
1

2007-05-03 Lars Karlsson 1

Chip MultiProcessors
Past, Present, and Future

Based in large parts on the technical report
”The Landscape of Parallel Computing Research:

A View from Berkeley”
and references therein

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

2007-05-03 Lars Karlsson 2

Introduction
• We are accustomed to Moores Law-like scaling in single

threaded performance
• Huge heat sinks and massive power supplies common
• Exploding laptops

• The single threaded
performance has recently hit
a wall, and all eyes are focused
towards parallelism

• We reason about why this shift
is taking place and what we
might expect to see in the
near and distant future

2007-05-03 Lars Karlsson 3

Old/New Common Wisdoms
• Old CW: Power is free, transistors are expensive.
• New CW: The ”Power Wall”, power is expensive.

• Old CW: Multiply is slow, memory access is fast.
• New CW: The ”Memory Wall”, memory access on

modern processors can take 200 clocks but floating
point operations take just a few.

• Old CW: Uniprocessor performance doubles every 18
months.

• New CW: Since 2002 there is a gap between ”Moores
law-performance” and actual performance, in 2006
lagging a factor of three.

2007-05-03 Lars Karlsson 4

”Moores Gap”

2007-05-03 Lars Karlsson 5

Clock Frequency Limit Reached

2007-05-03 Lars Karlsson 6

Our Parallel Future
• Conclusion: Increasing clock frequency, instruction level

parallelism, CPU tricks such as branch-prediction, etc
not enough to keep up with Moores law-like performance
increases.

• Remedy:
– Go parallel
– Put several processing cores on the same chip
– We already see this:

• AMD and Intel markets 2 and 4 core processors
• Sun sells an 8 core UltraSPARC T1
• NVIDIA GeForce 8800 GTX ships with 128 cores
• Cisco has a router-chip with 188 cores

– We’ve seen it before:
• Execube (1993), early multi-core chip

2

2007-05-03 Lars Karlsson 7

Multi core/Manycore
• A few large cores or many small cores?

• Multi -core
– Common cores squeezed together
– SMP-like
– Will probably scale poorly

• Many-core
– Simpler (smaller) cores

– Can fit many more cores on the same area
– Massive parallelism
– Custom core interconnection likely
– More distributed memory-like

2007-05-03 Lars Karlsson 8

1000s of cores?
• Cisco ships a 188-core network processor with a 130nm

process
• Scaling down to 30nm and we have 1504 cores
• Although we are not there yet, there is strong empirical

evidence that we might arrive there soon

• Big complex cores will not reach this high anytime soon
– Processor core area increase results in modest performance

improvements while consuming large amounts of electricity
• Increase in performance mainly from increased clock frequency
• By simplifying the cores, some performance is lost, but much more

could be gained by adding more cores

2007-05-03 Lars Karlsson 9

Heterogeneous Multicores
• Assume we fit 100 small cores on a given die area
• Assume we have a core which is

– 2 times faster, but
– Uses 10 times the die area

• We can consider
– A) 100 cores (all small)
– B) 91 cores (90 small, 1 large)

• Using Amdahl’s law...
• If a parallel application has a serial fraction of 10%, then

– A) MaxSpeedup = 1/(0.1 + 0.9/100) = 9.17 times faster
– B) MaxSpeedup = 1/(0.1/2 + 0.9/90) = 16.67 times faster

• Yes, heterogeneous architectures might pay off

2007-05-03 Lars Karlsson 10

Heterogeneous Multicores
• Cell Broadband Engine architecture overview
• 1 PPE
• 8 SPEs

2007-05-03 Lars Karlsson 11

Yields
• Yield – percentage of processors that are functional

– With reduced component sizes yields go down
– STI Cell BE initially reported to have a yield of only 10-20%

• Multicores may be useful even if not all cores are
working
– Sony ships PS3 with only 7 of the 8 SPEs in the Cell BE working
– Sun markets 4, 6, and 8 processor versions of UltraSPARC T1

based on the yields of a single 8 processor design

2007-05-03 Lars Karlsson 12

Memory Bandwidth
• Simple fact: The core can not work faster than the

memory is able to supply it with the data it needs
• If we increase the number of cores without increasing

memory bandwidth we will eventually hit a wall (the
Memory Wall)

• Memory bandwidth is already a limitation for many
applications, such as
– Some sparse matrix operations

– Level 1 and 2 BLAS
– CRC problems

• The memory wall will get more aggravated by multicore
architectures

3

2007-05-03 Lars Karlsson 13

Memory Latency
• Memory latency: time from memory request to memory

available at the core
• In a naïve program memory is referenced when it is

needed, and the memory latency hurts performance

• Three solutions to memory latency hiding
– Caches, by storing small memory regions in low-latency memory

the effective latency goes down

– Prefetching, by requesting memory ahead of the instruction that
needs it, thereby overlapping communication and
communication

– Simultaneous multithreading (SMT), by switching to another
thread the processor can keep working while waiting for data to
arrive

2007-05-03 Lars Karlsson 14

Applications/Hardware/Models

1) What are the applications?
2) What are the common kernels of the applications?
3) What are the hardware building blocks?
4) How to connect them?
5) How to describe applications and kernels?
6) How to program the hardware?

A
P

P
LI

C
A

T
IO

N
S H

A
R

D
W

A
R

EMODELS

1) What are the applications?
2) What are the common kernels of the applications?
3) What are the hardware building blocks?
4) How to connect them?
5) How to describe applications and kernels?
6) How to program the hardware?

A
P

P
LI

C
A

T
IO

N
S

2007-05-03 Lars Karlsson 15

Benchmarks and Dwarfs
• Benchmark

– Code or task supposed to be representative of real-world apps
• SPEC
• NAS
• Intel RMS
• Linpack
• HPCC
• etc

– Algorithms or given code often favours some type of architecture
• In particular: a serial benchmark on a multicore architecture...

• Dwarfs
– Algorithmic or application pattern or kernel

• Captures functionality and does not overspecify implementation
• A set of dwarfs that capture most application work as base for

benchmarking

2007-05-03 Lars Karlsson 16

A Set of Dwarfs
• The Berkeley View report defines 13 dwarfs:

– Dense linear algebra
– Sparse linear algebra
– Spectral methods
– N-body methods
– Structured grids
– Unstructured grids
– MapReduce
– Combinatorial logic
– Graph traversal
– Dynamic programming
– Back-track and Branch-and-bound

– Graphical models
– Finite state machine

2007-05-03 Lars Karlsson 17

Software Controlled Memory Hierarchy
• Most of the die area currently used for caches
• Cold and conflict misses a consequence of the implicit

operation of typical caches
– Consequence: more capacity needed for effective operation

• It is known that cold and conflict misses can be reduced
by using software controlled memory hierarchies
– Programmer/compiler responsible for memory hierarchy

transfers
– Algorithmic prefetching to hide memory latency

– Capacity can be reduced, more room for functional units

2007-05-03 Lars Karlsson 18

Core Interconnection Network
• Cores and caches usually connected via crossbars or buses

– Not scalable to 1000s of cores
• Too expensive (crossbars)
• Too inefficient (buses)

• On-chip latency and BW often excellent
• Core-to-core communication could give performance boost and

reduce memory traffic
• Scalable interconnection networks needed

– Cell BE uses 4 ring networks to connect its 9 processors

• More than one network:
• Low-latency network

– Useful for collectives, which are often (very) short and latency-bound
• High-bandwidth network

– Useful for point-to-point messages, which are usually quite large and
bandwidth-bound

• IBM BlueGene/L follows this principle: a low-latency tree for
collectives and a high-bandwidth 3D-torus for point-to-point

4

2007-05-03 Lars Karlsson 19

Types of Parallelism
• 1) Thread level parallelism (TLP)

– Coarse-grained
– Tasks
– Dependencies

– Typically explicit by programmer
– Implemented by loosely coupled cores
– Multicore

2007-05-03 Lars Karlsson 20

Types of Parallelism
• 2) Data parallelism (SIMD/DLP)

– Single Instruction Multiple Data
– SIMD extensions (3DNow!, MMX, SSE)
– Graphics applications

– Explicit by intrinsics or assembler coding
– Implicit by compiler ”SIMDization”
– Typically implemented by tightly coupled cores or functional units

2007-05-03 Lars Karlsson 21

Types of Parallelism
• 3) Instruction level parallelism (ILP)

– Pipelining
– Independent instructions
– Out-of-order execution

– Hardware optimizations (register renaming)
– Superscalar architectures
– Fine-grained
– Explicit by assembler programming

– Compilers are good at this
– Implemented by complex cores and replicated functional units

2007-05-03 Lars Karlsson 22

Automatic Parallelization
• Old and still active research area
• Successful application to vectorization (”SIMDization”)
• Experimental proposals like speculative multi-threading
• Can be problematic without user support because of

language features such as aliasing
– A(i) = B(i) + C(i)

• Easy to vectorize if A, B, C refer to distinct memory regions
• What if they are aliased (refering to overlapped regions)?

2007-05-03 Lars Karlsson 23

Automatic Parallelization
• Fundamental limit:

The best parallel algorithm could be
substantially different from the best serial algorithm

• Consider the AllPrefix Sums problem:
– Given A(1:N), compute A(1), A(1)+A(2), ... , A(1)+...+A(N)

• (Arguably) the best serial algorithm, O(N) operations:
– for(i = 2; i <= N; i++)

A[i] += A[i-1];

• Does it parallelize well?
– Loop carried dependency!

• Efficient parallel algorithms employ divide and conquer
– More work, could be O(N log(N))
– Less time because of higher level of parallelism

• With N processors it takes time O(log(N)), a substantial improvement

2007-05-03 Lars Karlsson 24

Why is Parallel Programming Difficult?
• Serial programs

– Deterministic
– Code coverage testing OK
– Debugging by tracing

execution
– Finding the bug is harder than

fixing the bug
– Memory is stable

– ...no, still stable w/o locks
– No deadlocks

– The load is perfectly balanced
since only one thread

• Multithreaded programs
– Nondeterministic
– Race conditions
– Debugging by assuming race

condition
– The root cause for a race

often remain unidentified
– Memory is changing unless

read-only, thread local or....
– ...protected by locks
– Deadlock is possible when

there are multiple, unordered
locks

– Load balancing critical for
performance

5

2007-05-03 Lars Karlsson 25

Synchronization
• Parallel tasks need to be synchronized in order to

– Avoid race conditions (mutual exclusion)
– Enforce a partial ordering of operations (task dependencies)

• In some applications synchronization is a dominant
operation whose performance is critical
– Fine-grained parallelism

• In order to enhance productivity by reducing the burden
on programmers, the ubiquitous lock-based
synchronization could possibly be replaced by other
models

2007-05-03 Lars Karlsson 26

Lock-based Synchronization
• Race conditions can be avoided by carefully protecting

shared memory with locks
• Mutual exclusion enforces deterministic behaviour of

locked memory regions
• Different locks for different regions of memory
• Deadlocks

localSum = 0.0;
for(int i = 0; i < localN; i++) {

localSum += localArray[i];
}
globalSum += localSum;

localSum = 0.0;
for(int i = 0; i < localN; i++) {

localSum += localArray[i];
}
pthread_mutex_lock(&globalSumLock);
globalSum += localSum;
pthread_mutex_unlock(&globalSumLock);

Unsafe
(race condition on globalSum)

Safe
(protected by a lock)

2007-05-03 Lars Karlsson 27

Transactional Memory
• Transactional memory is based on the concept of

transactions and in particular:
– Atomicity, a transaction is either fully completed or it appears to

never have happened
– Serializability, a series of transactions have a serial semantics in

that the result corresponds to some serial ordering of the
transactions

• Intuitive semantics similar to mutual exclusion

localSum = 0.0;
for(int i = 0; i < localN; i++) {

localSum += localArray[i];
}
atomic {

globalSum += localSum;
}

2007-05-03 Lars Karlsson 28

Transactional Memory
• A lock pessimistically serializes execution

• Transactional memory optimistically allow concurrent
execution while maintaining a familiar semantics

• The challenge is to implement this in hardware, but it can
be done with some restrictions (see TLR)

• The programmer/compiler still responsible for annotating
the code correctly

2007-05-03 Lars Karlsson 29

Programming Models
• A programming model bridges the gap between a

developer’s natural model of an application and an
implementation on actual hardware
– Ex: message passing, shared memory, pGAS, streaming...

• Obvious tension between:
– Productivity, and

• Ease-of-use

– Efficiency
• Operations per second

• Tradeoff:
– Opacity (implicit), versus

• Abstraction of key HW features (e.g. mapping threads to cores)

– Visibility (explicit)
• Key HW features visible to programmer (e.g. data distribution)

2007-05-03 Lars Karlsson 30

Programming Models
• Many models, none of which have proven to be ”best”
• General correlations

– High level of Implicitness: High productivity

– High level of Explicitness: High efficiency

• Example: Linear Algebra on Shared memory machines
– Can use OpenMP, high implicitness, generally easier than

message passing, but
– Message passing can sometimes deliver better performance

• Even though passing messages means overhead

6

2007-05-03 Lars Karlsson 31

Autotuners
• In some applications there is considerable

implementation freedom. Examples:
– Matrix Multiply (order of loops, blocking, compiler switches)
– Broadcast (linear, tree-based, fan-out, splitting of messages)

– ...

• Large space to search for optimal solution
• Not going to be handled well by compilers

– Complex code, optimizations difficult to get right
– Hard to keep up with new architectural quirks

• Automatic tuning one solution
– ATLAS, PHiPAC, FFTW, SpMV

• Research into how to generalize such efforts needed

2007-05-03 Lars Karlsson 32

Conclusion
• Every machine will be a parallel machine
• Moores law continues, we have 8 cores today, soon we

might have over 100
• The memory wall will increasingly be a problem

– Locality, locality, locality...

• Programming models (still) desperately needed
– While waiting (might be a long wait) we use threads and

message passing

– Pessimism: Caches have been around for a long time, but we
still have to design algorithms that explicitly targets caches

– Optimism: Problems will affect a large portion of developers, so
high potential for innovation

2007-05-03 Lars Karlsson 33

Resterande Delen av Kursen
• Fred Gustavson, IBM T.J. Watson Research Center,

kommer hit
– Måndag 7:e maj till fredag 25:e maj
– Kommer ge föreläsningar om bl.a. linjär algebra, parallelisering,

och multicore

• Artikel-seminarium om multicore-arkitekturer
– Varje grupp får en arkitektur att studera
– Presentationer inför de andra
– Möjlighet för både er och oss att lära om CMP-arkitekturer

• Mer information ges löpande
– Hela kursbokens material behandlas på tentan (även delar som

inte tas upp på föreläsningar)

