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Summary of these talks

� Part One
� Briefly describe Cell Architecture
� Matrix multiply on Cell

� Part Two 
� Cholesky Factorization on Cell

� Part Three
� Gaussian Elimination : PA = LU on Cell

� All parts: recent work of Jack Dongarra’s team
� Relate these works to work of the Umea team

Matrix Multiply on Cell : 
Part One
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Cell Architecture



SPE Architecture Programming Rules for Cell

� Vectorize
� SPEs are vector units, scalar operations ”promoted” to vector 

operations
� Keep data aligned

� Optimizes memory transfers, important both for main memory and local 
store accesses

� Implement double-buffering
� Hiding the reads and writes with concurrent computation crucial, double-

buffering one way to do that (compute with one buffer, communicate 
with the other)

� Improve data reuse
� To reduce memory traffic, data which is brought into the local store 

should be reused aggressively
� Unroll loops

� High register count on the SPEs combined with primitive branch 
predictions makes loop unrolling an attractive optimization

Parallel Matrix-Matrix Multiply-1 

� Cannon, 1967, Summa, 1993, 1997 
Pumma, 1994, ScaLapack, 1995 are 
examples that are still used today

� Rely on serial matrix multiply done on 
each node
�Gemm operation done on sub-matrices

� Good benchmark to evaluate a || machine

Parallel Matrix-Matrix Multiply - 2 

� Matching Algorithm to Architecture is key
� Umea concurs

� Summa algorithm was chosen

� Natural choice is a block layout
� works equally well for a block-cyclic layout

� MPI and local computations easily overlapped
� Umea comment: not necessarily true



Parallel Matrix-Matrix Multiply - 3 

� Summa algorithm of 1993 overlapped 
computation with communication

� Obtained perfect speed-up on a 512 node Intel 
Touchtone Delta Machine

� Showed how to hide all the communication cost 
in the computation

� Feature: peak performance for large matrices 
even when communication network is slow.

Summa on Cell - 1

� Atomic unit is a SB of order 64
� Each cell processor  get rectangular matrix 

of SB’s; Fig 4, p 10 
� See Algorithm 1, p 10

� C =  sum (i=1:n)  ( A*i * Bi* )
� details given on next slide

The SUMMA Algorithm Summa on Cell - 2

� Performance modeled on p 12
� Overlap communication with computation
� Uses double buffering 
� Time = max( tcomm , tcomp) ; equation (8) 



Summa on Cell - 3

� Performance model very accurate; p 12-14
� Runs for tcomp < tcomm & tcomp > tcomm

�six SPE’s per node; fig. 7 & fig. 8 right 
�one SPE per node; fig. 8 left

� See page 15 top for explanations 

Summa on Cell - 4

� High performance at low cost
� Serious limitations

� true for other processors
� Slow main memory
� Network interconnect

� out of balance with peak speed of each node
� Small main memory & slow d.p. arithmetic
� Programming paradigm

� simple & directly controllable architecture

End of Matrix Multiply on Cell
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Cholesky Factorization on Cell

� Review paper by Kurzak, Buttari and 
Dongarra : Lapack Working Note 184

� Improvements and relation to Umea’s
research given

Abstract

� Cell is a pioneering architecture
� Effectively exploit single & double 

precision on Cell via iterative refinement
� Efficient parallelization of short SIMD

�mixed precision algorithm
�exploits fine grain parallelization

� Very good performance  

Motivation

� Goal is speed: SPE is 4x faster than PPE
�data movement halved
� twice the FMA power

� Cell has eight SPE and only one PPE
� Much larger register file
� Many other vendors have multi-core
� Shift away from ILP to TL ||

Motivation continued

� Need new paradigms
�departure from the BLAS ||-ism concept

�more flexible ways of scheduling work

� Above is wrong
�NDS and kernel level BLAS
�Umea work since 1998 will suffice



Related Work

� Pioneering work of Wilkinson, Moler, 
Stewart & later Higham & later still by 
Langou, et.al. on iterative refinement

� Paper by authors on LU = PA
� No mention of other work 

�Umea research is quite relevant

Algorithm 

� See next page
� SP Left Looking (LL) Cholesky factor

�gave better || code than traditional Right 
Looking (RL) Cholesky

�RL Cholesky has more stores in outer loops

Algorithm 1 Page 3

� An LLT factorization
� DSPOSV
� Crout L formula shows that a left looking 

(LL) algorithm can have less stores



Implementation

� Essential Hardware features already 
covered

� See Part One of these lectures 

Section 4.2

� The next slide gives a picture of the four 
BLAS kernel routines that work on Square 
Block Packed (SBP) data format
� these fundamental ideas introduced by Umea

research several years ago starting in 1997

� Use of tiling is given as a key to 
performance
� claim not good unless tiles are in SBF

Figure 1: page 4 Remarks

� In 1999 and many times later a paper on 
the A & A approach featuring NDS took 
the same approach for Cholesky
factorization starting on the IBM Power 3 
platform

� Tile kernels here were called BLAS 
kernels there



Section 4.2.1

� New code is LL Cholesky on sub-matrices of 
order 64

� MM is most important: SGEMM does O(N3) part 
of the flops
� see previous lecture for reason; point made by Umea

research several years ago in concert with using NDS

� SSYRK is MM on a symmetric matrix so half the 
operations can be saved by exploiting symmetry

Section 4.2.1 continued

� STRSM & SSYRK kernels consume O(N2) 
flops of the total O(N3) flops

� SPOTRF kernel consumes O(N) flops
� first time JD is using level 3 for factorization
� Umea has used factor kernels many times

� The four kernels use register blocking
�see Para1998 Super Scalar BLAS paper

4.2.1 continued

� Right & left looking first introduced in 1984 
in SIAM review by Dongarra, Gustavson
and Karp

Section 4.2.1 continued (p. 6)

� Typo on page 6: 4 (not 16) 4-element as 
Register Block (RB) has order 4

� Algorithm 2 uses a hardware feature of 
Cell; allows one to keep all RB in simple 
RM order
�see MDC paper in Para 06
�see steps 4 & 7 of Algorithm 2
�Algorithm 2 can be simplified and run faster



Four BLAS kernels; Table 1, p. 5 SSYRK kernel on page 5

SSYRK kernel

� Use fusion
� Do extra ops on the diagonal block so all 

blocks are like gemm blocks
� Interleave as in the gemm kernel

SGEMM kernel on page 6



Remarks on SGEMM kernel

� Can overlap communication with 
computation
�see Part One of this talk

� A hardware feature of Cell allows one to 
store a SB in RM order and permute it in 
the inner loop getting:
�64 by 64 matrix as 16 by 16 matrix of 4 by 4 

RB’s.  

STRSM kernel on page 6

Remarks on STRSM kernel

� Made kernel perfectly parallel
� Introduced the need to transpose B 

matrices
� STRSM kernel lacks detail; step 3 and 5
� See some detail on page 6 of paper

More Remarks on STRSM kernel

� Store each diagonal block as full 4 by 4 
matrix
�since T is symmetric, T = TT

�use new full T to avoid need of transposing B 
before and after each tile update



SPOTRF kernel of page 6 Remarks on SPOTRF

� Umea research has emphasized using level 
three factorization kernels

� Paper claims the usual way is to use level two 
factorization kernels

� NDS and kernel routines go hand in hand
� This is the A & A principle

� See earlier lecture where this point is made for 
DLA

Some Details on the Factor kernel

� Need to factor a 4 by 4 block
� recursion useful to see the processing

� Scaling or trsm
�store 4 by 4 diag. block in full format

�a block of B is in row format

� r4 = r4*(one/u44)
� r3 -= r4*u34; r2 -= r4*u24; r1 -= r4*u14

Factor kernel; trsm scaling

� r3 = r3*(one/u33)
� r2 -= r3*u23; r1 -= r3*u12
� r2 = r2*(one/u22)
� r1 -= r2*u12
� r1 = r1*(one/u11)



Factor kernel; overall

� Do j = 0, 15
�syrk update a(j,j)
� factor a(j,j)
�do i  = j + 1, 15

� gemm update a(i,j)
� scale a(i,j)

�enddo

� enddo

Factor kernel; overall

� Possibly modify gemm kernel of Table 1 
and use it for the syrk and gemm updates 
of the previous slide 

Table 2 of page 7 Remarks on Table 2

� SPOTRF kernel can be improved and kept 
simple

� See sketch of this on previous sides back



General Remarks on Kernels

� The authors seem to imply that the high 
performance obtained is remarkable for such 
small granularity. They attribute this occurrence 
to the Cell architecture and especially its register 
file and memory organization.

� The Umea group has observed the same results 
for other architectures and believe these results 
are due to NDS and use of kernel routines

Parallelization: Section 4.2.2 

� Loading three tiles to do SGEMM stresses the 
bandwidth of Cell to much.
� calculation shows three blocks require peak BW 

� Simple blocking as in the first column of  page 8 
will reduce by .5 the bandwidth

� A 1-D row data layout is good for LL algorithms
� This necessitated some scheduling to improve 

load balancing
� See the next two figures for a picture description

Reducing BW by about half

� In syrk one SPE applies j – 1 tiles left of T; 
tile T is read  and written only once

� In gemm one SPE reads j – 1 tiles of A & 
B and applies them to C; C is read once & 
then T can be read and applied before C is 
finally stored

Bad Load Balance on Last rows



A load balancing problem

� The last factorization stages of the LL code 
cannot be assigned
�also see Figure 4 Gantt chart

� For many processors and large memories a 
2-d scheme would probably be required

� On page 9 in Section 4.2.3 a novel solution 
is proposed that reduces the present load 
unbalance to an acceptable level

Fig. 3, p. 8: Pipelining factorization 

Fix: Schedule more work for each 
factorization step

� Schedule extra work to any idle processor 
during any factorization step from 
upcoming steps of the factorization.

� See the above Figure 3 of page 8
� Needs dependency tracking

�2-d tracking with tracking duplicated on each 
SPE for fast checking  

More on Scheduling

� Static schedule with cyclic distribution of 
work from the steps of the factorization

� Works well because SBF does away with 
non-deterministic phenomena like cache 
misses
�use of SB format is crucial here

� See Gantt chart for a matrix of order 1024



Quantitative details of Gantt Chart

� For N = 1024 there are n = 16 block steps
� i      f       t      s      g    sum
� 1    1       0     0      0      1
� 2    2       1     1      0      4
� 3    3       3     3      1     10
� 4    4       6     6      4     20
� 5    5      10   10 10 35
� k     k  CK2  CK2 CK3 CK+23
� 16 16 120   120 560 816           

Gantt chart for A of order 1024

Section 4.2.3: Synchronization

� Dependencies
�SSYRK and SGEMM cannot use A & B 

operands to update a C block unless they are  
factorized or completed

�Any off diagonal block must be scaled to be 
completed; scaling requires that the 
associated diagonal block be completed

�Any diagonal block must be factored to be 
completed

Synchronization continued

� Introduce a progress table
�standard idea
�called a Directed Acyclic Graph (DAG);

� Duplicating the progress table on each 
SPE is a good idea
�can be done via DMA at the byte level
�small amount of traffic must be fast even 

though it covers up to  some 643 operations 



Synchronization continued

� Page 9 top of second column
�Lars Karlsson’s remark about MPI

� Second sentence; another usage of the A 
& A approach 

Section 4.2.4 Communication

� Double Buffering very important
�eight buffers allow each operation to be 

buffered or pre-fetched; a use of A & A
�see magnified Figure 5 of Figure 4 showing 

full overlap of comp. and comm.; four kernels 
allow this

�blocks always read from memory to SPE or 
written from SPE to memory

4.2.4: More communication

� Must do dependency checks to pre-fetch
� if check fails just abort the pre-fetch.

�on failure and before processing one must 
busy wait for a blocking send to complete 

� Now see good overlap in Figure 5
�2nd row shows six syrks and 66 factor
�1st row, 2nd red is completion 5th trsm (10) 

4.2.4: More communication

� Now see good overlap in Figure 5
�3rd row shows start of 6th trsm at 2nd red

�4th row shows seven syrks and 77 factor
�3rd row, 3rd red is completion 6th trsm (9)

�dark greens in middle show several 6 gemms
� light green in 8th row 5 gemms

� light greens to right are 7 gemms



Figure 5 Performance: Section 4.2.5

� See Figure 6 and Table 5

Figure 6 Table 3



Section 4.3 Refinement

� Steps 3 & 8 of Algorithm 1 are identical 
subroutine calls; this is a STRSV Blas 2 
computation

� Step 6 is a DSYMV computation
� it is performed in parallel on all eight SPE’s

but using only slow DP arithmetic

� Usually memory bound; STRSV is
�DSYMV is not; it is borderline

Section 4.3.1 Triangular Solve

� Simple calculation shows only 6.25% of 
peak flops can be obtained

� No mention is made that L*y = b could be 
buried in the factorization

� Analysis showed a parallel version was 
required to exploit the peak BW of Cell
�another use of the A & A approach

4.3.1 continued

� Want to pipeline; overlap computation with computation
� Found a so-called sweet spot; number of SPE’s was 

found to be four
� Did not define what continuous generation of traffic 

meant
� Page11, bottom of column one; a comment: why would 

change the good data structure in mid-stream just to do 
a level 2 operation

� Page 11, top of column two; very sketchy details given
� See Figure 7 for the data layout on four processors

Figure 7



STRSV details

� Solve is done in-place: this is a requirement of 
STRSV
� each part of b/x is read into its SPE at the start and is 

written out by SPE zero at the end

� The same progress table (aka dag) is used as in 
the short Cholesky factor code

� Performance is given in Figure 8
� we see no reason why performance should differ; 

perhaps the matrix A is already partly in the SPE’s for 
step 3 of Algorithm 1

Figure 8

4.3.2 Matrix Vector Product

� y <- y – A*x; y, x are vectors & A a matrix
�A is normal or transpose form

� Usually a memory bound operation in long 
precision

� An SPE does two DP FMA’s in 7 cycles 
and so is 14 times slower than an SP FMA

� Achieves 82% of peak BW = 20.93 GB/s 

4.3.2 Details

� See next slide for the layout of A on the 8 
SPE’s (column-wise)

� For each order 32 sub-matrix both A*x and 
AT*x is computed
�sub-matrix A is not transposed & is read once

� Copies of x & y reside on all SPE’s
� Figure 9 should describe 8 (not 4) SPE’s



Figure 9 4.3.2 Remaks

� See Figure 10 for a performance graph
� Could use PPE to increase performance

� A = B + C; column-wise concatenation ; y = u 
+ v; compute u & v in || using PPE and SPE’s
and sum 

�6.4 & 14.6 split gives 44% gain modulo BW 
considerations

Figure 10 Limitations

� Proof of concept prototype
� Order of A must be a multiple of 64

�could easily be any order

� No tests for overflow: DP to SP
� A is in full format in both SP & DP format

�could be in SBPF or RFP format

� No mention of CM to SB layout 



Removal of Limitations

� Use SBP format or RFP format
�SBP format appeared as early as 1999

�RFP format appeared first in 2005

� If N is not a multiple of NB = 64 use LDA a 
multiple of 64 and pad the last off-diagonal 
blocks with zero and the last diagonal 
block with zeros and ones on the diagonal

Removal of Limitations continued

� One can start with standard column major 
format and transform in-place to SB format
�see my earlier lectures on dimension theory 

and on fast block in-place transposition

Results and Discussion

� Fig. 11 gives performance of SPOTRF, 
SPOSV and DSPOSV

� Huge 16 MB pages used
� Well conditioned matrices used

�only two steps of iterative refinement needed

� Over 10x faster than a DP implementation 

Figure 11



Figure 12 discussion

� Sony PlayStation 3 result
� Six SPE’s and 256 KB memory & 16 MB 

pages gave 104 GFlops for 2048 order 
matrix at DP accuracy; 16% overhead

Figure 12

Conclusions

� High potential for DLA workloads
� A & A approaches give impressive DP 

accurate results using very fast SP and 
iterative refinement


