
20011119:slides11:page 1 of 14

• The main ideas are presented via a sequence of
four annotated C programs.

• These slides provide only supporting information.

� � � � � � � �

• These notes deal with the Microsoft Visual C++
programming environment.

• The notes deal primarily with the Windows NT
operating system.

• Although the examples are intended to be
generic, they have been tested only with the
Microsoft Access database system.

20011119:slides11:page 2 of 14

� � 	 �
 � � � � �

• On-line documentation for ODBC is available at
the Microsoft web site. Follow the link on the
course home page.

The following hardcopy references are provided
only as information for those with insatiable
appetites for knowledge.

These notes, together with the accompanying
sample programs and lectures, should provide
enough information to write reasonable ODBC-
based applications.

• One may also purchase hardcopy of the Microsoft
documentation and software from booksellers.
(� � ! � ! " ! # � $ % ! & � ' � � & () � � * � % % ! � + � , ! � ! � ! & � ! - � ! � � & (. (� � � � & --
Two books plus a CD, 1997)

• A decent book for the eager is � � � � � � /� ! " ! # � $! � � 0 1 � (! - by Roger E. Sanders,
McGraw-Hill, 1999.

• A great reference????? If one were available at a
reasonable price, it would become part of the
course literature.

.

20011119:slides11:page 3 of 14

2 3 4 5 6 7 8 9 : 3 ; 4 < 4 = 5 > ? 5 6 8 4 : 3 ; @ A B 4 5 C D

The ODBC manager of operating system must be
configured before database access is possible.

• The first step is to install the required DBMS-
specific drivers. For Microsoft Access, this has
already been done.

• The next step is to tell the ODBC manager about
the database(s) to be accessed. In both
Windows 95/98 and NT, this is accomplished via
the ODBC icon in the control panel, although the
details are a bit different. This explanation will
focus upon Windows NT.

20011119:slides11:page 4 of 14

E F G H I J K L I G J M N M O M P F K L Q R K G N R L S I G N F T P U V W

• Open the ODBC menu in the control panel.
• Click on the User DSN tab.
• Highlight MS Access 97 Database and click on

Add.
• From the menu in the new window, select

Microsoft Access Driver (*.mdb), and click on
Finish.

• From the menu in the new window, type in a
data source name (X Y Z Y [Company), and
optionally, a description. The click on either
Select or Create, depending upon whether you
want to link to an existing database, or create a
new blank one.

• In the new window, give the path to the
database.

• “OK” away the pile of subwindows; the new
database should appear under the top-level
ODBC User DSN tab.

\ R] M L ^ P W
• Put your database(s) under the User DSN tab.

This will insure that they will accompany you
from machine to machine, and that they will not
interfere with those of others. Do

G F O
 put your

databases under the System DSN or File DSN
tabs.

20011119:slides11:page 5 of 14

_ ` a b c d e f g f h f i j k l f b d
f b h a m j b l f b d ` n

• The appropriate environment to use on the
departmental machines is Microsoft Visual C++
6.0 Professional.

• Do not use Borland C++ 4.5 or 5.0, or Borland
C++ Builder 1.0. They do not have ODBC
support.

• It is not practical to use a Unix environment, as
ODBC drivers are not installed.

• If you have an office in the department, Borland
C++ Builder 4.0 Professional may be installed
there. You may use it, although you are
yourself responsible for ensuring that your final
submission is compatible with the Microsoft
environment. See the slides from the 1999
course for a list of nuances of the Borland
environment.

• Microsoft Visual C++ will happily let you
program in C, even in your main file. Just use
your C program as the main file.

• Make sure that you create a console
application, and not a windows application,
unless the latter is what you really want.

20011119:slides11:page 6 of 14

• o p q r s t u v w u x
y z { | } ~ � ~ { � � �

• Most ODBC identifiers begin with SQL (note the
capitalization). Thus, it is a very good idea to
avoid using this sequence as the beginning of
user-defined identifiers.

� � � � � � � � �

• ODBC contains a large number of functions
(around 80). They have names like
SQLAllocHandle, and SQLCloseCursor.
Only a few will be used in this course.

• All (most?) return a value of type SQLRETURN.
This value is zero if the execution was normal,
and nonzero if it was special.

� | � � � z { � �
• To run ODBC API calls, the following two

includes must be issued:
#include <sql.h>
#include <sqlext.h>

20011119:slides11:page 7 of 14

� � � � � � � � � � � � � �
There are three classes of variables associated with
ODBC.

� �
Types to be used as declarations to C. These
begin with SQL, and continue with a sequence of
capital letters, without underscores. They are
#defined within the header files to be certain C
types. Here are some of the principal ones:

� � � � � � � � � � � � �
SQLCHAR char
SQLSCHAR signed char
SQLINTEGER long int
SQLUINTEGER unsigned long int
SQLSMALLINT short int
SQLUSMALLINT unsigned short int
SQLREAL float
SQLDOUBLE,SQLFLOAT double
SQLDATE a large struct..

There are also a number of special ones for date,
time etc., which correspond to structs in C.

The definitions are found in the library file
sqltypes.h. Consult this file or the ODBC
documentation for complete information.

For types involved in API calls, these types, rather
than the C types, should be used.

20011119:slides11:page 8 of 14

2. C data type encodings. These are not true data
types, but rather numerical encodings of the
types listed in the previous group. These
numerical encodings are used as arguments to
API function calls. The following table lists some
of the principal types.

� � � ¡ ¢ ¡ £ ¤ ¥ ¢ ¦ § ¨ © £ ¤ ¥ ¢
SQL_C_CHAR SQLCHAR
SQL_S_STINYINT SQLSCHAR
SQL_C_SLONG SQLINTEGER
SQL_C_ULONG SQLUINTEGER
SQL_C_SSHORT SQLSMALLINT
SQL_C_USHORT SQLUSMALLINT
SQL_C_FLOAT SQLREAL
SQL_C_DOUBLE SQLDOUBLE,SQLFLOAT
SQL_C_TYPE_DATE SQLDATE

The definitions for these types are found in the file
sqlext.h. Consult that file or the ODBC
documentation for further information.

It is important to remember that these are
� ª

 C-
language data types. They cannot be used in type
declarations!!!

20011119:slides11:page 9 of 14

3.
«

 SQL data types encodings. These provide an
association between the types allowed in SQL
declarations, and those of the programming
language. They are used in arguments to API
calls, but never in variable declarations in the
program itself.

These are not true data types, but rather numerical
encodings which correspond to the numerical
encodings of the types in the previous list. They
cannot be used in type declarations!!!

The following table gives some principal examples.

¬ ® ¯ ° ± ° ² ³ ´ ± µ ¶ · ² ³ ´ ±
SQL_CHAR Char(n)
SQL_VARCHAR Varchar(n)
SQL_SMALLINT Smallint
SQL_INTEGER Integer
SQL_REAL Real
SQL_DECIMAL Decimal(p,s)
SQL_TYPE_DATE Date

The exact mapping between these types and those
of the previous table is implementation dependent.

The definitions for these types are found in the file
sqlext.h. Consult that file or the ODBC
documentation for further information.

20011119:slides11:page 10 of 14

¸ ¹ º » ¼ ½ ¾ ¿

• Handles are numerical values which are
associated with certain items.

• Example: File handles are familiar in operating
system programming.

In ODBC, there are four types of handles:

• À º Á Â Ã Ä º Å ½ º Æ Ç ¹ º » ¼ ½ ¾
: In order to access a

database via ODBC, an ODBC environment must
be established. There is normally only one such
environment per program.

• È Ä º º ½ É Æ Â Ä º Ç ¹ º » ¼ ½ ¾
: Just as one must have a

file handle for every open file in an operating
system, so too must one have a connection
handle for every ODBC database which is
opened.

• Ê Æ ¹ Æ ½ Å ½ º Æ Ç ¹ º » ¼ ½ ¾
: A statement handle is

associated with an SQL statement which is to be
issued to an ODBC database for execution.

• Ë ½ ¾ É Ã Â Ì Æ Ä Ã Ç ¹ º » ¼ ½ ¾
: Descriptors are metadata

which describe formats associated with SQL
statements. They will not be studied in this
course.

20011119:slides11:page 11 of 14

In ODBC 3.0 and higher:

• Handles are declared using the type SQLHANDLE.

• Handles are allocated using the function
SQLAllocHandle.

• Handles are freed using the function
SQLFreeHandle.

The slides show examples of these activities.

Remark: There are older, ODBC 2 data types and
calls which deal with each of the first three types of
handles (all except descriptor handles) separately.

• The types are HENV, HDBC, and, HSTMT.

• The allocation functions are SQLAllocEnv,
SQLAllocEnv, and SQLAllocStmt.

• The freeing functions are SQLFreeEnv,
SQLFreeEnv, and SQLFreeStmt.

Although most ODBC implementations are
backwards compatible with these calls, their use is
to be discouraged in new software. (Translation:
Do not use them in your project!)

20011119:slides11:page 12 of 14

Í Î Ï Ð Ñ Ò Ó Ô Õ Ñ Î Ö × Î Ø Ð × Ð Ñ Ö Ù Õ Ô Ð Ñ Ö Î Ò Õ × Ú Û

• Inform the system of the ODBC version in use:
SQLSetEnvAttr.

• Connect to a database identified by an allocated
connection handle: SQLConnect.

• Disconnect from the database allocated to a
connection handle: SQLDisconnect.
• The handle remains available for connection to

another database.

20011119:slides11:page 13 of 14

Ü Ý Þ ß à á â ã ä Þ å æ ç Ý Þ å á è à ç é ê ë

• Prepare ("compile") an SQL statement for
execution: SQLPrepare.

• Execute a compiled SQL statement:
SQLExecute.

Note: The function SQLExecDirect combines the
above two functions, and is appropriate in situations
in which the SQL statement is executed only once.

• Bind an input parameter index in an SQL
statement with a variable in the program:
SQLBindParameter.

• Bind a column of a query result (output
parameter) to a variable in the program.
SQLBindCol.

• Fetch the next tuple from the result of a query:
SQLFetchTuple.

• Close the cursor on a given query, so that the
statement handle may be used to collect the
results of a new query: SQLCloseCursor.

20011119:slides11:page 14 of 14

ì í î ï ð ñ ò ó ô ô ï ô õ ö ÷ ø ù ñ ó ò ò ô ú

• Catalog queries: Find out which relations are in a
given database, what the types of the columns
are, what the constraints are, etc.

• Optimization directives: Handle large queries with
efficient batch operations.

• Error management: If something goes wrong, find
out what the problem is.

All in all, there are over 80 API calls in ODBC.

	Using ODBC

