
Advanced Topics in OOA&D

Jürgen Börstler
jubo@cs.umu.se
http://www.cs.umu.se/~jubo

http://www.cs.umu.se/kurser/TDBC31/

OOSD Copyright by jubo@cs.umu.se 2

Contents

More Linguistic Analysis
When and How (not) to Use Inheritance
Class Libraries and Frameworks
Design Guidelines and Patterns
References

OOSD Copyright by jubo@cs.umu.se 3

More Advanced Linguistic
Analysis á la KISS ([Krist 94])

The subject carries out (controls) an action
The direct object undergoes this action
The action results in a state change in the direct object
The indirect object collaborates to perform the action
The predicate contains or describes the action
The preposition indicates the type or kind of collaboration
(relationship)

{Subject} {Predicate} {Direct object} [{Preposition} {Indirect object}]

OOSD Copyright by jubo@cs.umu.se 4

A Use Case Model

Open door

Register new card

Enter new code

system
administrator

user

Enter admin mode

«include»

«extend»

door terminal
actors

use case

system
boundary

card reader

OOSD Copyright by jubo@cs.umu.se 5

An Example Use Case

use case: Register New Card

actor: System administrator (SA)
summary: ...
preconditions: The system is idle
actions:

1. Enter admin mode
2. The SA enters a new card into the cardreader
3. The system validates the card
4. The system registers the card in the database
5. Enter new code

postconditions: The new card is registered in database
The new card has a valid code

exceptions: 3: Card invalid
OOSD Copyright by jubo@cs.umu.se 6

Example Analysis 1

The SA enters a new card into the card reader
action

S pred DO prep IO
The subject controls an
action
The direct object
undergoes this action
The action results in a
state change in the direct
object
The predicate contains or
describes the action
The indirect object
collaborates to perform
the action
The preposition indicates
the type or kind of
collaboration

SA
enter (Card)

CardReader

Card

<<instantiate>>
<<use>>

Actors are (usually)
outside the scope of the
system

Card
enterIntoCR()

OOSD Copyright by jubo@cs.umu.se 7

Example Analysis 2

Card
enterIntoCR()

The system validates the card
Card

enterIntoCR()
validate()

The system registers the card in the database
Card

enterIntoCR()
validate()

Database
register (Card)

The subject controls an
action
The direct object
undergoes this action
The action results in a
state change in the direct
object
The predicate contains or
describes the action
The indirect object
collaborates to perform
the action
The preposition indicates
the type or kind of
collaboration
Actors are (usually)
outside the scope of the
system

OOSD Copyright by jubo@cs.umu.se 8

Contents

More Linguistic Analysis
When and How (not) to Use Inheritance
Class Libraries and Frameworks
Design Guidelines and Patterns
References

OOSD Copyright by jubo@cs.umu.se 9

When and How (not) to Use
Inheritance

Reuse (ad hoc and planned)
Combine behaviour
Prototyping
Versioning
Parameterisation of collection types
Commit to common interfaces (abstract classes)
Build frameworks

Express commonalties
Extensibility

OOSD Copyright by jubo@cs.umu.se 10

Bibliographic References—An
Inheritance Example

Different kinds of references
Books
Papers
Conference proceedings
Journals
Reports
…

Collections of references
Printing operations

Develop a design for the core components in a system to
manage and print bibliographic references

OOSD Copyright by jubo@cs.umu.se 11

First Approach

Easy to add reference types
Paper bound to Journal; Journal info twice

Check common properties

Reference

author()
title()
date()
print()

RefCollection
insert()
delete()
sort()
print()
…

Paper
startPage()
endPage()
Journal()
volume()
number()
redefine print()

Report
id()
institute()
redefine print()

Book
isbn()
publisher()
redefine print()

Journal
rename author

to editor
volume()
number()
redefine print()

Date

String

* *

OOSD Copyright by jubo@cs.umu.se 12

Second Approach—Uncouple
Paper from Journal

New type requires addition of two classes

author()
title()
date()
print()

JournalPaper
startPage()
endPage()
redefine print()

Report
id()
institute()
redefine print()

Book
isbn()
publisher()
redefine print()

Journal
rename author

to editor
volume()
number()
redefine print()

* *

BookPaper
startPage()
endPage()
redefine print()

ReportPaper
startPage()
endPage()
redefine print()

RefCollection
insert()
delete()
sort()
print()
…

Reference

OOSD Copyright by jubo@cs.umu.se 13

Third Approach

Solves our problems?
(Try to add a conference proceedings)

Papers are references and can also be part of references

author()
title()
date()
print()

Paper
startPage()
endPage()
redefine print()

Report
id()
institute()
redefine print()

Book
isbn()
publisher()
redefine print()

Journal
rename author

to editor
volume()
number()
redefine print()

* *

appears in

RefCollection
insert()
delete()
sort()
print()
…

0..1

*

Reference

OOSD Copyright by jubo@cs.umu.se 14

Third Approach—Add a
Reference Type

There are too many dates

author()
title()
date()
print()

Paper
startPage()
endPage()
redefine print()

Report
id()
institute()
redefine print()

Book
isbn()
publisher()
redefine print()

Journal
rename author

to editor
volume()
number()
redefine print()

* *

appears in

Proceedings
rename author

to editor
name()
location()
startDate()
endDate()
redefine print()

RefCollection
insert()
delete()
sort()
print()
…

0..1

*

Reference

OOSD Copyright by jubo@cs.umu.se 15

Refined Third Approach—Split
Reference

DatedReference

date()

Paper
startPage()
endPage()
redefine print()

Report
id()
institute()
redefine print()

Book
isbn()
publisher()
redefine print()

Journal
rename author

to editor
volume()
number()
redefine print()

*
*

0..1

appears in Proceedings
rename author

to editor
name()
location()
startDate()
endDate()
redefine print()author()

title()
print()

RefCollection
insert()
delete()
sort()
print()
…

*

Reference

OOSD Copyright by jubo@cs.umu.se 16

redefine insert()
redefine getItem()
…

0..1

RefCollection can contain objects of type Reference
and all its subtypes
Assume we need homogenous collections
Can we inherit from RefCollection?
Apply horizontal modification (covariance)?

DatedReference

date()

Paper
startPage()
endPage()
redefine print()

* *

appears in

author()
title()
print()

RefCollection
insert()
getItem()
…

*

PapCollection
* *

Reference

Inheritance for Parameterisation

OOSD Copyright by jubo@cs.umu.se 17

// Assume we have a collection of references (aRefCollection),
// a collection of papers (aPapCollection), a reference object (aReference),
// and a paper object (aPaper)
aRefCollection.insert(aReference); // Insert a reference into a collection of references
aRefCollection := aPapCollection; // OK, since PapCollection is-a RefCollection
aRefCollection.insert(aReference); // ERROR! Figure out parameter types

// OK, so what if we do not redefine any operations?
aRefCollection.insert(aReference); // Insert a reference into a collection of references
aRefCollection.insert(aPaper); // OK, since Paper is-a Reference
aPaper := aRefCollection.getItem(); // ERROR! Polymorphy does only work that way

Inheritance cannot replace genericity (except in theory)
Use templates to parameterise collection types

Inheritance for Parameterisation
is NOT Type-Save

OOSD Copyright by jubo@cs.umu.se 18

Strict Inheritance

Only extensions to inherited properties
Easy to handle
Inflexible
Hinders reuse

Example:

Bag
insert(...)
delete(...)
empty(...)
size(...)

Set
????

OOSD Copyright by jubo@cs.umu.se 19

Inherited properties can be changed/ rejected
Increased flexibility and reuse

Non-Strict Inheritance

Bag
insert(...)
delete(...)
empty(...)
size(...)

Set
redefine
insert(...)

Deque
insertFront(...)
deleteFront(...)
getFront(...)
insertBack(...)
deleteBack(...)
getBack(...)
empty(...)

Queue
delete

insertFront(...)
deleteBack(...)
getBack(...)

OOSD Copyright by jubo@cs.umu.se 20

Forms of Non-Strict Inheritance

Redefinition of inherited methods
Change code only
OK in most OO languages
Vertical modification (change parameter types)

Covariance (useful, but difficult to make type safe)
Contravariance (simple, but not very useful)

Horizontal modification (add/delete parameters)
Subclass is not a subtype

Renaming
OK in some languages (e.g., Eiffel)

Deletion of inherited methods
Subclass is not a subtype

Attribute types must not be changed

OOSD Copyright by jubo@cs.umu.se 21

Problems with
Multiple Inheritance

Name conflicts (1)
Repeated inheritance (2)
Redefinition conflicts (3)

Super
a(...)
b(...)
c(...)

Sub1
redefine

a(...)
d(...)

Sub2
redefine

a(...), b(...)
d(...)

Sub3

{Inherits two of
d (1),
c (2), and
a and b (3)

OOSD Copyright by jubo@cs.umu.se 22

Summary of Rules

Use abstract classes whenever possible
Do not confuse inheritance with aggregation (is-a vs. has-a)
Avoid adding identical behaviour in different branches of your
inheritance hierarchy
Do not add too much behaviour in one step
Use templates to parameterise collection classes
Use inheritance for subtyping
Be careful with multiple inheritance

OOSD Copyright by jubo@cs.umu.se 23

Contents

More Linguistic Analysis
When and How (not) to Use Inheritance
Class Libraries and Frameworks
Design Guidelines and Patterns
References

OOSD Copyright by jubo@cs.umu.se 24

Class Libraries and Frameworks

Class library
Language specific
Provides low-level functionality
Passive
Used by user-supplied code

Framework
Language specific
Provides complex functionality
Active
Uses user-supplied code

Application framework
Adaptable software system
Domain specific

OOSD Copyright by jubo@cs.umu.se 25

Class Libraries vs. Frameworks

class
library

user-
supplied

code

user-
supplied

code

frame-
work

Users write pro-active code Users write re-active code
(Don´t call us we´ll call you)

OOSD Copyright by jubo@cs.umu.se 26

Contents

More Linguistic Analysis
When and How (not) to Use Inheritance
Class Libraries and Frameworks
Design Guidelines and Patterns
References

OOSD Copyright by jubo@cs.umu.se 27

Design Guidelines and Patterns

Introduction
Design Principles
Refactoring
Design Heuristics
Design Patterns
References

OOSD Copyright by jubo@cs.umu.se 28

What is Good Design?

Well structured: consistent with chosen properties such as
information hiding
As simple as possible, but not simpler
Efficient: functionality can be provided using available
resources
Adequate: meeting the stated requirements
Flexible: “easy” to change
Practical: provide required functionality, but not more
Implementable using current and available technology
Standardized: using well-defined and familiar notation(s)

OOSD Copyright by jubo@cs.umu.se 29

Packaging Design Experiences for
Reuse

Design principles and heuristics
Generally accepted “rules of thumb,” recommendations, and
guidelines
Language independent

Refactoring
Restructure existing code without affecting its external behaviour

Design patterns
Concrete solutions to known design problems
Language independent
Common description format

Pattern languages
Sets of interrelated patterns

OOSD Copyright by jubo@cs.umu.se 30

Design Principles

Law of Demeter
Liskov Substitution Principle
Open-Closed Principle
Dependency Inversion Principle
Interface Segregation Principle
Single-Responsibility Principle
Common Closure Principle

See [Martin 02] for details on most of the principles.

OOSD Copyright by jubo@cs.umu.se 31

The Law of Demeter—Main Idea

No class must depend on the structure of another class, like
for example in

Each method should only send messages to objects of
explicitly “known” classes
Minimise the number of acquaintance classes (only implicitly
known, but called anyway)

See [LiHo 89] for details

C
mi(subtype(C´) arg)

arg.aMethod().anotherMethod()

C´
aMethod(): C´´

C´´
anotherMethod()

OOSD Copyright by jubo@cs.umu.se 32

The Law of Demeter—
Acquaintance Classes

C´ is an acquaintance class of C.mi, if
mi sends a message to C´, and
mi has no arguments of type subtype(C´)
C has no instance variables of type subtype(C´)
(OOPS! C´ subtype(C´))

“calls” C´.aMethod()

C

mi

ai

C´

aMethod()
(subtype(C´) arg)
: subtype(C´)

ai.aMethod()
or

arg. aMethod()

OOSD Copyright by jubo@cs.umu.se 33

LoD—Strong Version

A method C.m must only refer objects, which are either
Instantiated by this method, or
Instance variables of C, or
Arguments of C.m, or
Global variables, or
The pseudo-variable self/ this

All dependencies are explicit

Counter example violating the LoD (common)
anObject.aMethod().anotherMethod()

returns an object of
an acquaintance class

OOSD Copyright by jubo@cs.umu.se 34

Liskov Substitution Principle

A client using an instance of a base class should still work
properly when given an instance of a subclass instead
The subclass must at least provide the same services as the
superclass
The contracts of the base class must be honoured by the
subclass

Subtypes must be substitutable for their basetypes.

OOSD Copyright by jubo@cs.umu.se 35

Open-Closed Principle

Change behaviour by adding code and without changing
existing code
The entity can be extended to accommodate new
requirements and contexts
Existing clients are not affected by the change

Software entities (classes, modules, functions, …) should be
open for extension, but closed for modification.

OOSD Copyright by jubo@cs.umu.se 36

Dependency Inversion Principle

High-level entities should not depend on low-level entities
Access instances using interfaces or abstract classes

Abstractions should not depend on details (implementations).
Details should depend on abstractions.

OOSD Copyright by jubo@cs.umu.se 37

Interface Segregation Principle

Many client-specific interfaces are better that one general
purpose interface
Large and general interfaces generate unnecessary
dependencies, i.e. high coupling

Clients should not be forced to depend on methods that they do
not use.

OOSD Copyright by jubo@cs.umu.se 38

Single Responsibility Principle

Single, well-defined responsibility
Loose coupling, few dependencies
Changes stay local

A class should only have one reason to change.

OOSD Copyright by jubo@cs.umu.se 39

Common Closure Principle

Closely related to Single Responsibility and Open-Closed
principles, but applied to package level

The classes in a package should be closed together against the
same kinds of changes. A change that affects a closed package
affects all classes in that package and no other package.

OOSD Copyright by jubo@cs.umu.se 40

Design Guidelines and Patterns

Introduction
Design Principles
Refactoring
Design Heuristics
Design Patterns
References

OOSD Copyright by jubo@cs.umu.se 41

Refactoring

Recommended XP/Agile practice
Identify code that doesn’t look right (“code smells” or “anti-
patterns”)
Restructure systematically to fix problem

Make code more robust wrt. changes

There are about 30 “code smells” and about 100 refactorings
Refactoring tools support complex restructurings

OOSD Copyright by jubo@cs.umu.se 42

Example Code Smells

Something has become (too) large, e.g.,
Long methods, many parameters

Solution is not OO, e.g.,
Switch statements, no strict inheritance, “dumb” storage classes

Things that make changes difficult, e.g.,
Parallel inheritance, “shotgun surgery”

Useless or unnecessary code, e.g.,
Duplicate or very similar code, speculative genericity

Unnecessary coupling
“Feature envy”, long message chains

Comments
Should be “strategic” (for clarification) only

OOSD Copyright by jubo@cs.umu.se 43

Example Refactorings

Rename Method: change declaration and all occurences
Extract Method: turn a code fragment into a method
Inline Method: reverse of Extract Method (for trivial methods
that are not heavily used)
Move Method: move a method to another class
Hide Method: make a method private
Introduce Parameter Object: turn a set of parameters that
are used together to a new class
…

See http://www.refactoring.com for details.

OOSD Copyright by jubo@cs.umu.se 44

Design Guidelines and Patterns

Introduction
Design Principles
Refactoring
Design Heuristics
Design Patterns
References

OOSD Copyright by jubo@cs.umu.se 45

Design Heuristics and Patterns

Introduction
The “God” Class Problem
The Proliferation of Classes Problem
Conflicting Heuristics

OOSD Copyright by jubo@cs.umu.se 46

Riel´s OOD Heuristics

An OO design heuristic
is a “rule-of-thumb”
is something which makes a design “feel right”
guides a designer
helps to choose from design alternatives
warns when it is violated

Different design heuristics may conflict
61 heuristics in 8 categories

See [Riel 96] for details.

OOSD Copyright by jubo@cs.umu.se 47

Examples for OOD Heuristics

All data should be hidden within its class
Most of the methods defined on a class should be using most
of the data most of the time
Do not clutter the public interface of a class with items that
users of that class are not interested in or not able to use
The interface of an application should be dependent on the
model, not vice versa
Minimise fanout in a class (#messages defined x #messages
send)
Avoid explicit case analysis on object types or attribute values
Avoid “god” classes
Avoid the “proliferation” of classes

OOSD Copyright by jubo@cs.umu.se 48

God Class vs. Proliferation of
Classes

God
class

Proliferation of classes

System intelligence should be distributed, but to which extent
? Complexity
? Maintainability
? Fault tolerance

balance

OOSD Copyright by jubo@cs.umu.se 49

Variations of the God Class
Problem

Behavioural
god class

get_x() get_y() get_z()

set_result()

Central brain class to
control behaviour

Global data class to
store all system data

Data structure
god classdo(x,y,z)

set_x() set_y() set_z()

get_xyz() set_result()

do(x,y,z)

OOSD Copyright by jubo@cs.umu.se 50

Coping with the God Class
Problem 1

Avoid dumb storage classes
Keep related data and behaviour together
Example (moving a point):

? Who uses the operations
? What are they doing with the data
? Why can’t Point do it itself

Point

Point(x, y)
get_x()
get_y()
set_x()
set_y()

x, y: ...
Point

Point(x, y)

move(x, y)
moveTo(x, y)

x, y: ...

OOSD Copyright by jubo@cs.umu.se 51

Hide local classes/ objects
Examples:

Withdrawal using an ATM

Coping with the God Class
Problem 2

ATM
CashDispenser

withdraw(...)

getCashDispenser(...) ATM
CashDispenser

withdraw(...)

Game
DiceBox nextTurn()

roll()

Game
DiceBox

getDie1()Die1 roll()

Die2 roll()

Die3 roll()

getDiceBox()

getDie2()

getDie3()

Rolling dice in a game

OOSD Copyright by jubo@cs.umu.se 52

Distribute System Intelligence
Example (home heating system):

Coping with the God Class
Problem 3

Room

getDesiredTemp()
setDesiredTemp()
getActualTemp()
isOccupied()

...
HeatFlow
Regulator

Furnace
cool()
warm()
...if theRoom.isOccupied() then

if theRoom.getActualTemp() - theRoom.getDesiredTemp() > threshold then
theFurnace.cool();

if theRoom.getActualTemp() - theRoom.getDesiredTemp() < -threshold then
theFurnace.warm();

<<use>> <<use>>

Room
...

HeatFlow
Regulator

Furnace
cool()
warm()
...

requiredHeat()
... if theRoom.requiredHeat() > threshold then

theFurnace.cool();
elsif theRoom.requiredHeat() < -threshold then

theFurnace.warm();

<<use>> <<use>>

OOSD Copyright by jubo@cs.umu.se 53

Coping with the God Class
Problem 4

Beware of controller classes
Real-world examples:

VCR/ camera (data and behaviour is strictly separate)
Controller: The recorder/ player/ camera
Data: The tapes/ films

+ Very flexible
– Complicated
– Expensive

Throw away camera has data and behaviour
+ Cheap
+ Easy to use
– Limited use
– Quality

Typical goals in the
software world

OOSD Copyright by jubo@cs.umu.se 54

Heuristics for Avoiding God
Classes

Distribute horizontal system intelligence uniformly; the top-
level classes should share the work uniformly
Most of the methods of a class should use most of the data
most of the time
Spin-off non-related information into another class
Beware of classes with many accessor methods in their public
interfaces, especially if they do not have any behaviour
Keep related data and behaviour in one place
Be suspicious of any class whose name contains driver,
(sub)system, manager, controller, ...

OOSD Copyright by jubo@cs.umu.se 55

Design Heuristics and Patterns

Introduction
The “God” Class Problem
The Proliferation of Classes Problem
Conflicting Heuristics

OOSD Copyright by jubo@cs.umu.se 56

The Proliferation of Classes
Problem

“Spaghetti”- vs. “ravioli”-code discussion
Too few classes lead to overly complex classes
Too many classes increase overall complexity

Avoid “unnecessary” classes

Number of classes

Ov
er

all
 sy

ste
m

co
mp

lex
ity

optimum

OOSD Copyright by jubo@cs.umu.se 57

Coping with the Proliferation of
Classes Problem 1

Eliminate irrelevant classes without behaviour (i.e. containing
only set-, get-, and simple print-operations)

Course Registration System

Student LecturerCourseOffering

Assistant
Professor

Associate
Professor

Full
Professor

Graduate
Student

Undergraduate
Student

TeachesRegisters for

Attributes are probably sufficient here
Sensors (“get-ors”) or transducers (“set-ors”) are typical
exceptions to this rule

OOSD Copyright by jubo@cs.umu.se 58

Coping with the Proliferation of
Classes Problem 2

Eliminate classes that lie outside the system
Examples:

Registrar in the Course Registration System
Customer in an ATM system

Tip: Actors are often outside the system

Beware of irrelevant agent classes
Often useful during analysis, but irrelevant for design

Do not turn an operation into a class
Behavioural god class!

Book BookshelfLibrarianRegisters Move books

OOSD Copyright by jubo@cs.umu.se 59

Coping with the Proliferation of
Classes Problem 3

Avoid subclassing when the subclasses have only a single
instance
Problem: Instances have different behaviour

CarBuilder
accounting()
...

Volvo
accounting()
...

Saab
accounting()
...

VolvoInstance SaabInstance
See also: Strategy design pattern

the strategy

CarBuilder
accounting(

AccountingFormula)
...

Accounting
Formula Interpreter

for the “formula;”
calls methods in
AccountingFormula

VolvoInstance SaabInstance

OOSD Copyright by jubo@cs.umu.se 60

Coping with the Proliferation of
Classes Problem 4

Containment hierarchies and semantic constraints

Usually in class definition(s) (constructors)
Potato and corn steak platter
Potato and salad steak platter
Chips and corn steak platter
...

Problem: Combinatorial explosion

Meal

Melon Steak Chips SaladPotato Pie
Steak Platter

CornRice

one of each group
only

OOSD Copyright by jubo@cs.umu.se 61

Implementing Semantic
Constraints—An Example

Car

Volvo Saab …

Engine

… …

General strategy
Build deep and narrow inheritance hierarchies and handle the
constraints in the constructors (as far down as possible)
Allow the creation of “wrong” objects, but validate objects via
methods
StartEngine() or drive() methods check for correct
combinations

OilFilter

… …

OOSD Copyright by jubo@cs.umu.se 62

Implementing Semantic
Constraints (cont.)

Information is volatile
Use a central third-party object
Example: Tables that match car models with suitable oil filters

Information is stable
Decentralise among involved parties
Example: Each car maintains a list of allowed engines

OOSD Copyright by jubo@cs.umu.se 63

Coping with the Proliferation of
Classes Problem 5

Are the subclasses really special types of operating system
processes?
No, they are the four states of an OS process
Verify by means of statechart diagrams

Do not use inheritance to model the dynamic semantics of a
class

Need to change types at runtime
Information hiding?

OS_Process

RunnableProcess CurrentProcess BlockedProcess ExitedProcess

OOSD Copyright by jubo@cs.umu.se 64

Coping with the Proliferation of
Classes Problem 5 (cont.)

Which one is correct?
Ball

RedBall GreenBall BlueBall

Ball
colour

(a) (b)

Difference to previous example?

If the value of an attribute affects the behaviour of the class,
choose solution (b)
Explicit case analysis on the value of an attribute is often an
error

Transform into class hierarchy
Use dynamic binding

OOSD Copyright by jubo@cs.umu.se 65

Coping with the Proliferation of
Classes Problem 6

Implementation of optional containment
Using inheritance leads to combinatorial explosion:

Do not confuse “has-a” with “is-a”

House

HeatingSysHouse CoolingSysHouse ElectricalSysHouse HeatingCooling
SysHouse

HeatingElectrical
SysHouse

etc.

House

HeatingSystem

CoolingSystem

ElectricalSystem

Etc.

OOSD Copyright by jubo@cs.umu.se 66

Design Heuristics and Patterns

Introduction
The “God” Class Problem
The Proliferation of Classes Problem
Conflicting Heuristics

OOSD Copyright by jubo@cs.umu.se 67

Conflicting Heuristics

Heuristics are “rules-of-thumb,” no laws
The rules may give conflicting advise
Example:

Base classes should be abstract
Classes that do not add meaningful behaviour are irrelevant and
should be deleted
Do not exclude behaviour from subclasses

OOSD Copyright by jubo@cs.umu.se 68

Conflicting Heuristics—Example 1

LinkedList
insert()
delete()
first()
next()
isEmpty()
isLast()

SortedList
insert()
sort()

Base classes
should be abstract

List
insert()
delete()
first()
next()
isEmpty()
isLast()

SortedList
insert()
delete()
first()
next()
isEmpty()
isLast()
sort()

LinkedList
insert()
delete()
first()
next()
isEmpty()
isLast()

Classes that do not add
meaningful behaviour are

irrelevant and should be deleted

OOSD Copyright by jubo@cs.umu.se 69

Conflicting Heuristics—Example 2

Bird
fly()
...

Penguin
fly() {no op}

Do not exclude behaviour
from subclasses

Bird
move()
...

Penguin
move()
...

FlyingBird
move()
...
fly()

Classes that do not add
meaningful behaviour are

irrelevant and should be deleted

swim()

Add meaningful
behaviour?

OOSD Copyright by jubo@cs.umu.se 70

Design Guidelines and Patterns

Introduction
Design Principles
Refactoring
Design Heuristics
Design Patterns
References

OOSD Copyright by jubo@cs.umu.se 71

Design Patterns

[GHJV 95], pp 3/4

“Canned solutions to known problems.” [A. Riel at OOPSLA´96]

Design patterns “are descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context.

A design pattern names, abstracts, and identifies the key aspects of a common
design structure that make it useful for creating a reusable object-oriented design.
The design pattern identifies the participating classes and instances, their roles
and collaborations,and the distribution of responsibilities. Each design pattern
focuses on a particular object-oriented design problem or issue.”

Design patterns “are based on practical solutions ...”

OOSD Copyright by jubo@cs.umu.se 72

Pattern Description Schemes
GoF ([GHJV 95])

Name
Intent
Also Known As
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

Siemens ([BMRSS 96])
Name
Abstract
Also Known As
Example
Context
Problem
Solution
Structure
Dynamics
Implementation
Variants
Example Resolved
Known Uses
Consequences
See Also

OOSD Copyright by jubo@cs.umu.se 73

The GoF Patterns
Class/ Object Object Interaction/

Object Creation Composition Responsibility Distribution

Class Factory Method Adapter (class) Interpreter
Level Template Method

Object Abstract Factory Adapter (object) Chain of Responsibility
Level Builder Bridge Command

Prototype Composite Iterator
Singleton Decorator Mediator

Facade Memento
Flyweight Observer

Proxy State
Strategy
Visitor

OOSD Copyright by jubo@cs.umu.se 74

Good Patterns Resources

The Hillside group
http://hillside.net

Pattern Stories Web
http://st-www.cs.uiuc.edu/cgi-bin/wikic/wikic

Non-software examples of (GoF) patterns
Changes location from year to year (google it)

OOSD Copyright by jubo@cs.umu.se 75

The Observer Pattern 1

a = 50%
b = 30%
c = 20%

: Subject
a b c

a b c

change notification

requests, modification

a b
c

OOSD Copyright by jubo@cs.umu.se 76

The Observer Pattern 2

Notify-update mechanism (publish-subscribe)
Originates from Smalltalk´s MVC
Used in almost all GUI libraries/toolkits

Usually only two explicit components: Model and View&Controller
JFC examples:

ListModel, ListDataListener, JList
TableModel, TableModelListener, JTable
…

Advantages
Uncouples dependent components
Increases flexibility
Increases reusability

OOSD Copyright by jubo@cs.umu.se 77

The Observer Pattern 3

Subject

attach(Observer)
detach(Observer)
notify()

Observer
update()

for all o observers do
o.update()

1 0..n

ConcreteSubject

setState()
getState()

ConcreteObserver

update()
check whether
state==subject.getState()

1

state: ... state: ...
calls self.notify()

0..n

observers

subject for caching
subject.state

OOSD Copyright by jubo@cs.umu.se 78

The Observer Pattern 4

anotherConcrete
ObserveraConcreteSubject

notify()

update()

getState()

aConcreteObserver

update()

getState()

setState()

do_sth()

do_sth()

OOSD Copyright by jubo@cs.umu.se 79

The Abstract Factory Pattern 1

Interface for creating interdependent objects without
specifying their concrete classes
Clients use only abstract classes to handle products
Selection of the correct concrete classes is determined by the
concrete factory
Widely used in the JDK (look-and-feel handling, BorderFactory
etc.)
Advantages

Hides concrete classes and their interdependencies
Simplifies consistency management

OOSD Copyright by jubo@cs.umu.se 80

The Abstract Factory Pattern 2

WidgetFactory

Responsibilities
--provide interface to

create abstract
products

{abstract}

createWindow()
createScrollBar()
create...()

MotifWidgetFactory

Responsibilities
--provide operations to

create concrete Motif
widgets

createWindow()
createScrollBar()
create...()

OLWidgetFactory

Responsibilities
--provide operations to

create concrete
OpenLook widgets

createWindow()
createScrollBar()
create...()

ScrollBar
{abstract}

MotifScrollBar OLScrollBar

Client

Window
{abstract}

MotifWindow OLWindow

<<use>>

<<use>>

<<use>>

<<instantiate>>
<<instantiate>>

<<instantiate>>

OOSD Copyright by jubo@cs.umu.se 81

The Singleton Pattern

Class with a single, globally accessible instance
Creation can be on demand
Widely used in the JDK
Advantages

Reduced name space
Simple realisation of sharing
OOPS! Much more flexible than class methods only

Singleton
theInstance: Singleton
singletonData
getInstance(): Singleton
Singleton()
doSomething()
getSingletonData()
...

if (theInstance == null) then
the Instance = new Singleton()

return theInstanceconstructor is
protected or private

the instance is a
class variable (static)

OOSD Copyright by jubo@cs.umu.se 82

The Composite Pattern 1

To handle composed objects (containers) and their
components in an uniform way
Common problem in document composition and graphics
Advantages

Less need for case statements
Easy to add new kinds of components

aPicture

anotherPictureaLine aCircle

aRectangleaLine aText

OOSD Copyright by jubo@cs.umu.se 83

The Composite Pattern 2

for all c children do
c.doSomething()

Component Client<<use>>

doSomething()
add(Component)
delete(Component)
getChild(...)

Leaf
doSomething()

Composite
doSomething()
add(Component)
delete(Component)
getChild(...)

children

Responsibilities
container

Responsibilities
define behaviour for
leaf components

OOSD Copyright by jubo@cs.umu.se 84

The Facade Pattern
Defines a unified, high(er)-level interface to a (complex)
subsystem
Advantages

Hides internal subsystem structure
Simplifies subsystem use
Weakens coupling between clients and subsystem

Subsystem

clients

Subsystem

Facade
delegates client
requests to subsystem
components

OOSD Copyright by jubo@cs.umu.se 85

The Proxy Pattern 1

Provide an approximation that can “stand-in” for another
object

Remote proxy to provide a local representative for a remote object
Virtual proxy to create expensive objects on demand
Protection proxy to control access to the original object
Smart reference to give “added value” to bare pointers

Widely used
Advantages

Reduce handling costs for heavy weight objects
Hide distribution details
Access protection

OOSD Copyright by jubo@cs.umu.se 86

The Proxy Pattern 2

if (image == null) then
image = loadImage(fileName)

image.draw()

Graphic
{abstract} DocumentEditor<<use>>

draw()
getExtent()
store()
load(...)

Image ImageProxy

draw()
getExtent()
store()
load(...)

image

Responsibilities
--maintains a reference

to the “real” image
--stand-in for the “real”

image
--controls access to the

“real” image
--creates/deletes the

“real” image

if (image == null) then
return extent

else
return image.getExtent()

fileName
extent

draw()
getExtent()
store()
load(...)

imageData
extent

OOSD Copyright by jubo@cs.umu.se 87

The State Pattern 1

To allow objects to change their behaviour depending on their
(internal) state
“Simulate” dynamic type changes
Advantages

Localises and partitions state-dependent behaviour
Makes state transitions explicit
State objects are explicit and can be shared

OOSD Copyright by jubo@cs.umu.se 88

The State Pattern 2

TCPState
{abstract}

<<friend>>

open(TCPConnection)
close(TCPConnection)
...
changeState(

TCPConnection c,
TCPState s)

-state

TCPEstablished
open(TCPConnection t)
close(TCPConnection t)
...
Responsibilities
-- implement state-

specific behaviour
--change state

c.changeState(s)

TCPConnection
open(TCPConnection)
close(TCPConnection)
...
- changeState(

TCPState newState)
Responsibilities
-- redirect all requests to

`state´

state.open(this)

TCPClosed
open(TCPConnection t)
close(TCPConnection t)
...
Responsibilities
-- implement state-

specific behaviour
--change state

TCPListen
open(TCPConnection t)
close(TCPConnection t)
...
Responsibilities
-- implement state-

specific behaviour
--change state

states can be
implemented
using the
Singleton Pattern

// do something
changeState(t,

TCPEstablished.getInstance)

state = newState

OOSD Copyright by jubo@cs.umu.se 89

Summary

Class Libraries Frameworks Heuristics Patterns

Abstraction concrete classes interrelated classes rules problem-solution
(concrete and abstract) descriptions

Programming
Language specific specific independent independent

(Re)use classes and infra-
What classes structure (design) experiences experiences

How as is subclassing “rules-of-thumb” “blueprints”

When coding design/coding design analysis/design

Adaptability low extensible generic generic

OOSD Copyright by jubo@cs.umu.se 90

Contents

More Linguistic Analysis
When and How (not) to Use Inheritance
Class Libraries and Frameworks
Design Guidelines and Patterns
References

OOSD Copyright by jubo@cs.umu.se 91

References

[Riel 96] A. Riel, Object-Oriented Design Heuristics, Addison-Wesley, 1996.

[GHJV 95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns,
Addison-Wesley, 1995.

[Pree 95] W. Pree, Design Patterns for Object-Oriented Software
Development, Addison-Wesley, 1995.

[BMRSS 96] F. Buschmann, R. Meunier, H. Rohnert, Peter Sommerlad, M. Stahl,
A System of Patterns, Wiley, 1996.

[Krist 94] G. Kristensen, Object Orientation: The KISS® Method, Addison-
Wesley, 1994.

[LiHo 89] K.J. Lieberherr, I.M. Holland, Assuring Good Style for Object-
Oriented Programs, IEEE Software 6(5), Sep 89, 38-48.

[Martin 02] R. Martin, Agile Software Development: Principles, Patterns, and
Practices, Prentice Hall, 2002.

[Fowler 99] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

