

Texture mapping

- Adding detail to polygon by using a image and mapping it onto the geometry
- ? Array of color values [RGBA]

Texturing

- 2 After shading and rasterization we have
 - Per-pixel color value (fragment color) RGBA
 - Per-pixel depth value: z
- ? Given a texture, what to do with it?
 - We need to know which part of the texture that corresponds to the pixel. We need a mapping
 - Also, we need to know the <u>average texture color</u> contributing to the pixel. We need texture filtering.

Parametric Texture Mapping

- ? Texture size and orientation are tied to the polygon
 - Separate texture space and screen space
 - Deform (render) the textured polygon into screen space

Texture space uv

- ^ A texture lives in its own image coordinates, parameterized by $(u,v) \; u? \; [0,1]$ and $v? \; [0,1]$
- > If an image has the size w*h, then each texel is of size (1/w, 1/h) in the uv space.
- $_{?}$ $\,$ The texel value (RGBA(should locate at the center of the texel) $\,$
- $_{\mbox{\tiny ?}}~~w$ and h is usually powers of 2 for ease of computation.

Mapping to a triangle

- ? Assume each vertex has a texture coordinate associated to it.
- [?] Given a point on the triangle, how do we know what texel to apply to that point?
- We need to calculate the "interpolated" ? texture coordinate.
- ² We can do this by using the **Barycentric** Tc_2 , P coordinate
- We have P, P₁, P₂, P₃ and Tc₁, Tc₂, Tc₃, 2 We need Tc_x

P, Tc_p

Tc₃, P₃

Barycentric coordinates

- ? Given a line defined by p_1 and p_2
- 7 Find: a point P on the line:
- ? Solution: $\mathbf{p} = (1 t)\mathbf{p}_1 + t\mathbf{p}_2$.
- (1-t) and t is the barycentric coordinates, t might range
 [-8,8], in the interval t? [0, 1] we trace the line between p_1 and p_2
- 7 For the barycentric coordinates u, v the following holds: u+v=1 (which we can see above!)
- ? How does this work for a triangle?

Barycentric coordinates

- For a triangle we have 3 points:
- $\mathbf{p} = u\mathbf{p}_1 + v\mathbf{p}_2 + w\mathbf{p}_3$, where u + v + w = 1.
- [*u*,*v*,*w*] are the barycentric coordinates
- We could also write:

$$-\mathbf{p} = u\mathbf{p}_{1} + v\mathbf{p}_{2} + (1 - u - v)\mathbf{p}_{3}. (1)$$

(1) is a linear system: $[p_{1} \quad p_{2} \quad p_{3}]\begin{bmatrix} u \\ v \end{bmatrix} = p$

Barycentric coordinate

- Now using cramers rule (checkout Mathworld!) give us the following determinants:
 - $D = \begin{vmatrix} p_1 & p_2 & p_3 \end{vmatrix}$ $A_1 = \begin{vmatrix} p & p_2 & p_3 \end{vmatrix}$ $A_2 = \begin{vmatrix} p_1 & p & p_3 \end{vmatrix}$ $A_3 = \begin{vmatrix} p_1 & p_2 & p \end{vmatrix}$
- And finally: $\left[u = \frac{A_1}{D}, v = \frac{A_2}{D}, w = \frac{A_3}{D}\right]$ Remember w = 1-u-v, so we can save some calculations here.

Mapping a triangle

· Now, we wanted the texture coordinate at position p.

 $Tc_p = uTc_1 + vTc_2 + wTc_3$

Filtering

- ? What do we do when a texture sample lands between texel centers, undersampling.
- ? GL_NEAREST Pick the closest one
- 2 GL_LINEAR Interpolate between the four closest, a BILINEAR approach.

- Each pixel on the screen, maps to thousands of texels. Which one should we choose? We have oversampling

2 Supported by OpenGL

Bump mapping

- 2 Plain textures doesnt model rough surfaces well
- Illumination is still calculated on the underlying flat textured polygon
- ? What if we could model the illumination on the flag polygon using a texture?
- 7 The bump texture is treated as a height function
- We calculate the partial derivatives and model the pixel normal using that. That would make the lighting effect such as if the surface were rough...
- ? Example?

Bump mapping

Since only the normals of the surface is altered, the siluette is not affected.

