
Blocking and New Generalized Data Blocking and New Generalized Data
Structures Lead to Very High Performance Structures Lead to Very High Performance
Dense Linear Algebra Algorithms and on Cell Dense Linear Algebra Algorithms and on Cell
for the for the LinpackLinpack BenchmarkBenchmark

Fred Gustavson
IBM T.J. Watson Rearch Center
Yorktown Heights, NY
E-mail: fg2@us.ibm.com

MultiMulti --cores / Many Cores 2007cores / Many Cores 2007
San Francisco California San Francisco California
March 2, 2007March 2, 2007

Fundamental "Triangle"Fundamental "Triangle"

A

H C

A: Algorithms
H: Hardware
C: Compilers

Algorithm and ArchitectureAlgorithm and Architecture

The key to performance is to understand the
algorithm and architecture interaction.

A significant improvement in performance can
be obtained by matching the algorithm to the
architecture or vice-versa.

A cost-effective way of providing a given level of
performance.

ArchitectureArchitecture

ƒ Floating point arithmetic is done in the L0 cache
ƒ 2-D Fortran and C arrays do NOT map well into
the L1 and L0 caches
� The best case happens when the array is
contiguous and aligned properly
� Need at least a 3 way set associative L1 cache

ƒ Floating point data must be in the L0 cache for
peak performance to occur
� Multiple reuse amortizes the cost of bringing
an operand to the L1 and L0 caches
� Multiple reuse only happens well when all
operands map well into the L1 and L0 caches

Dense Linear AlgebraDense Linear Algebra

ƒ Some scalar a(i,j) algorithms have square
submatrix A(I:I+NB-1,J:J+NB-1) algorithms
� LAPACK library
� Golub and Van Loan’s book

ƒ Some square submatrices are both contiguous
and fit into L1 cache

ƒ Dense Matrix factorization is a level 3
computation
� Series of submatrix computations
� All submatrix computations are level 3
� In level 3 computations each matrix operand is
used multiple times

Basic Algorithm ChangeBasic Algorithm Change

ƒ Map the input Fortran / C 2-D array (matrix A)
to a set of contiguous submatrices that each fit
into L1 cache

ƒ Apply the appropriate submatrix algorithm
�A series of level 3 computations whose
operands are contiguous submatrices each
fitting into the L1 cache and able to enter L0 in
an optimal seamless manner

FMA InstructionFMA Instruction

Basic Instruction of Engineering/Scientific
Computation

ƒ D = C + A * B
ƒ Basic instruction of Linear Algebra

ƒ Elementary operations and the concept of
equivalence
�Key concept of linear algebra
�Adding a multiple of one row (column) to another
row (column)
�Ax = b if and only if Ux = L-1 b
�Above is a series of independent FMAs

BlockingBlocking

ƒ TLB Blocking -- minimize TLB misses
ƒ Cache Blocking -- minimize cache misses
ƒ Register Blocking -- minimize load/stores

The general idea of blocking is to get the information to a high-speed storage

and use it multiple times so as to amortize the cost of moving the data.

Cache Blocking -- Reduces traffic between memory and cache
Register Blocking -- Reduces traffic between cache and CPU

Some Facts on Cache BlockingSome Facts on Cache Blocking

ƒ A very important algorithmic technique
ƒ First used by ESSL and the Cedar Project
ƒ Cray 2 was impetus for Level 3 BLAS
ƒ Multi-core may modify the L3 BLAS standard
ƒ The gap between memory speed and many
fast cores is too great to allow the current
standard to be viable

Block Column Major OrderBlock Column Major Order

0 5 10 15 20 25 30

1 6 11 16 21 26 31

2 7 12 17 22 27 32

3 8 13 18 23 28 33

4 9 14 19 24 29 34

A =

ƒ A is 500 by 700
ƒ Each block i, 0 <= i < 35 has size 100 by 100
ƒ Block i is located at 10000 i

Standard Full Format (Column Major Order)Standard Full Format (Column Major Order)

A is M by N, LDA >= M
Example: M=11, N=10,
LDA=121 13 25 37 49 61 73 85 97 109

2 14 26 38 50 62 74 86 98 110

3 15 27 39 51 63 75 87 99 111

4 16 28 40 52 64 76 88 100 112

5 17 29 41 53 65 77 89 101 113

6 18 30 42 54 66 78 90 102 114

7 19 31 43 55 67 79 91 103 115

8 20 32 44 56 68 80 92 104 116

9 21 33 45 57 69 81 93 105 117

10 22 34 46 58 70 82 94 106 118

11 23 35 47 59 71 83 95 107 119

* * * * * * * * * *

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Block Hybrid Full Format (Row Major Order)Block Hybrid Full Format (Row Major Order)

A is M by N, LDA >= M
Example: M=11, N=10,
LDA=121 2 25 26 27 28 73 74 75 76

3 4 29 30 31 32 77 78 79 80

5 6 33 34 35 36 81 82 83 84

7 8 37 38 39 40 85 86 87 88

9 10 41 42 43 44 89 90 91 92

11 12 45 46 47 48 93 94 95 96

13 14 49 50 51 52 97 98 99 100

15 16 53 54 55 56 101 102 103 104

17 18 57 58 59 60 105 106 107 108

19 20 61 62 63 64 105 110 111 112

21 22 65 66 67 68 113 114 115 116

* * * * * * * * * *

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Square Blocked Lower Packed OrderSquare Blocked Lower Packed Order

0

1 8

2 9 15
3 10 16 21

4 11 17 22 26

5 12 18 23 27 30

6 13 19 24 28 31 33

7 14 20 25 29 32 34 35

A =

ƒ A is 800 by 800
ƒ Each block i, 0 <= i < 36 has order 100 by 100
ƒ Block i is located at 10000 i

Square Blocked Lower Packed FormatSquare Blocked Lower Packed Format

Example NB=4, TRANS='T'
1 * * *

5 6 * *

9 10 11 *

13 14 15 16

17 18 19 20 49 * * *

21 22 23 24 53 54 * *

25 26 27 28 57 58 59 *

29 30 31 32 61 62 63 64

33 34 35 36 65 66 67 68 81 * * *

37 38 39 40 69 70 71 72 85 86 * *

* * * * * * * * * * * *

* * * * * * * * * * * *

Blocked MatBlocked Mat --Mult is OptimalMult is Optimal

Theorem:
Any algorithm that computes

a (i, k) * b (k, j) for all 0<i, j, k < n+1
must transfer between memory and an M-
word cache W(n3/ M) words if M < n2 / 5.

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

• Principle of Equivalence in Linear Algebra
• Instead of performing Gaussian Elimination
do the same thing: perform N linear
transformations on A to get an equivalent
matrix U.
• Conclude: Instead of a collection of
Factorization Algorithms one now has a single
procedure of just applying linear
transformations.

Ax = b if and only if Ax = b if and only if UxUx = L= L --11bb

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Matrix Multiplication is PervasiveMatrix Multiplication is Pervasive

�Let R and S be linear transformations

�Let T = S (R) be linear

�Let R and S have basis vectors

�The basis for T, in terms of R and S bases,
defines matrix multiplication

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Summary of Last Three SlidesSummary of Last Three Slides

� Sketch of a proof that matrix factorization is
almost all matrix multiplication
a) Perform n = N/NB rank NB linear
transformations on A to get say U; here
PA=LU
b) Each of these n linear transformations is
matrix multiply by definition
c) These n transformations preserve the
solution properties of Ax = b if and only if Ux
= L-1b by the principle of equivalent matrices

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Blocked Based Algorithms a la LAPACKBlocked Based Algorithms a la LAPACK

�N coordinate transformations represented as n =
N/NB rank NB coordinate transformations
�View as a series of kernel algorithms

ƒ c(i, j)=c(i, j) - a(i, k)*b(k, j) : GEMM, SYRK
ƒ b(i, j)=b(i, j)/a(j, j) : TRSM
ƒ L*U=P*A : Factor Kernel
ƒ L*LT=A : Cholesky Kernel
ƒ Q*R=A : QR Kernel

�LAPACK treats factor kernels as a series of NB level
two operations
�Factor kernels can usually be written as level 3
kernels

ƒ Recursion is helpful
ƒ Register based programming

Square Blocked Packed Cholesky vs. DPOTRF
Run on 200 MHz Power3 (Peak 800 Mflops)

10
1

10
2

10
3

0

100

200

300

400

500

600

700

800

matrix order N

M
F

lo
ps

[Square Blocked Packed Cholesky , DPOTRF] vs.N

Blocked Hybrid Cholesky vs. DPOTRF and DPPTRF
Run on 200 MHz Power3 (Peak 800 Mflops)

10
1

10
2

10
3

0

100

200

300

400

500

600

700

800

 matrix order N

 M
F

lo
ps

[BHC , BHC + data transformation , DPOTRF , DPPTRF] vs. N

Challenge of Machine Independent Design of Challenge of Machine Independent Design of
Dense Linear Algebra Codes via the BLASDense Linear Algebra Codes via the BLAS

Currently done via the BLAS
ƒ Computer manufacturers supply high performance
BLAS

ƒ A dense linear algebra algorithm and its calls to BLAS
are related

Examples
ƒ Cholesky; all matrix operands to DTRSM, DSYRK,
and hence DGEMM are submatrices of A.

ƒ General Matrix Factor, QR factor,..., : the same is true
as for Cholesky.

These examples suggest a general pattern.

Challenge of Machine Independent Design of Challenge of Machine Independent Design of
Dense Linear Algebra Codes via the BLASDense Linear Algebra Codes via the BLAS

Every Dense Linear Algebra Algorithm calls the
BLAS several times. Every one of the multiple
BLAS calls has all of its matrix operands equal to
the submatrices of the matrices, A, B, ... of the
dense linear algebra algorithm.

Can this apparent general truth be exploited?

Can We Exploit This General Relationship?Can We Exploit This General Relationship?

What do the current BLAS do?
ƒ They try to exploit architecture design while
maintaining functionality of the BLAS

Take Level 3 BLAS:
ƒ Factorization algorithms are level 3 algorithms
ƒ Data operands are copied to achieve cache
blocking with minimal L1, L2 and TLB misses

ƒ Reason for level 3 BLAS
Repeated calls to BLAS 3 require that multiple
data copying be done

ƒ On operands that are related

Can We Exploit This General Relationship?Can We Exploit This General Relationship?

An answer: change the data structure of the
input matrices!

Change must reflect what the BLAS does
repetitively.

ƒ Store matrix as BLOCKS
How are the BLOCKS to be stored?

ƒ BLOCK ROW
ƒ BLOCK COLUMN

ChangesChanges

ƒ Dense Linear Algorithm Code Change
�Changes are minor
�Current codes are currently blocked based

ƒ BLAS Code Changes
�No data copy
�Codes become simpler
�Higher performance

ƒ Overall performance of Dense Linear Algorithm
Codes improve.

Application of LU=PA on CellApplication of LU=PA on Cell

ƒ Apply the Algorithm and Architecture Approach
� Fast single precision unit
� Use iterative refinement

� Work of Jack Dongarra’s team at Univ. Tenn.
� Linpack Benchmark LU = PA
� Iterative refinement is O(N2)
� Factorization is O(N3)
� Use extra storage of a factor of 1.5 times 2
� Use of BDL was deemed crucial

ƒ Overlapping computation with communication is
an architectural feature of the Cell processor

Look ahead Idea for FactorizationLook ahead Idea for Factorization

ƒ Overlap Schur Complement Update with the
previous factor step

ƒ PA = (L1U1)(L2U2)…Ln = L1(U1L2)…(Un-1Ln)
ƒ Schur Complement is the Gemm part of LU=PA
� factor step provide the A and B operands of
GEMM
� with look ahead A & B is done beforehand
� factorization is almost 100% Update
� makes factorization almost perfectly parallel

Block Data LayoutBlock Data Layout

ƒ Block Data Layout is another name for Square
Block Format which we described in this talk

ƒ Design of LU = PA for the Cell processor
� “most important one is block layout”
� “unlikely that data layout can be hidden within
the BLAS”
� “how should block layout be exposed to the
user”

Matrices A and AMatrices A and A TT in Storagein Storage

• Let A be an n x n matrix
• AT is an n x n matrix
• When A is symmetric only half of A need
be stored as A = AT

• Full storage is used as packed storage
gives very poor performance in LAPACK
• Half the storage is wasted by LAPACK full
symmetric and triangular routine

Triangular Matrices in StorageTriangular Matrices in Storage

Let A be an order N symmetric matrix
Fact: A can be represented by either an
an upper or lower triangular matrix

A Triangular Matrix A as a full A Triangular Matrix A as a full
Rectangular Matrix AFRectangular Matrix AF

Let A be an upper or lower triangular matrix of
order N
If N = 2*k then A is also a N+1 by k rectangular
matrix AF. If N = 2*k+1 then A is also a N by
k+1 rectangular matrix AF.
Packed matrices in LAPACK can represent-
ed as full matrices. This means that packed
LAPACK routines can be Level 3 routines
and also use the same minimal storage as
packed storage uses.

Representing a Triangular Matrix an order N = 5 Representing a Triangular Matrix an order N = 5
as a Rectangular Matrixas a Rectangular Matrix

orA=

AF=
or

Packed or Full LAPACK Packed or Full LAPACK
Algorithms for a Triangular MatrixAlgorithms for a Triangular Matrix

• Both these Algorithms can be replaced by
a single new simply related algorithm using the
AF rectangular array. The new code is
obtained from existing Lapack code.
• Any Lapack Algorithm for a Triangular
Matrix has two sub-algorithms, 'U' and 'L'

• Conclude: Four algorithms reduce to a single
algorithm. There are eight cases

Simply Related AlgorithmSimply Related Algorithm

1 Lapack Algorithm on A00

2 A10 = BLAS (A00,A10)
3 A10 = BLAS (A10,A11)
4 Lapack Algorithm on A11

A00 \ A11A =
A10

Example Cholesky ('U')Example Cholesky ('U')

DPPTRF and DPOTRF
Must use DPOTRF

1 DPOTRF (‘L’,A00)
2 DTRSM (‘L’,‘L’,‘N’,‘N’, A00,A01)
3 DSYRK (‘U’,‘T’,A01,A11)
4 DPOTRF (‘U’,A11)

New LAPACK Type RoutineNew LAPACK Type Routine

Example: Symmetric Indefinite Factorization
Subroutine DBSTRF (uplo, n, ap, ipiv, nsinfo)
nsinfo >= n (n+1)/2
ap is in standard packed format
nsinfo is the size of ap

Algorithm:
�Use ap (1:ns) to map ap to abpo in place
�Do level 3 Bunch Kaufman factor of abpo

Note: If nso > nsinfo, return -nso in nsinfo and don't
change ap.

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Blocked Lower Packed Overlapped FormatBlocked Lower Packed Overlapped Format

Example: NB=4, LDA=12,
M=10
1 * * * *

2 14 * * *

3 15 27 * *

4 16 28 40 *

5 17 29 41 53 * * * *

6 18 30 42 54 62 * * *

7 19 31 43 55 63 71 * *

8 20 32 44 56 64 72 80 *

9 21 33 45 57 65 73 81 89 *

10 22 34 46 58 66 74 82 90 94

* * * * * * * * * *

* * * * * * * * * *

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

DBSTRF vs. DSYTRF
Run on 200 MHz Power3 (Peak 800 Mflops)

0

100

200

300

400

500

0 200 400 600 800 1000 1200

M
F

lo
ps

matrix size N=

Performance on Power3, Factorization

DBSTRF
DSYTRF

DBSTRS vs. DSYTRS
Run on 200 MHz Power3 (Peak 800 Mflops)

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

M
F

lo
ps

matrix size N=

Performance on Power3, Multiple and Single Solver

DBSTRS(L) Multiple Solve
DSYTRS(L) Multiple Solve

DBSTRS(L) Single Solve
DSYTRS(L) Single Solve

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Thank You!Thank You!

