
Queries and Query Languages

 A query is a question which is posed to 
a database.

 Formally, queries are considered to be 
passive.  That is, they do not modify the 
state of the database.

 Often, active queries, or updates, are 
also included in the general context of 
database queries.

 In any case, most practical query 
languages also provide facilities for 
specifying updates.
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Query Languages to be Covered in the 
Course

 Ideal Query Languages

 The Relational Algebra

 The relational algebra is based upon a set of 
operations on relations.  Each operation 
takes one or more relations as its 
arguments, and produces a new relation as 
the result.  Since the operations may be 
composed with one another, they form an 
algebra.

 A query is then a functional composition of 
operations which yields the (derived) 
relations which comprise the answer to the 
query.

 From a logic point of view, the relational 
algebra is a set of operations on the  models 
of the theory.
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 The Relational Calculus

 In the relational calculus, a query is specified 
as a logical formula in a first-order logic 
based upon the database schema.  The set 
of tuples for which the formula is true 
constitutes the answer to the query.

 Equivalence result: Under very reasonable 
assumptions of which operators and formulas are 
allowed, the relational algebra and relational 
calculus may be shown to be equivalent.  Thus, it 
is a matter of ease of use, rather than power, 
which suggests that one should be chosen over 
the other.

 A Practical Query Language

 SQL (Structured Query Language)

 SQL has become an industry standard.

 It incorporates aspects of both the relational 
algebra and the relational calculus.
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The Relational Algebra

We start with the most basic class: SPJ-
queries

 SPJ queries are constructed from three 
basic operations,

  Select:   horizontal restriction
  Project:   vertical restriction
  Join:   vertical reconstruction
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The Select Operation:

 The basic syntax is

<cond>(<rel_arg>)
Here:
  is the symbol used to denote a select 

operation.
 <cond> is the condition of the selection.
 <rel_arg> is the relation to which the selection 

is applied.

Example:  Call the following instance r.

R

A B C
a1 b1 c1

a1 b2 c2

a1 b3 c3

a2 b4 c4

Then the answer to the query 

is

A B C
a1 b1 c1

a1 b2 c2

a1 b3 c3
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 The same notation may be used to represent the 
query on a schema.  For example, 

 
may be used to represent the query to be applied 
to schema R.

 The most basic operation just allows equality 
selection on domain values, but more general 
operations may include arithmetic comparison.  

Example: Call the following instance s.

S

A B C
1 b1 c1

3 b2 c2

3 b3 c3

4 b4 c4

The solution to the query (A3)(s) is

A B C
3 b2 c2

3 b3 c3

4 b4 c4
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 Disjunctive formulas are also possible.  Construct 
the answer to the following query.

 When working with selections, it is critical to 
specify exactly the allowable selection 
conditions.
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The Project Operation:

 Just as the select operation is a “horizontal” 
restriction which retains selected rows of a 
relation, so too is the projection operation a 
“vertical” restriction, which retains selected 
columns.

The general syntax is <cols>(<rel_arg>).

Example:  Call the following instance r.

R

A B C
a1 b1 c1

a1 b2 c1

a2 b3 c3

a2 b4 c3

The solution to the query {A,C}(r), or just  AC(r), is

A C
a1 c1

a2 c3

Notice that duplicate cells are omitted.

The associated schema query is AC(R).
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Join:

The join operation is much more complex than the 
previous two.  We begin with the simplest, yet most 
widely used version.

Natural Join:

 It is easiest to explain with an example.  Let r and 
s be the instances associated with the following 
database.

R S
A B B C
a1 b1 b1 c1

a2 b1 b1 c2

a2 b3 b3 c3

a3 b3 b4 c3

Then the natural join of r and s, denoted   rs,  is

 

T

A B C
a1 b1 c1

a1 b1 c2

a2 b1 c1

a2 b1 c2

a2 b3 c3

a3 b3 c3
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The idea is to match the tables on their common 
attributes.

 A join is said to be lossless if the original 
relations may be recovered from the appropriate 
projections on the join.  In this example, this 
means that
          AB(rs) = r    and    BC(rs) = s.

 The join of this example is not lossless.

 The natural join of the following two instances is 
lossless.

R S
A B B C
a1 b1 b1 c1

a2 b1 b1 c2

a2 b3 b3 c3

a3 b3

● In general, for a join to be lossless, the 
projections on the matching columns must 
match.
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Other Forms of Join:

 General equality join:  Even if attribute names do 
not match, a join may be constructed by 
specifying which columns to match.  In this case, 
the duplicate columns are often retained.

 Example:  R {B,D}S

R S
A B D C
a1 b1 b1 c1

a2 b1 b1 c2

a2 b3 b3 c3

a3 b3

Result:

T

A B C D
a1 b1 c1 b1

a1 b1 c2 b1

a2 b1 c1 b1

a2 b1 c2 b1

a2 b3 c3 b3

a3 b3 c3 b3
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 Cartesian product: In this context, the join on an 
empty set of columns (i.e., R S) yields the 
Cartesian product of the two relations.

 Theta joins:  More general matching operators 
may be applied in situations in which they make 
sense.  These are called theta joins.

 Example: R {B D}S  (Here the values for 
attributes B and D must be amenable to an 
ordering relation.  The operator  is called the 
theta operator.
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Join Conventions and Notation

The textbook introduces some relatively 
nonstandard notation for joins.  In these slides, the 
more common notation, which is used in this 
course, is presented.  This notation should be used 
on obligatory exercises, and on the examination.

Conventions and notation for the natural join:

 The “bowtie” symbol  without any subscript 
always denotes the natural join.  This means 
that:

 the two relations are joined on their common 
attributes, and

 the common attributes are not repeated.
Thus, the R[ABCD]  S[BDE] is a relation on 
attributes ABCDE.

 Note that the natural join is a Cartesian product 
iff the attribute sets of the two relations are 
disjoint.  For example R[ABCD]  S[EFG]  is a 
Cartesian product, with attributes ABCDEFG.
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Conventions and notation for other types of join:

 With subscripts, the bowtie symbol may only be 
applied to relations which do not have any 
attribute names in common.  (Rename if 
necessary.)  In this case, all attributes of both 
relations are present in the resulting relation.

 Equality joins are represented as in the following 
example:
                   R[ABC] {B=D} S[DEF]

 A Cartesian product is indicated by a “” as 
subscript:
                   R[ABC]  S[DEF]

 Other joins are indicated by the appropriate 
operations in the subscript:
                   R[ABC] {BD} S[DEF]
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Other Relational Algebra Operators:

 In addition to the “SPJ” trio, it is often the case 
that set-based operations are allowed in the 
relational algebra.  The most common operations 
are the following:

 Union ()

 Set difference ()

 Intersection (), which can in fact be 
constructed from union and difference.

Note that, for queries to make sense, these set 
operations may only be performed on relations over 
identical attribute sets, or at least over relations 
with a bijective correspondence between the 
domains of their attribute sets.

Format of queries:

 Officially, the correct format is to write queries in 
functional composition format.

 In a less elegant representation intermediate 
variables are introduced and queries are written 
in an imperative program style.

  Examples will be given later.
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The Relational Calculus

 The relational calculus uses logical formulas to 
specify queries.

 This is natural, since the relational model is 
closely based upon first-order predicate logic.

 There are two versions of the relational calculus, 
domain calculus and tuple calculus.

 In each case, the formulas must be controlled 
(limited to safe formulas) to avoid meaningless 
queries.
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The Domain Calculus

 The domain calculus shows clearly the 
connection between the relational model and 
first-order predicate logic.  

 Each relation symbol becomes a relation name in 
a first-order logic.

 For each attribute A, there is a set of variables 
whose values may range over the domain 
assigned to that attribute.  Such variables will be 
represented with a superscript matching the 
attribute name.  (Example: xA, yA, for domain A.)

 Specific domain values may be represented with 
constant symbols.

 There are no non-nullary function symbols.
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Example: Consider the problem of computing the 
AC-projection of the join of the following two 

relational instances  (i.e., AC(RS)):

R S
A B B C
a1 b1 b1 c1

a2 b1 b1 c2

a2 b3 b3 c3

a3 b3 b4 c3

To make things work, we need to assign an order to 
the attributes.  We use the ordering indicated in the 
picture.  The domain calculus query to compute the 
projection of the natural join is as follows.

{(xA
,xC) | (xB)(R(xA

,xB)S(xB
,xC))}
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Equality and even arithmetic comparisons may also 
be used in a limited fashion within the logic.  Here 
is an example of a selection query revisited:

S

A B C
1 b1 c1

3 b2 c2

3 b3 c3

4 b4 c4

The solution to the query (A3)(s) is

A B C
3 b2 c2

3 b3 c3

4 b4 c4

And this query is represented in the domain 
calculus by

{(xA,xB,xC) | S(xA,xB,xC)  (xA 3)}
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 These queries are safe, in the sense that the 
answer only involves values extracted from the 
relations in the database.  In formulating a 
precise notion of safe queries, we must be 
careful to ensure this condition.  An example of 
an unsafe query is:

{ xA | (xB)(R(xA
,xB))}

 The formalization of safety is rather technical, 
and will not be presented here.  For a query 
designed by hand, it is usually obvious whether 
or not it is safe.  Of course, a query processor 
must be able to detect safety, or lack thereof.

Another example: Here is an informal example of 
an unsafe query.  Consider the database of all 
people living in Sweden, and suppose that the 
Last_Name field may contain any string of up to 64 
characters.  Then the following is an unsafe query 
which is easily represented in the domain calculus.

“Give me the set of strings of length at most 64 
which do not represent the last name of someone 
living in Sweden.”
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The Tuple Calculus

 The tuple calculus differs from the domain 
calculus in that the variables range over entire 
tuples from relations, rather than over single 
domain values.

 The idea is best illustrated by example:  Suppose 
that we have the following simple relational 
database schema.

R S
A B B C

The composition AC(RS) is reconstructed via the 
following formula in the tuple calculus:

{(x.A,y.C) | R(x)  S(y)  (x.B = y.B) }

 Here x and y are tuple variables, and their values 
range over (binary in this case) tuples for the 
associated relations.

 x.A, for example, denotes the A-indexed 
component of tuple x.

 Note that x.A and y.C are free variables; an 
existential quantifier is not used.

 As in the case of the domain calculus, a notion of 
safe query may be formulated.
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Division – a Special Operator in the 
Relational Algebra

Suppose that we have the following simple 
relational database schema.

Employee Project

Emp_Num Name Emp_Num Proj_Num

Consider the query “Provide the names of those 
employees who work on every project.”

This is easy in the tuple calculus.

{x.Name | Employee(x)  
   (y)(z)(Project(y)  (Project(z)  
       (y.Proj_Num = z.Proj_Num) 
       (x.Emp_Num = z.Emp_Num)))}
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At first glance it seems impossible within the 
relational algebra.  However, there is an operation, 
called division, which makes it possible.

Definition:  Let R[A] and S[B] be relation schemata, 

and assume that  B  A.  Then  R  S, called R 
divided by S, is the relation schema on attribute set 
A \ B  defined by the following formula.

R  S   =   A\B(R) \ A\B((A\B(R )  S) \ R)

This quantity is also called the quotient of R by S.

Despite its apparently indecipherable definition, it 
has a relatively straightforward characterization. 
Let  r be an instance of R[A], and let s be an 

instance of S[B].  Then 

r  s  =  { t[A\B] | 
   ( tS  s)( tR  r)(( tR[B] = tS)  (tR[A\B] = t))}

Here is the solution to the query:

{Name}((Employee  Project)  Proj_Num(Project))

● Such “double negation” constructs occur 
frequently when writing queries with universal 
quantification in SQL, as will be seen later.

C'est simple comme bonjour, n’est-ce pas?
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Renaming – Another Useful Operator in 
the Relational Algebra

Suppose that we again have the following simple 
relational database schema.

Employee Project

Emp_Num Name Emp_Num Proj_Num

Consider the query “Provide the names of those 
employees who work on exactly one project.”

This is easy in the tuple calculus.

{x.Name | Employee(x)  

   (y)(Project(y)  (x.Emp_Num = y.Emp_Num)) 
   (z)(w)((Project(z)  Project(w) 
          (x.Emp_Num = z.Emp_Num)  

                     (x.Emp_Num = w.Emp_Num)) 
          (z.Proj_Num = w.Proj_Num))}

20061031:slides5:  24 of 27



Again, at first glance it seems impossible with the 
relational algebra.  However, it is easily realized 
with the aid of renaming.  In renaming, a copy of a 
relation schema is made, with the name of one or 
more attributes changed.

Copy-with-Rename(
          Project, Project',{(Proj_Num, Proj_Num')})

creates the following relation schema:

Project'

Emp_Num Proj_Num'

To solve the query, let us proceed step-by-step.

First, join Project with Project':

R1  Project  Project'.

R1

Emp_Num Proj_Num Proj_Num'
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Now, restrict this relation to those tuples with 
different values for Proj_Num and Proj_Num':

R2   (Proj_Num  Proj_Num')(R1)

The following formula identifies the employees who 
work on more than one project. 

R3  Emp_Num(R2)

To identify the employees who work on no projects, 
use

R4  Emp_Num(Employees)  Emp_Num(Project).

Then the difference below identifies the employees 
who work on exactly one project.

R5  Emp_Num(Employees)   (R3   R4).

The query asks for names, however.  Join the 
above result with the Employee relation:

R6  R5  Employee.

Finally, project the names:

R7  Name(R6).
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As a single expression in the relational algebra, this 
becomes:

Name(

   (Emp_Num(Employee) 
    Emp_Num(
       (Proj_Num  Proj_Num')(Project  Project')) 
     
    (Emp_Num(Employee)  Emp_Num(Project))
      Employee)

Exercise: Build a query in the relational algebra 
which gives the names of those employees who 
work on exactly two projects.
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