
- However, two simple sequences suffice

2-D Labeling

- Rectangle: use Cartesian coordinates; x, y
- Circle: use polar coordinates; r, θ
- Surface of a torus: use two diameters
- Surface of a sphere: latitude and longitude
- Daily temperature in Umea: time and temperature

3-D Labeling

- Need three simple sequences
- Box: use Cartesian coordinates
- Solid Sphere: use spherical coordinate; r, θ, φ
- 3-D Chess

Dimension Number of a Domain

- Dimension: Number of numbers (symbols) to suitably characterize the elements of the domain
- Number of the numbers (symbols) give the dimension of the domain
\square line is 1-D, circle is 2-D, solid sphere is 3-D

Nature of Dimension

- Erroneous Notion: Rectangle has more points than a line; solid has more points than a rectangle
- Problem was corrected: All domains have the same number of points
- A problem remained: Is it possible to label a domain with two different labelings that both obey the neighborhood principle (higher to lower)
\square example: 2-D to 1-D

Theorem: Not possible

- LEJ Brouwer stated and proved this result in 1913.
- Some of Brouwer's methods were anticipated by Poincare

