
1

Visible-surface detection
methods

Chapter 9

Categorization

? Two categories
– Image-space method

? Work on the projected objects (onto the
screen/framebuffer)

– Object-space method
? Work on the object it self

? Usually nobjects << npixels

? But the complexity in the tests also differs

? So Image-space is most common

Image based

? The most common method is the Depth-Buffer
Method (Z-Buffer)

? Algorithm
– 1. initialize the depthBuffer to some value 1

– 2. initialize the frameBuffer to backgroundcolor

– 3. For each polygon in scene:

? 3.1 For each projected (x,y) pixel in polygon, calculate depth (z)

? If z < depthBuffer(x,y), then depthBuffer(x,y)=z

– frameBuffer(x,y) = color of the projected pixel

Depth
buffer

2

Z-Buffer

? Advantages
– Primitives can be processed immediately (Immediate mode graphics API)

– Well suited for HW, simple calculation per pixel

? Disadvantages

– Visibility is coupled with sampling (Sampling = aliasing)

– Excessive over-drawing, (the same pixel(x,y) can be accessed many times
for a scene)

A-Buffer

? Extension of Z-buffer, in that each pixel in z-buffer, also contains a list of all
overlapping pixels usually sorted in depth order

? Each position in the buffer can contain attributes of the surface covering the
pixel:

– Depth value,

– Color
– Transparency
– Percent of area coverage
– Surface identifier (so we can find the corresponding surface later)

? This can be used for transparency and anti-aliasing calculations.

depth Surface
data depth Surface

data

Depth sorting

? Object space method

? Sorts surfaces in order of decreasing depth

? Surfaces are scan-converted starting with the
surface of greatest depth.

? Refered to as painters algorithm

? You have all implemented it, its in the book,
READ IT! (page 537-539)

3

BSP-TREE
? Binary space partition tree

? Efficient when viewer moves,
and objects are static

? We want to quickly
determine the back to front
relationship among the
objects in the scene

? If we first have the green
object, and then add the red,
part of the green will be
obscured. Therefore we cant
draw the green after the red.

BSP tree
? An example of Object Space hidden surface algorithm

– The tree is built as a preprocess, it is view independent
– The tree is then during runtime quieried.

? All internal nodes has two children, representing front and back of the splitting
line (plane in 3D)

? A 2D Example:

? Associated with each node v in the tree

– A region r(v) and

– A line (in 3D a plane) that intersects r(v)
– A splitting plane ln can be selected as a face of one polyhedra.

? Each internal root is defined by a splitting line (plane), dividing the space into
infront of and behind the line (plane).

? Any object split by the line should be divided into separate objects.

BSP Creation

A

B
C

D
E
F

A

E2
F

B

C

D

E1

A

B

C

D

E1 E2

F

A
B

C

D

E

F

1
2

4

BSP Traversal

? We want to render polygons in back to front
order

? Inject the current viewpoint into the line
(plane) equation of the root.

? Is it behind? Traverse the left tree.
Otherwise select the right

? On the way back in the traversal, visit
traversed nodes.

Traversal of a BSP

A

B

C

D

E1 E2

F

A
B

C

D

E

F

1
2

1

2

3

4

5

5

6

BSP Creation pseudo code
BSP_tree BSP_make(list_of_polygons plist)

{
if (EMPTY(plist))
return NULL;

else {
root=select_and_remove_poly(plist);

for each remaining polygon, p, in plist {
if (p is on front of root)
BSP_add_to_list(p, frontList)

elseif (p is on back of root)
BSP_add_to_list(p, backList)

else {
BSP_split_polygon(p, root, frontPart, backPart)
BSP_add_to_list(frontPart, frontList)
BSP_add_to_list(backPart, backList)

}
}
return BSP_combine_tree(BSP_make(frontList),

root,
BSP_make(backList));

}
}

5

BSP Traversal Pseduo code
BSP_display(BSP_tree tree)

{
if (!EMPTY(tree)) {

if (observer located on front of root) {
BSP_display(tree->backChild);
displayPolygon(tree->root);
BSP_display(tree->frontChild);

}
else {

BSP_display(tree->frontChild);
displayPolygon(tree->root);
BSP_display(tree->backChild);

}

}

}

