
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Texture mapping

? Adding detail to polygon by using a image and mapping it onto the geometry
? Array of color values [RGBA]

Texturing

? After shading and rasterization we have

- Per-pixel color value (fragment color) RGBA
- Per-pixel depth value: z
? Given a texture, what to do with it?
- We need to know which part of the texture that corresponds to the pixel. We need a mapping
- Also, we need to know the average texture color contributing to the pixel. We need texture filtering.

Parametric Texture Mapping

Texture size and orientation are tied to the polygon

- Separate texture space and screen space
- Deform (render) the textured polygon into screen space
\qquad

Texture space uv

A texture lives in its own image coordinates, parameterized by $(u, v) u ?[0,1]$ and $v ?[0,1]$
If an image has the size $w * h$, then each texel is of size $(1 / w, 1 / h)$ in the $u v$ space.
? The texel value (RGBA(should locate at the center of the texel)
w and h is usually powers of 2 for ease of computation.

Texture mapping

? Textures can be wrapped around many different surfaces

Pixel to Texture space

? From a given pixel, which texel should end up on a surface?

Mapping a sphere

- F , lattitude $=\arctan 2(\mathrm{z} / \mathrm{x}, \mathrm{z})$
- T, longitude $=\arccos (y)$

Mapping to a triangle

? Assume each vertex has a texture coordinate associated to it.
? Given a point on the triangle, how do we know what texel to apply to that point?
? We need to calculate the "interpolated" texture coordinate.

We can do this by using the Barycentric coordinate

We have $\mathrm{P}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ and $\mathrm{Tc}_{1}, \mathrm{Tc}_{2}, \mathrm{Tc}_{3}$, We need Tc_{x}

Barycentric coordinates

? Given a line defined by p_{1} and p_{2}
? Find: a point P on the line:
2. Solution: $\mathbf{p}=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}$
? (1-t) and t is the barycentric coordinates, t might range $[-8,8]$, in the interval $t ?[0,1]$ we trace the line between p_{1} and p_{2}
? For the barycentric coordinates u, v the following holds: $u+v=1$ (which we can see above!)
? How does this work for a triangle?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Barycentric coordinates

- For a triangle we have 3 points:
- $\mathbf{p}=u \mathbf{p}_{1}+v \mathbf{p}_{2}+w \mathbf{p}_{3}$, where $u+v+w=1$.
- $[u, v, w]$ are the barycentric coordinates
- We could also write:
$-\mathbf{p}=u \mathbf{p}_{1}+v \mathbf{p}_{2}+(1-u-v) \mathbf{p}_{3}$. (1)
- (1) is a linear system: $\left.\quad\left[\begin{array}{lll}p_{1} & p_{2} & p_{3}\end{array}\right] \begin{array}{l}u \\ v \\ w\end{array}\right]=p$

Barycentric coordinate

- Now using cramers rule (checkout Mathworld!) give us the following determinants:

$$
\begin{aligned}
& D=\left|\begin{array}{lll}
p_{1} & p_{2} & p_{3}
\end{array}\right| \\
& A_{1}=\left|\begin{array}{lll}
p & p_{2} & p_{3}
\end{array}\right| \\
& A_{2}=\left|\begin{array}{lll}
p_{1} & p & p_{3}
\end{array}\right| \\
& A_{3}=\left|\begin{array}{lll}
p_{1} & p_{2} & p
\end{array}\right|
\end{aligned}
$$

- And finally: $\left[u=\frac{A_{1}}{D}, v=\frac{A_{2}}{D}, w=\frac{A_{3}}{D}\right]$
- Remember w=1-u-v, so we can save some calculations here.

Mapping a triangle

- Now, we wanted the texture coordinate at position p .

$$
T c_{p}=u T c_{1}+v T c_{2}+w T c_{3}
$$

Filtering

? What do we do when a texture sample lands between texel centers, undersampling.
? GL_NEAREST - Pick the closest one
? GL_LINEAR - Interpolate between the four \qquad closest, a BILINEAR approach.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mip Mapping

\qquad
\qquad
\qquad
To reduce the high frequency
Introduced by Lance Williams, 1983
MIP = "multumin parvo"-"many things in a small place" \qquad
Pre-process input textures by prefiltering it at multiple resolutions
From the change in u / v (du, dv) we can pick a corresponding mip-level, and sample a texel from that level. \qquad
Linear interpolate between the two nearest level
Supported by OpenGL \qquad

Bump mapping

? Plain textures doesnt model rough surfaces well
\qquad
Illumination is still calculated on the underlying flat textured polygon \qquad
What if we could model the illumination on the flag polygon using a texture?
? The bump texture is treated as a height function
? We calculate the partial derivatives and model the pixel normal using that. That would make the lighting effect such as if the surface were rough...
, Example?

Bump mapping

? Since only the normals of the surface is altered, the siluette is not affected.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

