

<u>Overview Lecture 4</u>

- Projections
 - Parallel
 - Perspective
- 3D View Volume
- 3D Viewing Transformation
- Camera Model Assignment 2
- OFF files

Parallel Projection

- Orthographic
 - Тор
 - Front
 - Side
 - AxonometrixIsometric
- Oblique
 - Cabinet
 - Cavalier

Perspective Projection

- One point
- Two point
- Three point
- Camera model

- 3D more complex than 2D
 - One more dimension
 - Display device still 2D
- Analog to taking a photograph

<u>Projections</u>

- Determined by where you place the projection plane relative to principal axes, and what angle the projectors make with the projection plane.
- Parallel projections are used in engineering and architecture drawings, because they can be used for measurements.
- Perspective projection imitates our eyes or camera and looks more natural.

Projection - 3D viewing Parallel Orthographic Projection

- Top (Plan View) • Front Elevation
- Length and angles can be measured accurately from
- Side Elevation
- Rear Elevation
- 3D nature difficult to see
- Commonly used in engineering and architectural drawings.

- Can display more than one face of an object.
- The projection plane is not normal to a principal axis.
- Uniform foreshortening. More like perspective.
- Parallelism of lines are preserved, but not angles.
- Isometric, dimetric, trimetric.

Projection - 3D viewing Isometric Orthographic

- The projection plan intersects each coordinate axis at the same distance.
- The projection plane makes equal angles (120°) with each principal axis.
 - Allowing measurements along the axes to be made to the same scale.

- Direction of projection is not normal to the projection plane.
- The projection plane is normal to a principal axis, so the projection of the face of the object parallel to this plane allows measurement of angles and distances.
- Other faces allow the measurement of distances along principal axes, but not angles.

<u>Projection - 3D viewing</u> Parallel Oblique Projection

Cavalier:

• The direction of projection makes 45° angle with the projection plane.

• Depth = width and height.

Cabinet:

- The direction of projection makes an angle of $\arctan(2) = 63,4^{\circ}$ with the projection plane.
- Foreshortening of a half _____ more 3D realistic.

- Transform 3D world coordinates (x_w,y_w,z_w) into 3D eye coordinates (x_e,y_e,z_e).
- Transform 3D eye coordinates (x_e,y_e,z_e) into 2D normal device coordinates (x_{ndc},y_{ndc}).
- **F** ends up in the origin of the eye coordinate system. **A** ends up on the positive z-axis. **UP** vector ends up in the positive Y-Z plane.

<u>World to Eye</u> <u>Transformation</u>

Combining all three conditions

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

V is orthogonal, so

 $V^t = V^{-1}$

• v must be $0^{\circ} < \mathbf{v} < 180^{\circ}$

<u>Zoom</u>

- Enlarge an image by reducing the angle *v*.
- Increasing the view angle makes the image smaller.
- Viewing angles between 40° and 60° give the most realistic view.

OFF File Format

OFF #header			
Nvertices	Nfaces		Nedges
X[0]	Y[0]	Z[0]	
:	:	:	
X[Nv-1]	Y[Nv-1]	Z[Nv-1]	
NV V[0]	V[1]V	/[NV-1]	COLORSPEC

We will not use COLORSPEC, read and discard.

