

### <u>Overview</u>

- Antialiasing Techniques
  - Super sampling
  - Area sampling
    - unweighted
    - weighted
- Clipping
  - Cohen-Sutherland line clipping algorithm
  - Liang-Barsky line clipping algorithm
  - Sutherland-Hogeman polygon clipping



# <u>Antialiasing</u>

Aliasing, jagged edges or staircasing can be reduced by:

- Higher screen resolution
  - Need a huge frame buffer
- Antialiasing techniques

   Vary pixel intensities along to smooth the edge.





- Super Sampling
  - Compute intensities at sub-pixel grid positions and combine the results to obtain the pixel intensity.
- Unweighted Area Sampling
  - Find pixel intensity by calculating the areas of overlap of each pixel within the objects to be displayed.
  - Pixel intensity is proportional to the amount of area covered.



- Weighted Area Sampling
  - Define a weighting function that determines the influence on the intensity of the pixel.
- Pixel Phasing
  - Lines are smoothed by moving the electron beam to a closer approximate of the mathematical line.



### <u>Supersampling</u> (zero line width)

- Example: a straight line on a gray scale display
- Divide each pixel into sub-pixels.
- The number of intensities are the max number of sub-pixels selected on the subpixel line segment within a pixel.



Subpixels selected by Bresenham's algorithm



## <u>Supersamling</u> (finite line width)

- The intensity level for each pixel is proportional to the number of sub-pixels inside the polygon representing the line area.
- Line intensity is distributed over more pixels.





<u>Supersamling</u> (finite line width)

**Disadvantages** 

- More calculations involved to identify interior pixels.
- Positioning of the line depends on the slope of the line.
  - $45^{\circ}$  line centered in polygon
  - Horizontal or vertical line
    - line path on polygon boundary
  - |m| < 1
    - line path closer to lower boundary
  - -|m| > 1
    - line path closer to upper boundary





- 1. The intensity of a pixel decreases as the distance between the pixel center and the edge increases.
- 2. The primitive must intersect the pixel to have some effect.
- 3. Equal areas contribute equally to the pixel intensity.





- Equal areas can contribute to unequal intensity. (We change property 3).
- Circular pixel geometry.

# Weighting (Filter) Function

- Determines the influence on the intensity of a pixel of a given small area dA of a primitive.
- This function is constant for unweighted and decreases with increasing distance for weighted.
- Total intensity is the integral of the weighting (filter) function over the area of overlap.
- $W_s$  is the volume (always between 0 and 1)
- $I = I_{max} \bullet W_s$



Unweighted Area Sampling

Box Filter:

- $W_s$  is a wedge of the box.
- Height of the box normalizes to 1 (box volume = 1)
- A thick line covering the entire pixel has intensity:
- $I = I_{max} \bullet 1 = I_{max}$





Cone Filter:

- A circular cone, where the base is the radius of the unit distance of the integer grid.
- Rotational symmetry.
- Linear decrease of the function with radial distance.
- Normalized to 1 (volume under entire cone is 1)





### Filter Functions

- Optimal filters are computationally more expensive.
- Cone filters are a very reasonable compromise between cost







# Anti-Aliasing

#### Pixel Phasing:

• Pixel positions can be shifted by a fraction of a pixel diameter (1/4, 1/2, or 3/4) to plot points closer to the mathematical line.

#### Line Intensity Differences:

- The diagonal line appears less bright than the horizontal. (The diagonal line is longer than the horizontal line by a factor of sqrt(2)).
  - Total intensity is proportional to their length.



### Clipping Algorithms

#### Line Clipping:

- Cohen-Suterland (encoding)
  - Oldest and most commonly used
- Nicholl-Lee-Nicholl (encoding) (more efficient)
- Cyrus-Beck and Liang-Barsky (parametric)
  - More efficient than Cohen-Sutherland

#### Polygon Clipping:

- Sutherland-Hodgeman (divide and conquer strategy)
- Weiler-Atherton (modified for concave polygons)

| Cohen-Sutherland<br>Line-Clipping                                                                                                     |                                 |           |         |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------|---------|
| 1. Encode end points                                                                                                                  | 1001                            | 1000      | 1010    |
| Bit 0 = point is left of window<br>Bit 1 = point is right of window<br>Bit 2 = point is below window<br>Bit 3 = point is above window | 0001                            | 0000      | 0010    |
| A = point is above window A                                                                                                           | 0101                            | 0100      | 0110    |
| 2. If $C_1$ , $C_2 \neq 0$ then $P_1P_2$ is                                                                                           |                                 |           |         |
| v trivially rejecte                                                                                                                   | d                               |           |         |
| 3. If $C_1 C_2 = 0$ then $P_1P_2$ is                                                                                                  | C <sub>1</sub> = Bit code of P1 |           |         |
| trivially accept                                                                                                                      | ed<br>C <sub>2</sub>            | = Bit cod | e of P2 |
| 4. Otherwise subdivide and go to step 1 with new segment.                                                                             |                                 |           |         |





<u>Liang-Barsky</u> Line-Clipping

- More efficient than Cohen-Sutherland
- Clipping conditions:
  - A line is inside the clipping region for values of t such that:

$$x_{\min} \le x_1 + t\Delta x \le x_{\max}$$
  $\Delta x = x_2 - x_1$ 

$$y_{\min} \le y_1 + t\Delta y \le y_{\max}$$
  $\Delta y = y_2 - y_1$ 



# <u>Cohen-Sutherland</u> <u>Line-Clipping</u>

- Will do unnecessary clipping.
- Not the most efficient.
- Clipping and testing are done in fixed order.
- Efficient when most of the lines to be clipped are either rejected or accepted (not so many subdivisions).
- Easy to program.
- Parametric clipping are the most efficient. (Liang-Barsky and Cyrus-Beck)



### Liang-Barsky Line-Clipping

• The infinitely line intersects the clip region edges when:

$$t_{k} = \frac{q_{k}}{p_{k}} \text{ where } \begin{array}{l} p_{1} = -\Delta x \quad q_{1} = x_{1} - x_{\min} \quad \text{Left boundary} \\ p_{2} = \Delta x \quad q_{2} = x_{\max} - x_{1} \quad \text{Right boundary} \\ p_{3} = -\Delta y \quad q_{3} = y_{1} - y_{\min} \quad \text{Bottom boundary} \\ p_{4} = \Delta y \quad q_{4} = y_{\max} - y_{1} \quad \text{Top boundary} \end{array}$$



### Liang-Barsky Line-Clipping

- When  $p_k < 0$ , as *t* increases line goes from outside to inside entering
- When  $p_k > 0$ , line goes from inside to outside exiting
- When  $p_k = 0$ , line is parallel to an edge
- If there is a segment of the line inside the clip region, a sequence of infinite line intersections must go: entering, entering, exiting, exiting



### <u>Liang-Barsky</u> Line-Clipping

- Set  $t_{min} = 0$  and  $t_{max} = 1$ .
- Calculate the *t* values:
  - If  $t < t_{min}$  or  $t > t_{max}$  ignore it.
  - Otherwise classify the *t* values as entering or exiting.
- If  $t_{min} < t_{max}$  then draw a line from:

 $(x_1 + \Delta x \cdot t_{min}, y_1 + \Delta y \cdot t_{min})$  to  $(x_1 + \Delta x \cdot t_{max}, y_1 + \Delta y \cdot t_{max})$ 







### <u>Liang-Barsky</u> Line-Clipping

- We have  $t_{min} = 1/4$  and  $t_{max} = 3/4$
- If t<sub>min</sub> < t<sub>max</sub>, there is a line segment
  compute endpoints by substituting t values
- Draw a line from (-5+(20)·(1/4), 3+(6)·(1/4)) to (-5+(20)·(3/4), 3+(6)·(3/4))





Liang-Barsky Line-Clipping

- We have  $t_{min} = 4/5$  and  $t_{max} = 2/3$
- Q-P = (2+8,14-2) = (10,12)
- $t_{min} > t_{max}$ , there is no line segment do draw







# <u>Suterland-Hodgeman</u> <u>Polygon Clipping</u>

Four test cases:

- 1. First vertex inside and the second outside (in-out pair)
- 2. Both vertices inside clip window
- 3. First vertex outside and the second inside (out-in pair)
- 4. Both vertices outside the clip window

Concave polygons may be displayed with extra lines.





# <u>Nicholl-Lee-Nicholl</u> Line Clipping

- To find which region P<sub>2</sub> is in, compare the slope of the line to the slopes of the clip rectangle.
- If P<sub>1</sub> is left of clip rectangle, then P<sub>2</sub> is in region Left Top if: slopeP<sub>1</sub>P<sub>TR</sub> < slopeP<sub>1</sub>P<sub>2</sub> < slope P<sub>1</sub>P<sub>TL</sub>
- Number of cases explodes in 3D, making it unsuitable.



# <u>Weiler-Atherton</u> <u>Polygon Clipping</u>

- Clips concave polygons correctly.
- Instead of always going around the polygon edges, we also, want to follow window boundaries.
- 1. For an outside-to-inside pair of vertices, follow the polygon boundary.
- 2. For an inside-to-outside pair of vertices, follow the window boundary in a clockwise direction.