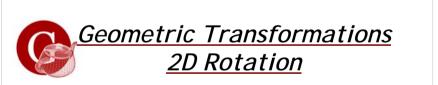
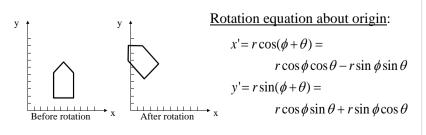


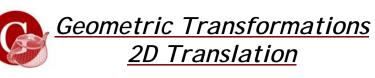
<u>Overview</u>

- 2D and 3D
 - Translation
 - Rotation
 - Scaling
- Homogeneous Coordinates
- Coordinate Systems

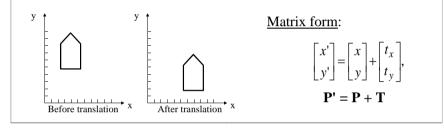


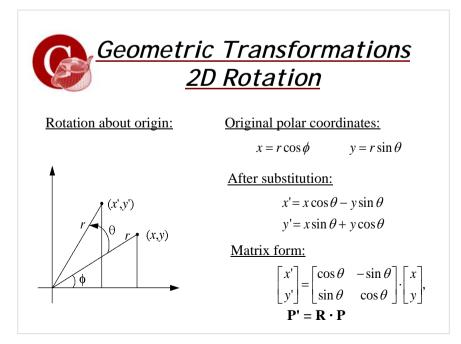
- Repositioning an object along a circular path.
- Need a rotation angle θ and the position (x_r, y_r) of the pivot point which the object is to be rotated about.
- Positive rotation angles give counterclockwise rotation and negative angles give clockwise rotation.

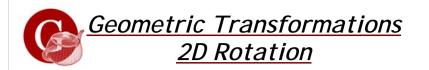




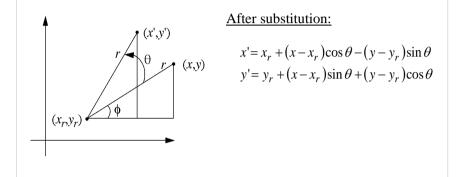
- Repositioning an object along a straight line path from one coordinate location to another.
- Adding translation distances, t_x and t_y, to the original coordinate position.
 <u>Rigid-body transformation</u>: x'= x + t_x y'= y + t_y
- <u>Rigid-body transformation</u>: x
 Moves object without deformation.

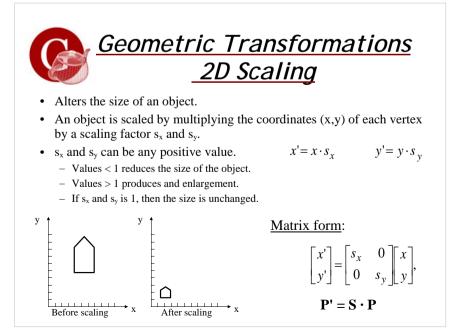


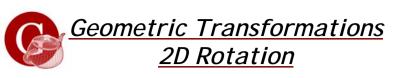




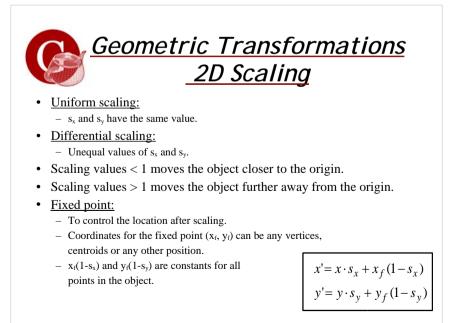
Rotation about an arbitrary pivot point:







- Rigid-body transformation
- A line is rotated by applying the rotation equation to each of the line endpoints and redrawing the line between the tow endpoints.
- Polygons are rotated by moving each vertex through the specified rotation angle and then redraw.
- Curves are rotated by repositioning the defining points and redrawing the curve.



Homogeneous Coordinates

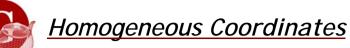
 $\mathbf{P'} = \mathbf{R} \cdot \mathbf{P}$

Problem:

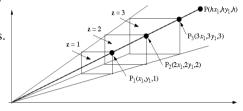
• Translation is addition and scaling and rotation are multiplication of matrices. $\mathbf{P'} = \mathbf{P} + \mathbf{T}$

Solved by:

 $\mathbf{P'} = \mathbf{S} \cdot \mathbf{P}$ • Using homogeneous coordinates instead of cartesian coordinates. Then translation, scaling and rotation can be expressed in a general matrix form (multiplication).

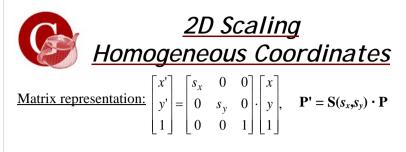


- A 2D coordinate $P_1(x_1,y_1)$ lying in 3D can be represented as $P(x,y,z) = P(hx_1,hy_1,h).$
- Given P(m,n,h) in homogeneous coordinates the cartesian coordinates can be found by P(m/h,n/h,1).
- Each point can have many different homogeneous coordinate representations.



Home	<u>2D Translation</u> ogeneous Coordinates	
Matrix representation:	$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, \mathbf{P'} = \mathbf{T}(t_x, t_y) \cdot \mathbf{P}$	
The inverse translation t_x and t_y with $-t_x$ and $-t_y$.	matrix is obtained by replacing	
<u>Translating from P to P</u>	$\underbrace{\text{to P'':}}_{0 0 1 t_{y_2}} \begin{bmatrix} 1 & 0 & t_{x_1} \\ 0 & 1 & t_{y_2} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & t_{x_1} \\ 0 & 1 & t_{y_1} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_{x_1} + t_{y_1} \\ 0 & 1 & t_{y_1} + t_{y_1} \\ 0 & 0 & 1 \end{bmatrix}$	x ₂ y ₂

<u>2D Rotation</u> <u>Homogeneous Coordinates</u>
<u>Matrix representation:</u> $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$, P' = R(θ) · P
The inverse rotation matrix is obtained by replacing θ by - θ . <u>Two successive rotations:</u>
$\begin{bmatrix} \cos\theta_2 & -\sin\theta_2 & 0\\ \sin\theta_2 & \cos\theta_2 & 0\\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0\\ \sin\theta_1 & \cos\theta_1 & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) & 0\\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) & 0\\ 0 & 0 & 1 \end{bmatrix}$



The inverse scaling matrix is obtained by replacing s_x and s_y with $1/s_x$ and $1/s_y$.

Scaling from P to P' to P":

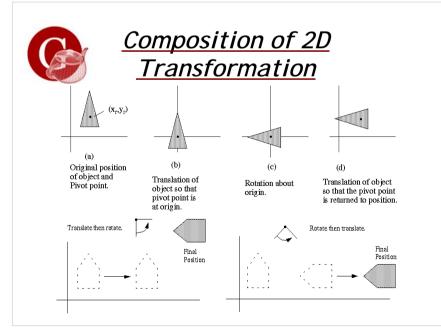
s_{x_2}	0	$0] [s_{x_1}]$	0	0	$\left[s_{x_1} \cdot s_{x_2}\right]$	0	0
0	s_{y_2}	$0 \cdot 0$	s_{y_1}	0 =	0	$s_{x_1} \cdot s_{x_2}$	0
0	0	$\begin{bmatrix} 0\\0\\1\end{bmatrix} \cdot \begin{bmatrix} s_{x_1}\\0\\0\end{bmatrix}$	0	1	0	0	1

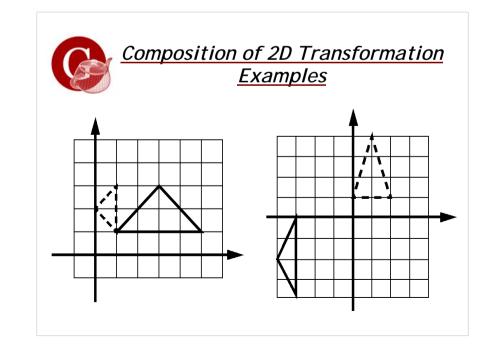
<u>Composition of 2D</u> <u>Transformations</u>

- OpenGL provides a rotation function only about the origin.
- To rotate an object about an arbitrary point (pivot point) we need to do a sequence of three fundamental transformations.
 - 1. Translate the pivot point to origin.
 - 2. Rotate about the origin.
 - 3. Translate the pivot point back to the original position.

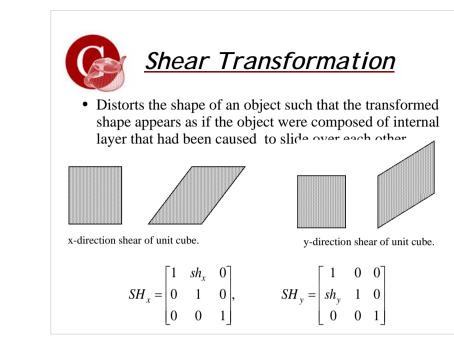
$\mathbf{T}(x_1, y_1) \cdot \mathbf{R}(\theta) \cdot \mathbf{T}(-x_1, -y_1) =$

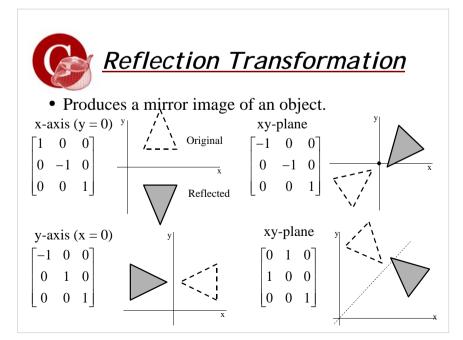
$\begin{bmatrix} 1 & 0 \end{bmatrix}$	$x_1] \left[\cos \theta \right]$	$-\sin\theta$	0][1	0	$-x_1$ $\left[\cos\theta\right]$	$-\sin\theta$	$x_1(1-\cos\theta)+y_1\sin\theta$
0 1	$y_1 \mid \sin \theta$	$\cos\theta$	0 0	1	$-y_1 = \sin \theta$	$\cos\theta$	$ \begin{array}{c} x_1(1-\cos\theta) + y_1\sin\theta \\ y_1(1-\cos\theta) - x_1\sin\theta \\ 1 \end{array} \right] $
[0 0		0	1][0	0	ΙΙ[Ο	0	I

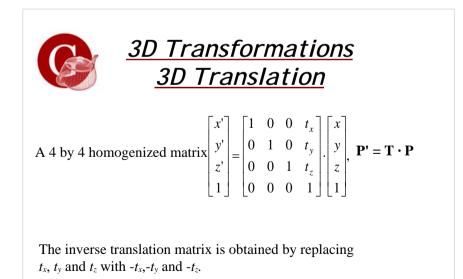




- Preserves parallelism of lines, but not lengths and angles.
- Rotation, translation and reflection preserves angles and lengths as well.
- Shear and scaling preserves only parallelism.
- These properties also applies to 3D.

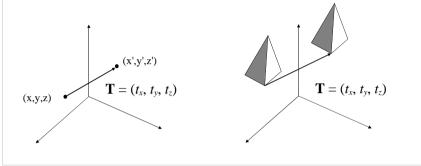


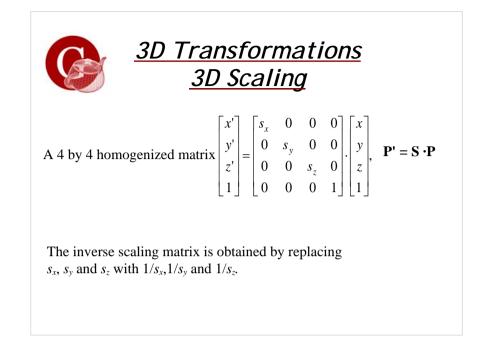


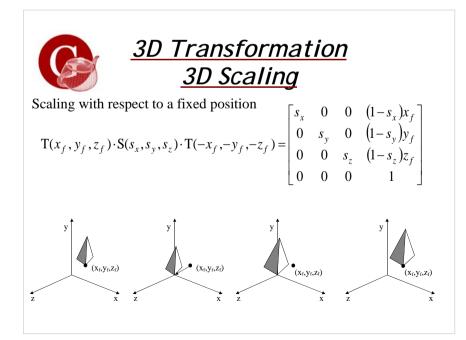


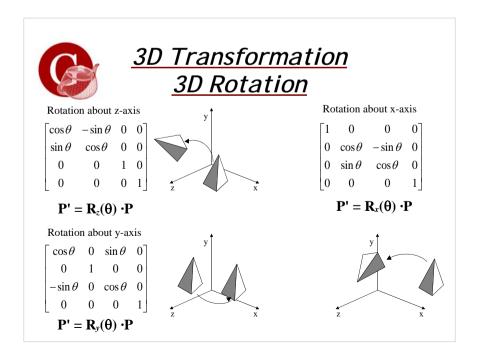
<u>3D Transformation</u> <u>3D Translation</u>

- Each of the defining points are translated.
- If the object is a polygon, each vertex of the polygon is translated.









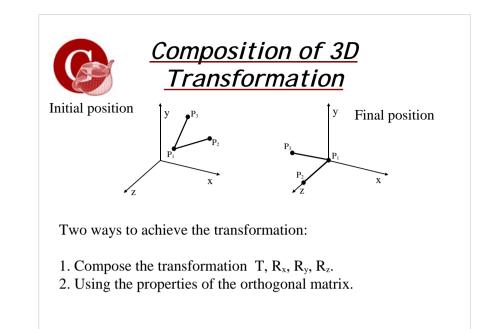
Geometric Transformation

A transformation matrix of the form: (translation and rotation)

$\lceil r_1 \rceil$	r_{12}	t]		$\int r_{11}$	r_{12}	r_{13}	t_x	
111	r_{22}	~	or	r_{21}	r_{22}	r_{23}	t_y	is called special orthogonal.
0	0	1		r_{31}	<i>r</i> ₃₂	<i>r</i> ₃₃	t _z	It preserves angles and length.
L		_		0	0	0	1	It preserves angles and length. The inverse is the transpose.

Each row vector in the matrix has 3 properties:

- 1. Each is a unit vector
- 2. Each is perpendicular to the other
- The first and second vector will be rotated by R(θ) to lie on the positive x and y axes, respectively.



<u>Composition of 3D</u> <u>Transformation</u>

Done the same way as 2D composition.

- 1. Translate P_1 to the origin
- 2. Rotate about the y-axis $(P_1,P_2 \text{ lies in the } (y,z) \text{ plane})$
- 3. Rotate about the x-axis (P_1 , P_2 lies on the z-axis)
- 4. Rotate about the z-axis $(P_1,P_3$ lies in the (y,z) plane)

The composite matrix will be

 $R_z(\alpha) \cdot R_x(\phi) \cdot R_y(\theta - 90) \cdot T(-x_1, -y_1, -z_1)$

Tra	Dosition of 3D Insformation on matrix by using cross product.
R _z will rotate into z-axis	$ R_{z} = \begin{bmatrix} r_{1z} & r_{2z} & r_{3z} \end{bmatrix}^{T} = \frac{P_{1}P_{2}}{\ P_{1}P_{2}\ } $
R _x will rotate into x-axis	$R_{x} = \begin{bmatrix} r_{1x} & r_{2x} & r_{3x} \end{bmatrix}^{T} = \frac{P_{1}P_{3} \times P_{1}P_{2}}{\ P_{1}P_{3} \times P_{1}P_{2}\ }$
R _y will rotate into y-axis	$R_{y} = \begin{bmatrix} r_{1y} & r_{2y} & r_{3y} \end{bmatrix}^{T} = \frac{R_{z} \times R_{x}}{\ \mathbf{p} - \mathbf{p}\ }$
Composite Matrix $\begin{bmatrix} r_{1x} & r_{2x} & r_{3x} \\ r_{1y} & r_{2y} & r_{3y} \\ r_{1z} & r_{2z} & r_{3z} \\ 0 & 0 & 0 \end{bmatrix}$	$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \cdot T(-x_1, -y_1, -z_1) = R \cdot T $

