
Overview

● Representing Polygon Meshes
– Explicit
– Pointers to a vertex list
– Pointers to an edge list

● Parametric Cubic Curves
– Hermite Curves
– Bezier Curves
– B-Spline Curves

● NURBS

Representing 
Polygon Meshes

Polygon mesh - a collection of edges, vertices and 
polygons connected such that each edge is 
shared by at most two polygons.

Polygon meshes can be represented many different 
ways and are evaluated according to space and 
time.

Explicit Representation

Each polygon is represented by a list of vertex coordinates.

Takes Space - for more than one polygon space is wasted, 
because vertices are duplicated.

Takes Time - since there is no explicit representation of 
edges and vertices, an interactive move of a vertex 
involves finding all polygons that share the vertex. 

Display - the shared edges are drawn twice which can cause 
problems on pen plotters.  Extra pixels can be lit when 
edges are draw in opposite direction.
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Pointers to a Vertex List
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P P is a list of indices into a vertex list.
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Each vertex is stored once in a vertex list



Pointers to a Vertex List

Advantages - 
Space saved because each vertex is stored once.
Coordinates of a vertex can be changed easily.

Disadvantage - 
Difficult to find polygons that share edges. 
Draws polygon edges twice.

Pointers to an Edge List

A polygon is represented by a pointer to the edge list.
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Pointers to an Edge List

Advantages - 
Displays edges rather than polygons.
Eliminates redundant clipping, transformation and 
scan conversion.
Filled polygons are more easily clipped.

In all three cases, the determining of which edges are 
incident to a vertex is not easy.  All edges must be 
inspected.

Plane Equation

The plane equation can be found by using the 
coordinates of three vertices.

Where A, B, and C define the normal to the plane and 
(x, y, z) is any point on the plane.

The planes normal can be computed as the cross 
product between three points on the plane

A nonzero cross product defines a plane and D can be 
found by substitution.
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Parametric Cubic Curves

● Cubic are a good degree because:
– It is high enough to allow some flexibility in the 

curve design.
– It is not so high that wiggles creep into the curve.
– It is the lowest degree that can specify a non-planar 

space curve.
– A compromise between flexibility and speed of 

computation.

Parametric Cubic Curves

Parametric Representation:

The cubic polynomials that define a curve 
segment.
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Parametric Cubic Curves
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The parametric tangent vector of the curve

Needed for continuity

and
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Parametric Cubic Curves

The coefficient matrix C can be written as C = G·M, where M
is a 4x4 basis matrix. G is a four element matrix of geometric 
constraints (geometry matrix). 
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Parametric Cubic Curves

The blending function B are given by B = M · T.  

BGtQ ⋅=)(

A curve segment Q(t) is defined by constraints on endpoints, 
tangent vectors and continuity between curve segments.

Parametric Cubic Curves

Three major curve types: 

Hermite - 
       defined by two endpoints and two endpoint tangent vectors. 

Bézier - 
       defined by two endpoints and two other points that control 
       the endpoint tangent vector.

B-Spline -
       defined by four control points and has C1  and C2  continuity at 
       the join points. Does not generally interpolate the control points.

Cubic Hermite Curves

The Hermite geometry vector GH represents the four constraints 
of the Hermite curve.
The x component is:

Need to find the Hermite basis matrix MH:
The constraints on x(0) and x(1) (the end points) can be found 
by substitution:
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The tangent vector constraint can be found by differentiation:

The Hermite basis matrix MH is the inverse of the 4x4 matrix
from the constraints.

Cubic Hermite Curves
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Cubic Hermite Curves
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Cubic Hermite Curves

Cubic Bézier Curves
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The Bézier geometry matrix GB consists of four control points.

The Bézier basis matrix MB is found by substitution:

Cubic Bézier Curves
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The Bézier blending functions BB are called the 
Bernstein polynomials



Properties of the
  Bézier Curve

The blending functions - 
are non-negative and they all sum to unity

Convex hull property - 
for t∈[0,1], each curve segment is completely within the 
convex hull of the four control points.

Symmetry

Endpoint interpolation

A Bézier curve can have C0 and C1 continuity at the join points
(the three points must be distinct and collinear)

Bézier Curve Algorithms
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Bézier curves satisfy the
following recursion:
de Casteljau algorithm

Bernstein polynomials
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Cubic Bézier Curves

Degree 3 curves

cusp

Bézier Curves

Degree 6 curve



• A single cubic Bezier or Hermite curve can only capture a 
small class of curves.

• One solution is to raise the degree.
– Allows more control, at the expense of more control points and 

higher degree polynomials.
– Control is not local, one control point influences entire curve

• Alternate, most common solution is to join pieces of cubic 
curves together into piecewise cubic curves
– Total curve can be broken into pieces, each of which is cubic.
– Local control: Each control point only influences a limited part of 

the curve.
– Interaction and design is much easier.

Higher Degree Curves Geometric Continuity

G0 - when two curve segments join (same coordinate position).

G1 - when two curve segments have equal tangent vectors at the 
        join point (1st derivative).  E.g., TV1 = kTV2 (same direction).

G2 - when both first and second parametric derivative of the curve
        sections are proportional at their boundary.

P0,0

P0,1 P0,2

J

P1,1 P1,2

P1,3

Bézier Geometric 
Continuity

Parametric Continuity

C0 - when two curve segments join (same coordinate position).

C1 - when the tangent vectors at the curves join point are equal
        (direction and magnitude) (1st derivative).  

Cn - when direction and magnitude of                        through
        
        the nth derivative are equal at the join point. 

In general, C1 continuity implies G1, but the converse is generally 
not true.

Cn continuity is more restrictive than Gn continuity.
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• For Hermite curves, the user specifies the derivatives, so C1 
is achieved simply by sharing points and derivatives across 
the “knot”.

• For Bezier curves:
– They interpolate their endpoints, so C0 is achieved by sharing 

control points
– The parametric derivative is a constant multiple of the vector 

joining the first/last 2 control points
– So C1 is achieved by setting P0,3=P1,0=J, and making P0,2 and J 

and P1,1 collinear, with J-P0,2=P1,1-J

Achieving Continuity

P0,0

P0,1 P0,2

J

P1,1

P1,2

P1,3

Disclaimer: PowerPoint curves are not Bezier curves, they are 
interpolating piecewise quadratic curves! This diagram is an 
approximation.

“knot”

Bézier Parametric 
Continuity

• Translational invariance means that translating the control points and 
then evaluating the curve is the same as evaluating and then translating 
the curve.

• Rotational invariance means that rotating the control points and then 
evaluating the curve is the same as evaluating and then rotating the curve.

• These properties are essential for parametric curves used in graphics.
• Bezier curves, Hermite curves and B-splines are translational and 

rotational invariant.
• Some curves, rational splines (eg. NURBS), are also perspective 

invariant
– Can do perspective transform of control points and then evaluate the curve.

Invariance Bézier Curves

Invariant under 

rotations

Symmetry



Cubic B-Splines

● Uniform Non-rational B-Splines
– Knot are spaced at equal interval of the parameter t. 

● Non-uniform Non-rational B-Splines
– The parameter interval between the knot values is 

not necessarily uniform.
● Non-uniform Rational B-Splines (NURBS)

The B-spline geometry matrix         for segment Qi 

Ti is the column vector

The B-spline formulation for a curve segment is

The B-spline basis matrix,          , is 

The blending function
is defined

Cubic B-Splines
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Properties of 
Cubic B-Splines

The blending functions - 
are non-negative and they all sum to unity.

Convex hull property - 
for t∈[0,1], each point on the curve lies completely within 
the convex hull of the control polygon.

Local control - 
moving a control point affects only the four curve 
segments the control point controls. This makes 
B-Splines more flexible than Bézier curves.

Uniform Nonrational B-spline

B-spline curves are C0, C1 and C2 continuous cubic polynomials
that do not interpolate the control points.

m = 9, m ≥ 3
m+1 
control points 
(P1, P2,…, Pm+1)
m-2
curve segments 
(Q3, Q4,…,Qm)
m-1 knots
Qi is defined
ti ≤ t ≤ ti+1 , for
3 ≤ i ≤ m



Nonuniform Nonrational 
B-Spline

• The parameter interval between the knot values is not 
necessarily uniform.

• Blending functions vary for each interval, but they are non-
negative and sum to unity.   

• Each curve segment is in the convex hull.
• The de Boor algorithm is used to display B-spline curves.

Let [ ]1, +∈ II ttt

( ) ( ) ( )td
tt

tttd
tt
tttd k

i
ikni

ik
i

ikni

knik
i

1

1

11
1

1

−

−−+

−−
−

−−+

−+

−
−

+
−
−

=

1,,1,,,1 +++−=−= IknIiandrnkfor

Nonuniform Nonrational 
B-Spline

Advantage over uniform B-spline:
- continuity at the join points can be reduced from C2 to C1 
to C0 to none, by using multiple knots.

- C0 continuity means that the curve interpolates a control 
point (do not get a straight line on each side of the 
interpolated control point).

- start point and endpoint can easily be interpolated without 
introducing linear segments.

- a knot (and a control point) can be inserted so the curve 
can easily be reshaped.  



Hermite Bezier Uniform
B-Spline

Nonuniform
B-Spline

Convex Hull
defined by
points

N/A YES YES YES

Interpolates
some control
points

YES YES NO NO

Interpolates all
control points

YES NO NO NO

Ease of
Subdivision

Good Best Average High

Continuities
inherent in
representation

C0

G0
C0

G0
C2

G2
C2

G2

Continuities
achieved easily

C1

G1
C1

G1
C2

G2
C2

G2

Number of
parameters
controlling a
curve segment

4 4 4 5


