
Overview

● 2D and 3D
– Translation
– Rotation
– Scaling

● Homogeneous Coordinates
● Coordinate Systems

Geometric Transformations
2D Translation

• Repositioning an object along a straight line path from one coordinate
location to another.

● Adding translation distances, tx and ty, to the original coordinate
position.

● Rigid-body transformation:
– Moves object without deformation.

yx tyytxx +=+= ''

x

y

x

y

Before translation After translation

,
'
'

⎥
⎦

⎤
⎢
⎣

⎡
+⎥⎦

⎤
⎢⎣

⎡
=⎥⎦

⎤
⎢⎣

⎡

y

x

t
t

y
x

y
x

Matrix form:

P' = P + T

Geometric Transformations
2D Rotation

• Repositioning an object along a circular path.
• Need a rotation angle θ and the position (xr, yr) of the pivot point which

the object is to be rotated about.
• Positive rotation angles give counterclockwise rotation and negative

angles give clockwise rotation.

x

y

x

y

Before rotation After rotation

Rotation equation about origin:

θφθφ
θφ

θφθφ
θφ

cossinsincos
)sin('

sinsincoscos
)cos('

rr
ry

rr
rx

+
=+=

−
=+=

Geometric Transformations
2D Rotation

Original polar coordinates:

θφ sincos ryrx ==

After substitution:

θθ
θθ

cossin'
sincos'

yxy
yxx

+=
−=

Matrix form:

,
cossin
sincos

'
'

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

y
x

θθ
θθ

Rotation about origin:

P' = R · P

Geometric Transformations
2D Rotation

After substitution:

() ()
() () θθ

θθ
cossin'
sincos'

rrr

rrr

yyxxyy
yyxxxx

−+−+=
−−−+=

Rotation about an arbitrary pivot point:

Geometric Transformations
2D Rotation

● Rigid-body transformation
● A line is rotated by applying the rotation equation to

each of the line endpoints and redrawing the line
between the tow endpoints.

● Polygons are rotated by moving each vertex through
the specified rotation angle and then redraw.

● Curves are rotated by repositioning the defining
points and redrawing the curve.

• Alters the size of an object.
• An object is scaled by multiplying the coordinates (x,y) of each vertex

by a scaling factor sx and sy.
• sx and sy can be any positive value.

– Values < 1 reduces the size of the object.
– Values > 1 produces and enlargement.
– If sx and sy is 1, then the size is unchanged.

yx syysxx ⋅=⋅= ''

x

y

x

y

Before scaling After scaling

,
0

0
'
'

⎥⎦

⎤
⎢⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥⎦

⎤
⎢⎣

⎡
y
x

s
s

y
x

y

x

Matrix form:

P' = S · P

Geometric Transformations
 2D Scaling

• Uniform scaling:
– sx and sy have the same value.

• Differential scaling:
– Unequal values of sx and sy.

• Scaling values < 1 moves the object closer to the origin.
• Scaling values > 1 moves the object further away from the origin.
• Fixed point:

– To control the location after scaling.
– Coordinates for the fixed point (xf, yf) can be any vertices,

centroids or any other position.
– xf(1-sx) and yf(1-sy) are constants for all

points in the object.
)1('

)1('

yfy

xfx

sysyy

sxsxx

−+⋅=

−+⋅=

Geometric Transformations
 2D Scaling

Homogeneous Coordinates

Problem:
● Translation is addition and scaling and rotation are

multiplication of matrices.

Solved by:
● Using homogeneous coordinates instead of cartesian

coordinates. Then translation, scaling and rotation can be
expressed in a general matrix form (multiplication).

P' = P + T
P' = R · P
P' = S · P

Homogeneous Coordinates

• A 2D coordinate P1(x1,y1) lying in 3D can be represented as
P(x,y,z) = P(hx1,hy1,h).

• Given P(m,n,h) in homogeneous coordinates the cartesian coordinates
can be found by P(m/h,n/h,1).

• Each point can have many
different homogeneous
coordinate representations.

2D Translation
Homogeneous Coordinates

Matrix representation: ,
1100

10
01

1
'
'

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
y
x

t
t

y
x

y

x
P' = T(tx,ty) · P

The inverse translation matrix is obtained by replacing
tx and ty with -tx and -ty.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
+

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
10
01

100
10
01

100
10
01

21

21

1

1

2

2

yy

xx

y

x

y

x

tt
tt

t
t

t
t

Translating from P to P' to P'':

2D Rotation
Homogeneous Coordinates

Matrix representation: ,
1100

0cossin
0sincos

1
'
'

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
y
x

y
x

θθ
θθ

P' = R(θ) · P

The inverse rotation matrix is obtained by replacing θ by -θ.

() ()
() ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++
+−+

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

100
0cossin
0sincos

100
0cossin
0sincos

100
0cossin
0sincos

2121

2121

11

11

22

22

θθθθ
θθθθ

θθ
θθ

θθ
θθ

Two successive rotations:

2D Scaling
Homogeneous Coordinates

Matrix representation: ,
1100

00
00

1
'
'

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
y
x

s
s

y
x

y

x
P' = S(sx,sy) · P

The inverse scaling matrix is obtained by replacing
sx and sy with 1/sx and 1/sy.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⋅
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
00
00

100
00
00

100
00
00

21

21

1

1

2

2

xx

xx

y

x

y

x

ss
ss

s
s

s
s

Scaling from P to P' to P'':

Composition of 2D
Transformations

● OpenGL provides a rotation function only about the origin.
● To rotate an object about an arbitrary point (pivot point) we

need to do a sequence of three fundamental transformations.
1. Translate the pivot point to origin.
2. Rotate about the origin.
3. Translate the pivot point back to the original position.

()
()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−
+−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
sincos1cossin
sincos1sincos

100
10
01

100
0cossin
0sincos

100
10
01

11

11

1

1

1

1

θθθθ
θθθθ

θθ
θθ

xy
yx

y
x

y
x

T(x1, y1) · R(θ) · T(-x1, -y1) =

Composition of 2D
Transformation

Composition of 2D Transformation
Examples

Affine Transformation

● Preserves parallelism of lines, but not lengths
and angles.

● Rotation, translation and reflection preserves
angles and lengths as well.

● Shear and scaling preserves only parallelism.
● These properties also applies to 3D.

Shear Transformation

● Distorts the shape of an object such that the transformed
shape appears as if the object were composed of internal
layer that had been caused to slide over each other.

x-direction shear of unit cube. y-direction shear of unit cube.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
01
001

,
100
010
01

yy

x

x shSH
sh

SH

Reflection Transformation

● Produces a mirror image of an object.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

100
010
001

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
001
010

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

100
010
001

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−

100
010
001

x-axis (y = 0)

y-axis (x = 0)

xy-plane

xy-plane

Original

Reflected

x

x

y

y

x

x

y

y

3D Transformations
3D Translation

,

11000
100
010
001

1
'
'
'

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

z
y
x

t
t
t

z
y
x

z

y

x

P' = T · PA 4 by 4 homogenized matrix

The inverse translation matrix is obtained by replacing
tx, ty and tz with -tx,-ty and -tz.

3D Transformation
3D Translation

● Each of the defining points are translated.
● If the object is a polygon, each vertex of the

polygon is translated.

(x',y',z')

(x,y,z)
T = (tx, ty, tz) T = (tx, ty, tz)

3D Transformations
3D Scaling

,

11000
000
000
000

1
'
'
'

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

z
y
x

s
s

s

z
y
x

z

y

x

P' = S ·PA 4 by 4 homogenized matrix

The inverse scaling matrix is obtained by replacing
sx, sy and sz with 1/sx,1/sy and 1/sz.

3D Transformation
3D Scaling

Scaling with respect to a fixed position ()
()
()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=−−−⋅⋅

1000
100
100
100

),,(T),,(S),,(T
fzz

fyy

fxx

fffzyxfff zss
yss
xss

zyxssszyx

x

y

z x

y

z x

y

z x

y

z

(xf,yf,zf) (xf,yf,zf) (xf,yf,zf) (xf,yf,zf)

3D Transformation
3D Rotation

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

θθ
θθ

x

y

z

x

y

zx

y

z

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0cossin0
0sincos0
0001

θθ
θθ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0cos0sin
0010
0sin0cos

θθ

θθ

P' = Rz(θ) ·P P' = Rx(θ) ·P

P' = Ry(θ) ·P

Rotation about z-axis Rotation about x-axis

Rotation about y-axis

Geometric Transformation

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1000
100 333231

232221

131211

2221

1211

z

y

x

y

x

trrr
trrr
trrr

ortrr
trr

A transformation matrix of the form: (translation and rotation)

is called special orthogonal.

It preserves angles and length.
The inverse is the transpose.

Each row vector in the matrix has 3 properties:

1. Each is a unit vector
2. Each is perpendicular to the other
3. The first and second vector will be rotated by R(θ)
 to lie on the positive x and y axes, respectively.

Composition of 3D
Transformation

Initial position Final position

x
z

y

P1

P3

P2

x
z

y

P1

P3

P2

Two ways to achieve the transformation:

1. Compose the transformation T, Rx, Ry, Rz.
2. Using the properties of the orthogonal matrix.

Composition of 3D
Transformation

Done the same way as 2D composition.

1. Translate P1 to the origin
2. Rotate about the y-axis (P1,P2 lies in the (y,z) plane)
3. Rotate about the x-axis (P1,P2 lies on the z-axis)
4. Rotate about the z-axis (P1,P3 lies in the (y,z) plane)

The composite matrix will be

() () ()),,(90 111 zyxTRRR yxz −−−⋅−⋅⋅ θφα

Composition of 3D
Transformation

Rz will rotate into z-axis.
Create the rotation matrix by using cross product.

[]
21

21
321 PP

PPrrrR T
zzzz ==

Rx will rotate into x-axis. []
2131

2131
321 PPPP

PPPPrrrR T
xxxx ×

×
==

Ry will rotate into y-axis.
[]

xz

xzT
yyyy RR

RRrrrR
×
×

== 321

TRzyxT
rrr
rrr
rrr

zzz

yyy

xxx

⋅=−−−⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

),,(

1000
0
0
0

111
321

321

321

Composite
Matrix

Coordinate Systems

Right handed:

x
z

y

Positive rotation gives
counterclockwise rotation

Left handed:

x

z

y

Positive rotation is clockwise

