## Overview Lecture 2

- Primitives and Attributes
- Why Scan Conversion?
- Algorithms for
- Scan Conversion
- Lines
- Circles
- Ellipses
- Filling
- Polygons



## Scan Conversion

Problem:

- To represent a perfect image as a bitmapped image.
- We want:
- Fast algorithms.
- Incremental algorithms.
- Avoid floating point.



## Line Drawing Algorithms

- Lines are used a lot - want to get them right.
- Lines should appear straight, not jagged.
- Horiz., vert. and diagonal easy, others difficult
- Lines should terminate accurately.
- Lines should have constant density.
- Line density should be independent of line length or angle.
- Lines should be drawn rapidly.
- Efficient algorithms.


## DDA (Digital Differential

 Analyzer) Algorithm- Faster than brute force.
- Floating point.
- Based on Calculating
- Round off error.
- Time consuming
arithmetic.
- Mathematically well defined.

LineDDA(int $x 0$, int $y 0$, int xl, int yl) $\{$ int dx,dy,steps,k; float xinc, yinc, $x, y$; $d x=x 1-x 0 ; \quad d y=y 1-y 0$ if (as(dx) > abs(dy)) steps $=$ abs(dx); else steps = abs(dy); xinc $=\mathrm{dx} /$ steps;
yinc $=$ dy/steps;
$\mathrm{x}=\mathrm{x} 0 ; \mathrm{y}=\mathrm{y} 0$;
DrawPixel(round (x, round(y));
for ( $\mathrm{k}=1 ; \mathrm{k}<=$ steps; $\mathrm{k}++$ ) $\{$
$\mathrm{x}=\mathrm{x}+\mathrm{xinc}$;
$y=y+y i n x ;$
DrawPixel(round(x), round(y));
\}

## Bresenhams Line Algorithm

- Accurate
- Efficient
- Integer Calculations
- Uses Symmetry
- Adapted to display circles, ellipses and curves.

Cannot generalize to arbitrary conics. Thus use Midpoint Line Algorithm.

- It has been proven that the algorithm gives an optimal fit for lines.


## Midpoint Line Algorithm

- Midpoint: Looks at which side of the line the midpoint falls on.
- Bresenham: Looks at sign of scaled difference in errors.
- It has been proven that Midpoint is equivalent to Bresenhams for lines.


## Bresenhams Line

Drawing Algorithm

1. Input the two line endpoints. Store the left endpoint ( $\mathrm{x}_{0}, \mathrm{y}_{0}$ ).
2. Plot the first point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$.
3. Calculate constants $\Delta x, \Delta y$, and $2 \Delta y-2 \Delta x$ and $2 \Delta y$
Get starting values for decision parameter $\mathrm{p}_{\mathrm{k}}$.
$\mathrm{P}_{0}=2 \Delta \mathrm{y}-\Delta \mathrm{x}$
4. At each $x_{k}$ along the line, starting at $\mathrm{k}=0$, do the following test: if $p_{k}<0$, the next point to plot is
( $\mathrm{x}_{\mathrm{k}}+1, \mathrm{y}_{\mathrm{k}}$ ) and

$$
\mathrm{p}_{\mathrm{k}}+1=\mathrm{p}_{\mathrm{k}}+2 \Delta \mathrm{y}
$$

else, the next point to plot is
$\left(\mathrm{x}_{\mathrm{k}}+1, \mathrm{y}_{\mathrm{k}}+1\right)$ and
$\mathrm{p}_{\mathrm{k}}+1=\mathrm{p}_{\mathrm{k}}+2 \Delta \mathrm{y}-2 \Delta \mathrm{x}$
5. Repeat step $4 \Delta x$ times.

Bresenhams Line Drawing Algorithm




Midpoint Circle Algorithm


## Midpoint Circle Algorithm




Use only pixels
"interior"
to the object
boundaries.

## Scan Conversion of Polygons

Problem:

- Two line segments that share the same pixel.
- Determine which pixels on each scan line are within the polygon.



## Scan Conversion of Polygons

Odd-parity-rule:

- Start with even parity and toggle upon encountering each edge.
- Draw when parity is odd.


## Remember:

- $\mathrm{y}_{\text {min }}$ counts, but $\mathrm{y}_{\text {max }}$ does not.
- Horizontal lines do not count.



## Scan Conversion of Polygons

Incremental polygon fill for each scan line:

- Find all the polygon edges the scan line intersects.
- Sort the intersections by increasing x coordinate.
- Fill all pixels between inter-sections that are interior to the polygon by using the odd-parity-rule.


## Overview

- Display Technology - CRT
- LCD
- Input Devices
- Output Devices
- Raster Scan Display System




## Display Technology

- Refresh rate:
- The screen must be updated about 50-60 times per second for raster display.
- Not dependent on the complexity of the picture.
- Persistence:
- The time it takes the emitted light from the screen to decay $10 \%$ of its original intensity.
- Critical fusion frequency (CFF):
- The frequency rate when flickering stops and the image become steady
- The relation ship between CFF and persistence is non-linear.


## Difficulties with the CRT

- Sometimes the convergence point is behind the screen.
- The picture appears to be blurred.
- The beam is in focus at the center of the screen. - Dynamic focusing.


Shadow Masks - a thin metal plate with small holes
mounted close to the vi

- Delta-Delta CRT
- Electron guns and phosphor dots are arranged in a triangular triad pattern.
- Precision in-line CRT
- Electron guns and Electron guns and
phosphor dots are phosphor
in a line.

- Resolution is limited to the hole size of the shadow-mask.
- Smaller holes - better resolution.
- The inside surface of the screen is covered with red, green and blue phosphor dots.


## Liquid Crystal Display (LCD)

- Made up of six layers:
- Two polarizers (vertical and horizontal)
- Two thin grid wires (horizontal and vertical)
- One layer of liquid crystal
- One reflective layer



## Liquid Crystal Display (LCD)

Passive Matrix

- Display is refreshed in raster-scan fashion (row-by-row).


## Active matrix is

- brighter,
- more colorful and
- faster than
passive matrix

Active Matrix

- Transistors at each ( $\mathrm{x}, \mathrm{y}$ ) $\rightarrow$ can change on/off state quickly.
- No refresh is needed (unless image is changed)
- The dominant technology used in LCD's today.


## Field Emission Display (FED)

Take the best of both CRT and LCD.
CRT

- Good color.
- High resolution.
- Fast response time.
- Wide view angle. - Small package size.
- Low weight.
- Low power consumption.

High performance phosphor + low power electronic

## LCD vs. CRT

- Narrow viewing angle.
- Three times brighter.
- Five times more contrast.
- TFT technology more efficient
olut
- Price.
- Uses less electricity
- Takes less space.
- Emits less radiation
- Distortion free viewing.
- No flickering.
- Digital output.
- Improved active matrix mat.



## (C) Input Devices

- Have improved greatly over the years.
- The primary means for creating images on a computer graphics system
- Keyboards • Mouse
- Trackball
- Joysticks
- Spaceball
- Digitizers
- Data Glove
- Touch Panels
- Image Scanners
- Voice Systems



## Raster Display System

- Raster display system with dedicated display processor and memory.



## Video Controller -

 Raster Display- Constantly refreshing the display.
- Often includes a look-up table.
- Interlaced or non-interlaced.


