
Overview

● 2D and 3D
– Translation 
– Rotation
– Scaling

● Homogeneous Coordinates
● Coordinate Systems 

Geometric Transformations
2D Translation

• Repositioning an object along a straight line path from one coordinate 
location to another.

● Adding translation distances, tx and ty, to the original coordinate 
position.

● Rigid-body transformation:
– Moves object without deformation.
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Matrix form:

P' = P + T

Geometric Transformations
2D Rotation

• Repositioning an object along a circular path.
• Need a rotation angle θ and the position (xr, yr) of the pivot point which 

the object is to be rotated about.
• Positive rotation angles give counterclockwise rotation and negative 

angles give clockwise rotation.
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Geometric Transformations
2D Rotation

Original polar coordinates:

θφ sincos ryrx ==

After substitution:
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Matrix form:
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Rotation about origin:

P' = R · P



Geometric Transformations
2D Rotation

After substitution:
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Rotation about an arbitrary pivot point:

Geometric Transformations
2D Rotation

● Rigid-body transformation
● A line is rotated by applying the rotation equation to 

each of the line endpoints and redrawing the line 
between the tow endpoints.

● Polygons are rotated by moving each vertex through 
the specified rotation angle and then redraw.

● Curves are rotated by repositioning the defining 
points and redrawing the curve.

• Alters the size of an object.
• An object is scaled by multiplying the coordinates (x,y) of each vertex 

by a scaling factor sx and sy.
• sx and sy can be any positive value.

– Values < 1 reduces the size of the object.
– Values > 1 produces and enlargement.
– If sx and sy is 1, then the size is unchanged.
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Matrix form:

P' = S · P

Geometric Transformations
 2D Scaling

• Uniform scaling:
– sx and sy have the same value.

• Differential scaling:
– Unequal values of sx and sy.

• Scaling values < 1 moves the object closer to the origin.
• Scaling values > 1 moves the object further away from the origin.
• Fixed point:

– To control the location after scaling.
– Coordinates for the fixed point (xf, yf) can be any vertices, 

centroids or any other position. 
– xf(1-sx) and yf(1-sy) are constants for all

points in the object.
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Geometric Transformations
 2D Scaling



Homogeneous Coordinates

Problem:
● Translation is addition and scaling and rotation are 

multiplication of matrices.

Solved by:
● Using homogeneous coordinates instead of cartesian 

coordinates. Then translation, scaling and rotation can be 
expressed in a general matrix form (multiplication).

P' = P + T
P' = R · P
P' = S · P

Homogeneous Coordinates

• A 2D coordinate P1(x1,y1) lying in 3D can be represented as 
P(x,y,z) = P(hx1,hy1,h).

• Given P(m,n,h) in homogeneous coordinates the cartesian coordinates 
can be found  by P(m/h,n/h,1).

• Each point can have many
different homogeneous
coordinate representations.

2D Translation
Homogeneous Coordinates

Matrix representation: ,
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P' = T(tx,ty) · P

The inverse translation matrix is obtained by replacing
tx and ty with -tx and -ty.
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Translating from P to P' to P'':

2D Rotation
Homogeneous Coordinates

Matrix representation: ,
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P' = R(θ) · P

The inverse rotation matrix is obtained by replacing θ by -θ.
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Two successive rotations:



2D Scaling
Homogeneous Coordinates

Matrix representation: ,
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P' = S(sx,sy) · P

The inverse scaling matrix is obtained by replacing
sx and sy with 1/sx and 1/sy.
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Scaling from P to P' to P'':

Composition of 2D 
Transformations

● OpenGL provides a rotation function only about the origin.
● To rotate an object about an arbitrary point (pivot point) we 

need to do a sequence of three fundamental transformations.
1. Translate the pivot point to origin.
2. Rotate about the origin.
3. Translate the pivot point back to the original position.
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T(x1, y1) · R(θ) · T(-x1, -y1) = 

Composition of 2D 
Transformation

Composition of 2D Transformation
Examples



Affine Transformation

● Preserves parallelism of lines, but not lengths 
and angles.

● Rotation, translation and reflection preserves 
angles and lengths as well.

● Shear and scaling preserves only parallelism.
● These properties also applies to 3D.

Shear Transformation

● Distorts the shape of an object such that the transformed 
shape appears as if the object were composed of internal 
layer that had been caused  to slide over each other.

x-direction shear of unit cube. y-direction shear of unit cube.
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Reflection Transformation

● Produces a mirror image of an object.
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3D Transformations
3D Translation
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P' = T · PA 4 by 4 homogenized matrix

The inverse translation matrix is obtained by replacing
tx, ty and tz with -tx,-ty and -tz. 



3D Transformation
3D Translation

● Each of the defining points are translated.
● If the object is a polygon, each vertex of the 

polygon is translated.

(x',y',z')

(x,y,z)
T = (tx, ty, tz) T = (tx, ty, tz)

3D Transformations
3D Scaling
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P' = S ·PA 4 by 4 homogenized matrix

The inverse scaling matrix is obtained by replacing
sx, sy and sz with 1/sx,1/sy and 1/sz. 

3D Transformation
3D Scaling

Scaling with respect to a fixed position ( )
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3D Transformation
3D Rotation
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Rotation about y-axis



Geometric Transformation
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A transformation matrix of the form:   (translation and rotation)

is called special orthogonal.

It preserves angles and length.
The inverse is the transpose.

Each row vector in the matrix has 3 properties:

1.  Each is a unit vector
2.  Each is perpendicular to the other
3.  The first and second vector will be rotated by R(θ) 
     to lie on the positive x and y axes, respectively.

Composition of 3D 
Transformation

Initial position Final position
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Two ways to achieve the transformation:

1. Compose the transformation  T, Rx, Ry, Rz.
2. Using the properties of the orthogonal matrix. 

Composition of 3D 
Transformation

Done the same way as 2D composition.

1. Translate P1 to the origin
2. Rotate about the y-axis (P1,P2 lies in the (y,z) plane)
3. Rotate about the x-axis (P1,P2 lies on the z-axis)
4. Rotate about the z-axis (P1,P3 lies in the (y,z) plane)

The composite matrix will be
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Composition of 3D 
Transformation

Rz will rotate into z-axis.
Create the rotation matrix by using cross product.
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Ry will rotate into y-axis.
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Coordinate Systems

Right handed:

x
z

y

Positive rotation gives 
counterclockwise rotation

Left handed:

x

z

y

Positive rotation is clockwise


