Overview

* Representing Polygon Meshes
- Explicit
- Pointers to a vertex list
- Pointers to an edge list
» Parametric Cubic Curves
- Hermite Curves
- Bezier Curves
- B-Spline Curves
* NURBS

a‘;’-ﬂz Explicit Representation

Each polygon is represented by a list of vertex coordinates.

P= ((X:La ylizl)v(XZ’ Yo, ZZ)!”'a(Xnv Yns Zn))
Takes Space - for more than one polygon space is wasted,
because vertices are duplicated.

Takes Time - since there is no explicit representation of
edges and vertices, an interactive move of a vertex
involves finding all polygons that share the vertex.

Display - the shared edges are drawn twice which can cause
problems on pen plotters. Extra pixels can be lit when
edges are draw in opposite direction.

Representing
Polygon Meshes

Polygon mesh - a collection of edges, vertices and
polygons connected such that each edge is
shared by at most two polygons.

Polygon meshes can be represented many different
ways and are evaluated according to space and
time.

Pointers to a Vertex List

r

Each vertex is stored once in a vertex list
Vo= (Vi Vo, Vg, Vy) = (%, Vo 2o (X, ¥ 24))

P =124 P is a list of indices into a vertex list.
P, = (4,2,3) Vs



Pointers to a Vertex List

Advantages -
Space saved because each vertex is stored once.
Coordinates of a vertex can be changed easily.
Disadvantage -
Difficult to find polygons that share edges.
Draws polygon edges twice.

V.« Pointers to an Edge List
Advantages -
Displays edges rather than polygons.

Eliminates redundant clipping, transformation and
scan conversion.

Filled polygons are more easily clipped.

In all three cases, the determining of which edges are
incident to a vertex is not easy. All edges must be
inspected.

> =/ Pointers to an Edge List

A polygon is represented by a pointer to the edge list.

Vo= (Vi Vo, Va V) = (0, Y0200 (%40 Vi 24))

E,=(V.Vy, P, 4) P =(E,E, E)

E,=(V,Va, P 4)  P=(E, B, E) v,
E3 = (V3'V41P2’/1)
E,= (V4'V2’P11P2)
E5 = (V41V1'Pl'}“)

Plane Equation

The plane equation can be found by using the
coordinates of three vertices.

Ax+By+Cz+D=0

Where A, B, and C define the normal to the plane and
(x, Yy, z) is any point on the plane.
The planes normal can be computed as the cross
product between three points on the plane
PP, x RP;
A nonzero cross product defines a plane and D can be
found by substitution.



V.= Parametric Cubic Curves

* Cubic are a good degree because:

- It is high enough to allow some flexibility in the
curve design.

- Itis not so high that wiggles creep into the curve.

- It is the lowest degree that can specify a non-planar
space curve.

- A compromise between flexibility and speed of
computation.

{1 Parametric Cubic Curves

Q) =[x(t) y() z(t)]=T-C,where
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The parametric tangent vector of the curve

d d 9
—Qt)=—T-C=[3t* 2t 1 0|C
L QO=TC=] ]

Needed for continuity

Parametric Cubic Curves

Parametric Representation:

x=x@) y=y(t) z=z()
The cubic polynomials that define a curve
segment.

x(t) =a,t> + bt +c,t+d,,
yt)=a,t’ +bt*+ct+d,,

) =at’+bt?+ct+d,,0<t<1

.o/ Parametric Cubic Curves

The coefficient matrix C can be written as C = G-M, where M
is a 4x4 basis matrix. G is a four element matrix of geometric
constraints (geometry matrix).

Qt)=G-M-T
X(t) My My My My
m m m m
QW =|yw|=[6 G G 6] * * = ¥
2(t) Mz My My My
My My My My,




Parametric Cubic Curves

The blending function B are givenby B=M - T.
Q()=G-B

A curve segment Q(t) is defined by constraints on endpoints,
tangent vectors and continuity between curve segments.

Y= Cubic Hermite Curves

The Hermite geometry vector G, represents the four constraints
of the Hermite curve.
The x component is: Gy =[P, P, R R,]

Need to find the Hermite basis matrix M,;:
The constraints on x(0) and x(1) (the end points) can be found

by substitution:
X(0)=P, =G, -Mu[0 0 0 1]
X1)=P, =G, Myl 1 1 1]

Parametric Cubic Curves

Three major curve types:

Hermite -
defined by two endpoints and two endpoint tangent vectors.

Bézier -
defined by two endpoints and two other points that control
the endpoint tangent vector.

B-Spline -

defined by four control points and has C* and C? continuity at
the join points. Does not generally interpolate the control points.

Cubic Hermite Curves

The tangent vector constraint can be found by differentiation:
X(0)=R =G, -My[0 0 1 of

XM)=R, =G, -My[3 2 1 0f

The Hermite basis matrix M,, is the inverse of the 4x4 matrix
from the constraints.

01032 -301

010 2 -2 3 00
MH= =

0111 1 -2 10

1100 1 -1 .0 0



Cubic Hermite Curves

i Cubic Hermite Curves

¥t
X(t) =Gy, My - T= 4 Tangent vector
direction R, at point
(22 -3t +1)R + (-2t + 3%)P, + (t* - 22 + )R, + (P~ t?)R, P, magnitude varies
for each curve

£(t)

The Hermite blending

functions, labeled by the Tgngept vector X
elements of the geometry direction !?4 at point P
vector that they weight. P P,, magnitude fixed 4
1 for each curve ‘
> x(t
Cubic Bézier Curves V.= Cubic Bézier Curves
The Bézier geometry matrix G, consists of four control points. The Bézier blending functions B, are called the
Bernstein polynomials
Gs=[F, P, P P
B [1 2 3 4] Q(t)=GB‘MB‘T:GB'BB:
The Bézier basis matrix M is found by substitution: (1_,[)3 P+ 3t(1—t)2 P+ 3t2(1—t)P3 +t3P4
Q(t)=(Gg -Mpg)-My -T =Gg-(Mg -My ) T=Gg-Mg - T .
| The Bernstein polynomials,
l ) which are the weighting
functions for Bézier curves.
10-30 2 =301 -1 3 31 Bg, By, At t=0, only Bg, is nonzero,
00 3 0 -2 3 00 3 -6 3 0 B B so the curve interpolates
Mg = . = 22 B Py; similarly, at £= 1, only
00 0 -3I|1 -210 -3 3 0 0 Bg, is nonzero, and the
01 0 3 1 2100 1 0 0 0 curve interpolates Py,




Properties of the
Bézier Curve

The blending functions -
are non-negative and they all sum to unity

Convex hull property -
for te[0,1], each curve segment is completely within the
convex hull of the four control points.

Symmetry

Endpoint interpolation

A Bézier curve can have C° and C* continuity at the join points
(the three points must be distinct and collinear)

Cubic Bézier Curves

Degree 3 curves

cusp

V-« Bézier Curve Algorithms

Bézier curves satisfy the

r r-1 r-1
following recursion: i (1) = (1-1)8 (1) +8{1 (1)
de Casteljau algorithm

Bernstein polynomials !

Bézier Curves

Degree 6 curve




.= Higher Degree Curves

Geometric Continuity

» Assingle cubic Bezier or Hermite curve can only capture a
small class of curves.

« One solution is to raise the degree G° - when two curve segments join (same coordinate position).
- Qgﬁ\e/\;sdrggrr:ecgglt;ﬁlo’nﬁ ;Irl,e expense of more control points and G! - when two curve segments have equal tangent vectors at the
. L ) o A _ L
— Control is not local, one control point influences entire curve join point (1% derivative). E.g., TV, = KTV, (same direction).
« Alternate, most common solution is to join pieces of cubic . . N
curves together into piecewise cubic curves G2 - when both first and second parametric derivative of the curve
— Total curve can be broken into pieces, each of which is cubic. sections are proportional at their boundary.
— Local control: Each control point only influences a limited part of
the curve.

— Interaction and design is much easier.

Bézier Geometric

. ¥ Parametric Continuity
Continuity "4
C° - when two curve segments join (same coordinate position).
P., P., C! - when the tangent vectors at the curves join point are equal
° ' (direction and magnitude) (1% derivative).
n
Poo P, Cn - when direction and magnitude of (;jtn[Q(t)] through
] ,
o the n" derivative are equal at the join point.
Pl,l

In general, C* continuity implies G*, but the converse is generally
not true. cl= gt

Crcontinuity is more restrictive than G" continuity.



Achieving Continuity

» For Hermite curves, the user specifies the derivatives, so C*
is achieved simply by sharing points and derivatives across
the “knot”.

 For Bezier curves:

— They interpolate their endpoints, so C° is achieved by sharing
control points

— The parametric derivative is a constant multiple of the vector
joining the first/last 2 control points

— So Ctis achieved by setting P,,=P, ;=J, and making P, and J
and P, , collinear, with J-P,,=P, ;-]

Invariance

Translational invariance means that translating the control points and
then evaluating the curve is the same as evaluating and then translating
the curve.

Rotational invariance means that rotating the control points and then
evaluating the curve is the same as evaluating and then rotating the curve.

These properties are essential for parametric curves used in graphics.
Bezier curves, Hermite curves and B-splines are translational and
rotational invariant.

Some curves, rational splines (eg. NURBS), are also perspective
invariant

— Can do perspective transform of control points and then evaluate the curve.

Bézier Parametric
Continuity

P1,1

Disclaimer: PowerPoint curves are not Bezier curves, they are
interpolating piecewise quadratic curves! This diagram is an
approximation.

Bézier Curves

Invariant under

rotations

Symmetry /_\/




Cubic B-Splines y Cubic B-Splines

The B-spline geometry matrix GBSi for segment Q,

* Uniform Non-rational B-Splines :
Gg, =[Rs P, Py R 3<i<m

- Knot are spaced at equal interval of the parameter t.
* Non-uniform Non-rational B-Splines T, is the column vector

- The parameter interval between the knot values is [(t -t )3 (t-t )2 (t-t) 1]r
not necessarily uniform. i

) ) ) The B-spline formulation for a curve segment js
* Non-uniform Rational B-Splines (NURBS) Q)=G. M. T. t<tst -1 3 -31
The B-spli bl' t M ” _I\_/I 13 -6 30
e B-spline matrix, Mg_ | =
spline basis matrix, Mg ,is Mg 6l-3 0 3 o0
The blending function 1 4 1 0

is defined Bg =Myg T -

: Properties of

-« Uniform Nonrational B-spline

- Cubic B-Splines 4

The blending functions - B-spline curves are C° C* and C? continuous cubic polynomials
are non-negative and they all sum to unity. that do not interpolate the control points.

Convex hull property - m=9,m=3

m+1
control points
(Py, Py Prria)

for te[0,1], each point on the curve lies completely within
the convex hull of the control polygon.
Local control -

moving a control point affects only the four curve m-2

segments the control point controls. This makes curve segments

B-Splines more flexible than Bézier curves. Qs Qy---.Qp)
m-1 knots
Q, is defined
t<t<t,,, for

i+17

3<i<m



_Nonuniform Nonrational
a‘ B-SQline

 The parameter interval between the knot values is not
necessarily uniform.

« Blending functions vary for each interval, but they are non-
negative and sum to unity.

« Each curve segment is in the convex hull.

* The de Boor algorithm is used to display B-spline curves.

Letteft),t ]

dife)=

i+n-k -1 d_k—l(t)_l_ t _ti—l d_k—l(t)
i— i
i+n-k ~ i1 ti+n—k _ti—l

for k=1...,n-r, and i=1-n+k+1...,1 +1

_Nonuniform Nonrational
C 4 B-Spline

Advantage over uniform B-spline:
- continuity at the join points can be reduced from C? to C*
to C° to none, by using multiple knots.

- C° continuity means that the curve interpolates a control
point (do not get a straight line on each side of the
interpolated control point).

- start point and endpoint can easily be interpolated without
introducing linear segments.

- a knot (and a control point) can be inserted so the curve
can easily be reshaped.




Hermite Bezier Uniform Nonuniform

B-Spline  B-Spline
Convex Hull
defined by N/A  YES YES YES
points
Interpolates
some control YES YES NO NO
points
Interpolates all YES NO NO NO
control points
Ease of Good Best Average High
Subdivision
Continuities c’ c° c? c?
inherent in G° G° G? G?
representation
Continuities ct ct c? c?
achieved easily ~ G' G! G? G?



