Visible-surface detection
methods

Chapter 9

Categorization

» Two categories

- Image-space method
» Work on the projected objects (onto the
screen/framebuffer)

- Object-space method
» Work on the object it self
> Usualy Nypiogrs << Npivars
» But the complexity in the tests also differs

» S0 Image-space is most common

Image based

» The most common method is the Depth-Buffer
Method (Z-Buffer)

» Algorithm
- 1l initialize the depthBuffer to some value 1
- 2.initialize the frameBuffer to backgroundcolor
~ 3. For each polygon in scene:
» 3.1 For each projected (x,y) pixel in polygon, calculatc

If z < depthBuffer(x.y), then depthBuffer(xy)=z
— frameBuffer(x,y) = color of the projected pixel

Z-Buffer

» Advantages
~ Primitives can be processed immediately (Immediate mode graphics API)
— Well suited for HW, simple calculation per pixel

» Disadvantages
- Visibility is coupled with sampling (Sampling = aliasing)

- Excessive over-drawing, (the same pixel(x,y) can be accessed many times
for ascene)

A-Buffer

S e il o N Bl

- Extension of Z-buffer, in that each pixel in z-buffer, also contains alist of all
overlapping pixels usually sorted in depth order

’ Eacg position in the buffer can contain attributes of the surface covering the
pixel:

— Depth value,

- Color

~ Transparency

— Percent of areacoverage

- Surface identifier (so we can find the corresponding surface later)

- Thiscan be used for transparency and anti-aliasing calculations.

Depth sorting

» Object space method
» Sorts surfaces in order of decreasing depth

» Surfaces are scan-converted starting with the
surface of greatest depth.

» Refered to as painters algorithm

> You have al implemented it, itsin the book,
READ IT! (page 537-539)

BSP-TREE -

Binary space partition tree

Efficient when viewer moves,
and objects are static

We want to quickly
determine the back to front
relationship among the
objectsin the scene

If we first have the green
object, and then add the red,
part of the green will be
obscured. Therefore we cant
draw the green after the red.

BSP tree

An example of Object Space hidden surface algorithm
- Thetreeisbuilt asapreprocess, it is view independent
— Thetreeisthen during runtime quieried.

All internal nodes has two children, representing front and back of the splitting
line (planein 3D)

A 2D Example:
Associated with each node v in the tree
— Aregionr(v) and
- Aline(in 3D aplane) that intersects r(v)
- A splitting plane |, can be selected as aface of one polyhedra.

Each internal root is defined by a splitting line (plane), dividing the space into
infront of and behind the line (plane).

Any object split by the line should be divided into separate objects.

BSP Creation

BSP Traversad

o

We want to render polygonsin back to front
order

o

Inject the current viewpoint into the line
(plane) equation of the root.

- Isit behind? Traverse the |eft tree.
Otherwise select the right

» Onthe way back in the traversal, visit
traversed nodes.

Traversal of aBSP

BSP Creation pseudo code

BSP_tree BSP_nmke(list_of _polygons plist)
if (EMPTY(plist
rét urn mL; ”»
else {
root =sel ect _and_renove_pol y(plist);
for each remaining polygon, p, in plist {
if B\s on front of root
BSP_add_to_list(p, frontList)
elseif (p7is on back of root
! BSP_add_to_list(p, backList)
el se
BSP_split_pol ygon(p, root, frontPart, backPart)
BSP_add_to_list(frontPart, frontlList)
BSP_add_t o_l i st (backPart, backList)
return BSP_conbi ne_tree(BSP_make(frontList),

root,
BSP_nake(backList));

BSP Traversal Pseduo code

BSP_di spl ay(BSP_tree tree)

if (1EMPTY(tree)) {
if (observer located on front of root) {
BSP_di spl ay(tree->backChild);
di spl ayPol ygon(tree->root);
BSP_di spl ay(tree->front Child);

else {
BSP_di spl ay(tree->front Child);
di spl ayPol ygon(tree->root);
BSP_di spl ay(tree->backChild);

