Overview Lecture 4

Projections - 3D Viewing

- Projections
- Parallel
- Perspective
- 3D View Volume
- 3D Viewing Transformation
- Camera Model - Assignment 2
- OFF files

Projection - 3D viewing

Parallel Projection

- Orthographic
- Top
- Front
- Side
- Axonometrix
- Isometric
- Oblique
- Cabinet
- Cavalier

Perspective Projection

- One point
- Two point
- Three point
- Camera model

Projections

- Determined by where you place the projection plane relative to principal axes, and what angle the projectors make with the projection plane.
- Parallel projections are used in engineering and architecture drawings, because they can be used for measurements.
- Perspective projection imitates our eyes or camera and looks more natural.

Projections

Isometric

Elevation oblique

Projection - 3D viewing
 Parallel Projection

If object positions are transformed to the projection plane along parallel lines.

Projection - 3D viewing

Perspective Projection
If object positions are transformed to the projection plane along lines that converge to center of projection
or prp.

Projection - 3D viewing Parallel Projection

- Preserve relative proportions of objects.
- Orthographic:
- Direction of projection is normal to the projection plane.
- Oblique:
- The projection plane and the direction of projection are not
 perpendicular to each other.
projection
plane

Projection - 3D viewing

Parallel Orthographic Projection

- Top (Plan View)
- Front Elevation
- Side Elevation
- Rear Elevation
- 3D nature difficult to ser
- Commonly used in engineering and architectural drawings.
- Length and angles can be measured accurately from the drawings.

- Can display more than one face of an object.
- The projection plane is not normal to a principal axis.
- Uniform foreshortening. More like perspective.
- Parallelism of lines are preserved, but not angles.
- Isometric, dimetric, trimetric.

Projection - 3D viewing Isometric Orthographic

- The projection plan intersects each coordinate axis at the same distance.
- The projection plane makes equal angles $\left(120^{\circ}\right)$ with each principal axis.
- Allowing measurements along the axes to be made to the same scale.

Projection - 3D viewing

Dimetric and Trimetric Orthographic

- Dimetric: Angles between two of the principal axes are equal.
- Need two scale ratios.
- Trimetric: Angles different between the three principal axes.
- Need three scale ratios.

Dimetric, Trimetric and
Isometric

Dimetric

Trimetric

Isometric

Oblique vs. Orthographic

Orthographic Projection

Oblique Projection

- Direction of projection is not normal to the projection plane.
- The projection plane is normal to a principal axis, so the projection of the face of the object parallel to this plane allows measurement of angles and distances.
- Other faces allow the measurement of distances along principal axes, but not angles.

Parallel Oblique Projection

Projection - 3D viewing

Parallel Oblique Projection

Cavalier:

- The direction of projection makes 45° angle with the projection plane.
- Depth = width and height.

Cabinet:

- The direction of projection makes an angle of arctan(2) $=63,4^{\circ}$ with the projection plane.
- Foreshortening of a half \qquad more 3D realistic.

Summary of Parallel
Projections

Projection - 3D viewing

Perspective Projection
Perspective projection is categorized by their number of vanishing points and therefore by the number of axes the projection plane cuts.
Do not preserve relative proportions of objects.

(a)

3 point

(b)

2 point

(c)

1 point

3D Viewing Coordinate System

- View Reference Point
- Origin.
- View-Plane Normal \mathbf{N}
- Positive direction for the viewing z_{v} axis and
- the orientation of the view plane.
- View-Up Vector V
- The up direction for the view.
- Positive direction for $\mathrm{y}_{\mathrm{v} .} \mathrm{V}$ not parallel to N .
- U Vector
- Perpendicular to both V and N .

Camera Model

From Point - F: The position of the camera.
At Point - A: Where the camera is aimed.
Up vector - U: Defines the up direction.
View angle - v:
Field of view.

Viewing Pipeline: World Coord. Viewing Coord.Device Coord.

Need to establish a view reference coordinate system.

Viewing Transformation

- Transform 3D world coordinates ($\mathrm{x}_{\mathrm{w}}, \mathrm{y}_{\mathrm{w}}, \mathrm{z}_{\mathrm{w}}$) into 3D eye coordinates ($\mathrm{x}_{\mathrm{e}}, \mathrm{y}_{\mathrm{e}}, \mathrm{z}_{\mathrm{e}}$).
- Transform 3D eye coordinates ($\mathrm{x}_{\mathrm{e}}, \mathrm{y}_{\mathrm{e}}, \mathrm{z}_{\mathrm{e}}$) into 2D normal device coordinates ($\left.\mathrm{X}_{\mathrm{ndc}}, \mathrm{y}_{\mathrm{nd}}\right)$.
- F ends up in the origin of the eye coordinate system. A ends up on the positive z -axis. UP vector ends up in the positive Y-Z plane.

Camera Model

$$
P_{e}=\left(P_{w}-F\right) V
$$

World to Eye Transformation

Vector perpendicular to U and A-F

$$
a=\frac{(A-F) \times U}{\|(A-F) \times U\|}
$$

X-axis of eye coord.

World to Eye Transformation

Line-of-sight vector

$$
c=\frac{A-F}{\|A-F\|}
$$

Z-axis of eye coord

World to Eye Transformation

Vector perpendicular to c and a

$$
b=\frac{((A-F) \times U) \times(A-F)}{\|((A-F) \times U) \times(A-F)\|}
$$

Y-axis of eye coord
should be mapped to

World to Eye

 TransformationCombining all three conditions

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) V=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

V is orthogonal, so

$$
V^{t}=V^{-1}
$$

$$
\tan \left(\frac{v}{2}\right)=\frac{S}{D}
$$

$$
\frac{x_{s}}{D}=\frac{x_{e}}{z_{e}} \quad \frac{y_{s}}{D}=\frac{y_{e}}{z_{e}}
$$

Convert From Eye to NDC

3Dto 2D

$$
\begin{aligned}
& x_{\text {ndc }}=x_{V_{c c}}+\frac{\left(\frac{x_{e}}{z_{e}} \cdot V_{\text {widh }}\right)}{2 \cdot \tan \left(\frac{v}{2}\right)} \\
& y_{\text {ndc }}=y_{v_{c}}+\frac{\left(\frac{y_{e}}{z_{e}} \cdot V_{\text {height }}\right)}{2 \cdot \tan \left(\frac{v}{2}\right)}
\end{aligned}
$$

Restriction on F, A, U, v

- F and A may not be the same point
- not able to define line-of-sight
- U cannot be a null vector
- need a unique up direction
- U cannot be parallel to line-of-sight
- need a unique rotational position
- v must be $0^{\circ}<\mathbf{v}<180^{\circ}$

Zoom

- Enlarge an image by reducing the angle v.
- Increasing the view angle makes the image smaller.
- Viewing angles between 40° and 60° give the most realistic view.

OFF File Format

 Examplecube.off 010 011 100 101 110 111 40132 42376 44675 40451 41573 40264

OFF File Format

OFF \#header

Nvertices	Nfaces		Nedges
X[0]	$Y[0]$	$Z[0]$	
$:$	$:$	$:$	
X[Nv-1]	$Y[N v-1]$	$Z[N v-1]$	
NV	$\mathrm{V}[0]$	$\mathrm{V}[1]$	$\ldots . . \mathrm{V}[\mathrm{NV}-1]$

We will not use COLORSPEC, read and discard.

