
SQL

· SQL = Structured Query Language has become a
standard in relational systems.

· Virtually all relational DBMS’s support SQL.

· They usually provide “a superset of a subset,” but
the differences for large systems are typically in
details and newer ideas not yet included in the
standard.

· In the course, we will try to stick to common
feature which most vendors are likely to support.

· SQL provides several types of commands:
· Data definition

· Define and alter the relational schema
· Define views of the schema

· Data control
· Control of access

· Data manipulation
· Query
· Update

In this presentation, emphasis will be placed upon
data definition and queries.

20061108:slides6:1 of 22

 Basic Syntax for queries in SQL:

Select <attribute-list>
From <relation-list>
[Where <condition>]

The examples presented here will use the schema of
the text (Figure 5.7; Figure 8.1, fifth and fourth
editions); (Figure 7.7; Figure 8.1(a), third edition).
First, the basic SPJ operations of the relational
algebra are covered.

Example (Selection): List the tuples of the Employee
relation which identify females.

Select *
From Employee
Where Sex = ‘F’

Example (Projection): List the first, last, and middle
names of all Employees.

Select FName, MInit, LName
From Employee

Note that the Where clause is optional, and not
needed here.

20061108:slides6:2 of 22

Example (Combine selection and projection): List
the first, last, and middle names of all female
Employees.

Select FName, MInit, LName
From Employee
Where Sex = ‘F’

Example (Join): Join the Employee and Department
tables on the DNumber and DNo keys.

Select *
From Employee, Department
Where DNo = DNumber

Example (Natural join): Suppose that the attribute
DNo in the Employee relation is changed to be
DNumber, exactly the same as in Department. Then
it is necessary to qualify the attributes of the join.
Here is the solution to the same query as above.

Select *
From Employee, Department
Where Employee.DNumber =
 Department.DNumber

20061108:slides6:3 of 22

Example (SPJ combination): List the names of all
female Employees, together with the name of the
department in which they work.

Select LName, FName, MInit, DName
From Employee, Department
Where (DNo = DNumber) and (Sex = ‘F’)

Example (Logical connectives): List the SSN and
names of all Employees who either are female or
else work in the research department.

Select SSN, LName, FName, MInit
From Employee, Department
Where (DNo = DNumber) and

((Sex = ‘F’) or (DName = ‘Research’))

Example (Union): An alternative solution to the
previous query.

Select SSN, LName, FName, MInit
From Employee
Where Sex = ‘F’
Union
Select SSN, LName, FName, MInit
From Employee, Department
Where (DNo = DNumber) and

(DName = ‘Research’)

20061108:slides6:4 of 22

Example (Logical connectives): List the SSN and
names of all Employees who are both female and
work in the research department.

Select SSN, LName, FName, MInit
From Employee, Department
Where (DNo = DNumber) and

(Sex = ‘F’)
and (DName = ‘Research’)

Example (Intersection): An alternative solution to the
previous query.

Select SSN, LName, FName, MInit
From Employee
Where Sex = ‘F’
Intersect
Select SSN, LName, FName, MInit
From Employee, Department
Where (DNo = DNumber) and

(DName = ‘Research’)

● Note that these two queries are not equivalent if
SSN is omitted, since two distinct individuals
may have the same name. (The union queries
on the previous page are, however, equivalent
even if SSN is omitted.)

20061108:slides6:5 of 22

Example (Logical connectives): List the SSN and
names of all Employees who are female but do not
work in the research department.

Select SSN, LName, FName, MInit
From Employee, Department
Where (DNo = DNumber) and

((Sex = ‘F’) and
 (NOT (DName = ‘Research’)))

Example (Set difference): An alternative solution to
the previous query.

Select SSN, LName, FName, MInit
From Employee
Where Sex = ‘F’
Except
Select LName, FName, MInit
From Employee, Department
Where (DNo = DNumber) and

(DName = ‘Research’)

● Again, these will not be equivalent if the key
SSN is not included.

20061108:slides6:6 of 22

Example (Removing duplicate elements): By default,
SQL will not remove duplicate elements in a query.
For example, suppose we want to obtain a list of all
project locations. The following query will do the
trick, but will duplicate the locations which are the
homes of more than one project.

Select Plocation
From Project

To obtain a list with duplicates removed, the following
query may be used.

Select Distinct Plocation
From Project

Example (Order operations): The usual order
operations are available in SQL. For example, here
a query which finds the names of all Employees who
have a salary greater than 40000.

Select LName, FName, MInit
From Employee
Where Salary > 40000

20061108:slides6:7 of 22

Example (Embedded queries): The “Where” part of a
query may itself be a query. For example, here is
another version of the query which finds the names
of all Employees who work in the department which
houses the “Computerization” project.

Select LName, FName, MInit
From Employee
Where DNo In

 (Select DNum
 From Project
 Where

 PName=’Computerization’)

Example (Aliases): Sometimes, it is useful to
introduce an alias name for a relation. Here is
another solution to query which lists the names of all
Employees who either are female or else work in the
research department.

Select LName, FName, MInit
From Employee E, Department D
Where (E.DNo = D.DNumber) and

((E.Sex = ‘F’)
or (D.DName = ‘Research’))

Here E is an alias for Employee, and D for
Department.

20061108:slides6:8 of 22

Example (Aliases): Sometimes, it is essential to use
aliases. This example retrieves the Last Name of
each Employee, together with the Last Name of the
supervisor of that Employee. Employees with no
supervisor are not listed.

Select E.LName, S.LName
From Employee E, Employee S
Where E.SuperSSN = S.SSN

20061108:slides6:9 of 22

Example (Quotient): Unfortunately, SQL does not
have the quotient operation defined directly.
However, it is easy to realize it. In this example, the
names of those Employees who work on every
project are found.

Select LName, FName, MInit
From Employee
Where Not Exists

 (Select PNumber
 From Project
 Except

(Select PNo
From Works_On
Where SSN=ESSN
)

)

While Microsoft Access does not support the Except
and Intersect operations, PostgreSQL does.

!!!!!!

20061108:slides6:10 of 22

Here is an alternate way to realize the division
operator:

Select LName, FName, MInit
From Employee
Where Not Exists

 (Select PNumber
 From Project
 Where Not Exists

(Select *
From Works_On

 Where (PNumber=PNo)
 and (SSN = ESSN)

)
)

20061108:slides6:11 of 22

Example (Pattern matching): The Like operator
effects pattern matching. Here is a query which finds
all Employees whose first names begin with the letter
“J”.

Select LName, FName, MInit
From Employee
Where FName like 'J%'

Example (Pattern matching): Here is a similar
example; this time the first name must contain
exactly five characters as well.

Select LName, FName, MInit
From Employee
Where FName like 'J____'

Example (Pattern matching): To search for values in
the range 40% to 49%, use the following

Select Percentage, Item
From Sales
Where Percentage like '4_~%' Escape '~”

● Since PostgreSQL is case sensitive, it supports
the “ilike” operator which provides case-
insensitive maching.

● Pattern-matching features vary substantially
from system to system. Check the manual for
the flavor of SQL which you are using.

20061108:slides6:12 of 22

Example (Ordering the result): The following query
orders the Employee names by salary, smallest to
largest.

Select LName, FName, MInit, Salary
From Employee
Order by Salary

Example (Sense of ordering): Here is how to list the
Employees with largest-to-smallest salary ordering.

Select LName, FName, MInit, Salary
From Employee
Order by Salary Desc

Example (Sort fields): It is not necessary to include
the sort field in the select component.

Select LName, FName, MInit
From Employee
Order by Salary Desc

20061108:slides6:13 of 22

Example (Aggregation operations): Here is a query
which provides the minimum, maximum, and
average salary of the Employees.

Select Min(Salary), Max(Salary),
 Avg(Salary)
From Employee

Example (Naming columns): The above query will
not name the columns with anything useful. Here is
how to provide explicit names.

Select Min(Salary) as MIN_Salary,
 Max(Salary) as MAX_Salary,
 Avg(Salary) as AVG_Salary
From Employee

Example (Grouping aggregated results): This query
groups minimum, maximum, and average salary by
supervisor identity number.

Select Min(Salary) as MIN_Salary,
 Max(Salary) as MAX_Salary,
 Avg(Salary) as AVG_Salary,

SuperSSN
From Employee
Group by SuperSSN

20061108:slides6:14 of 22

Example (The Having operation: Grouping
aggregation with conditions): This is similar to the
previous example, except that only aggregations for
those supervisors who supervise an Employee who
earns less than 30000 are listed.

Select Min(Salary) as MIN_Salary,
 Max(Salary) as MAX_Salary,
 Avg(Salary) as AVG_Salary,

SuperSSN
From Employee
Group by SuperSSN
Having Min(Salary) < 30000

Example (Counting): The following query counts the
number of Employees for each supervisor.

Select SuperSSN,
Count(SSN) as No_Supervisees

From Employee
Group by SuperSSN

20061108:slides6:15 of 22

Example (Eliminating null indicators): The following
query does the same as the above, save that it does
not show the tuple for which the supervisor’s SSN is
null.

Select SuperSSN,
Count(SSN) as No_Supervisees

From Employee
Where SuperSSN Is Not Null
Group by SuperSSN

20061108:slides6:16 of 22

Further Comments on the Group By and
Having Directives

When using these directives, every field in the Select
clause must be either an attribute which is used in
the Group By directive, or an aggregation. Thus, the
following query is not legal, even though it makes
perfect sense.

Select E.SSN, E.Salary
From Employee as E
Group by E.SSN
Having E.Salary > 30000;

The following query, which has exactly the
same semantics, is legal.

Select E.SSN, Avg(E.Salary)
From Employee as E
Group by E.SSN
Having Avg(E.Salary) > 30000;

Of course, the following is a simpler way to achieve
the same result.

Select E.SSN
From Employee as E
Where E.Salary > 30000;

20061108:slides6:17 of 22

If the Having directive is used without a Group By
directive, the effect is to collect all tuples into a single
group. Thus, the following query is illegal, and does
not make sense.

Select E.SSN, E.Salary
From Employee as E
Having E.Salary > 30000;

To obtain a list of all Employees with a salary greater
than 30000, use the following query.

Select E.SSN, E.Salary
From Employee as E
Where E.Salary > 30000;

20061108:slides6:18 of 22

Remarks on the Contains directive

· Query 3 on page 260 (page 233 in the fourth
edition and page 263 in the third Edition) of the
textbook illustrates the use of the Contains
directive.

· Note that this directive is NOT part of SQL, as is
noted on page 260 (233 in the fourth edition and
264 in the third edition).

· Do not use it in any submissions or on
examinations answers; it will be marked as
incorrect.

20061108:slides6:19 of 22

Defining Relations in SQL

General Format:

Create Table <Table Name>

(<Attribute> <Format> <Condition>,

. . .

. . .

[Constraint <constraint_name>]

Primary Key (<Attribute>+),

[Constraint <constraint_name>]

Unique(<Attribute>),

[Constraint <constraint_name>]

Foreign Key (<Attribute>+)

References <TableName>(<Attribute>+),

[Constraint <constraint_name>]

Foreign Key …

)

Notes:

· […] denotes zero or one occurrences of the
enclosed item.

· …+ denotes one or more occurrences of the
preceding item.

20061108:slides6:20 of 22

· SQL syntax for actions on updates

Create Table <name>

.
.

Foreign Key <attribute> References <attribute>
On Delete {Set Null, Set Default}
On Update Cascade

Note: {…} means select one.

20061108:slides6:21 of 22

Update Operations in Relational
Systems:

· There are three main update operations:
· Insert
· Delete
· Modify

· These are tuple-at-a-time operations semantics
are self-evident.

· Note that a modify operation may not be
equivalent to a delete operation followed by an
insert operation, because integrity constraints may
be violated after the deletion but before the
insertion.

20061108:slides6:22 of 22

	In this presentation, emphasis will be placed upon data definition and queries.

