
1

Subdivision surfaces

Subdivision surfaces

? The goal is to create smooth surfaces out of
arbitary meshes.

? Polygons are great, but it is hard to handle many
polygons for a modeller.

? A simple Line case, after 3 subdivisions, the
curve is smooth.

Subdivision surfaces

? Can be used to create
models with different
resolutions: Level Of Detail
(LOD)

? When doing animation,
controlling a courser mesh
can be easier:

Low-res effect High-res effect

2

Subdivision surfaces

• Applying a subdivision scheme on a mesh
makes the mesh smoother just out of the
connectivity of the original mesh.

• The general process of subdivision has the
form:

• Where Pk-1 is the original mesh, S is the
smooth operator and Pk is the resulting
mesh from applying the smooth operator S
onto Pk-1.

• Subdivision is a sort of SPLINES.
• They can be proven to have C1 continuity

1−= kk Spp

1:st

2:nd

3:rd

Subdivision for lines

? Line example:

? Given a polygonal curve pk the
i:th vertex of the curve is pk

i an
edge is given between two
consecutive vertices pk

i and pk
i-1

? The subdivision (averaging) rules
are then:

Subdivision

? Subdivision can be divided into two passes:
– Factorization pass

? A linear subdivision pass
? Adding new midpoint vertices

– Averaging pass
? Smoothing pass
? Moving the vertices according to the weighting rules

3

Subdivision for surfaces

Subdivision on surfaces

? n - Valence
– How many neighbour vertices a given vertex pk

i has.

? Catmul-Clark Scheme (Ed Catmul, John Clark) 1978

? Operates on quads. The result will alway be a set
of quads, even if we start with triangles.

Efficient datastructures
? Common questions on a mesh during execution of a subdivision surface scheme

is:

– Which faces use this vertex?
– Which edges use this vertex?

– Which faces border this edge?
– Which edges border this face?
– Which faces are adjacent to this face?

? These questions can be very time consuming if the underlying datastructure
doesnt support them efficiently.

? Fortunately there are a few solutions:

– Half-Edge
– Winged-Edge

? I recomend to do a google search on Half-Edge (flipcode has one with code,
linked from the project web page)

4

Half Edge
class Vertex {

public:

Vector3D m_coord;
Vector3D m_normal;
Edge* m_edge; // one of the half-edges emantating from the vertex

};

class Edge {
public:

Face* m_face; // face the half-edge borders
Vertex* m_start; // vertex at the start of the half-edge
Vertex* m_end; // vertex at the start of the half-edge

Edge* m_prev; // Previous half-edge
Edge* m_opp; // oppositely oriented adjacent half-edge
Edge* m_next; // next half-edge around the face

bool isOpposite(const Edge &edge) {

return (m_start == edge.m_end &&
m_end == edge.m_start);

}

};

class Face {
Edge* m_edge; // one of the half-edges bordering the face

Vector3D m_normal;

};

