

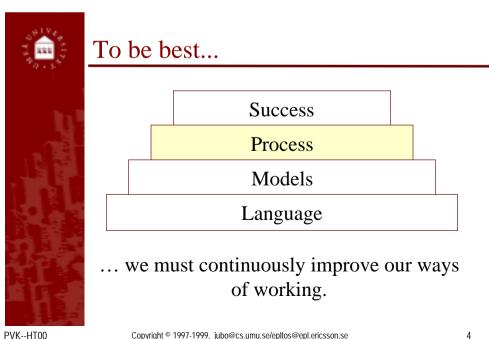
Process Improvements

PVK--HT00

Success Factors for the Company

- ♦ Highest productivity
 - □ Produce most value (optimal level)
 - □ Full throttle (no need to wait)
- Optimal quality (quality/cost balance)
- Hitting the market window
- Fulfilling the users needs
 - □ Understanding
 - □ Foreseeing
- Good solutions
 - Functional
 - □ Trustworthy

□ Hype factor

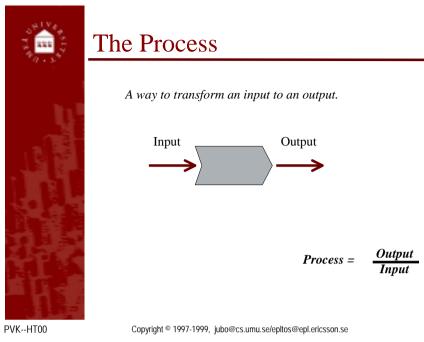

Copyright © 1997-1999, jubo@cs.umu.se/epltos@epl.ericsson.se

The Company's Capability

- The success factors are what we compete with.
- Competition increases 20% per year.
- We must get 20% better per year to survive.

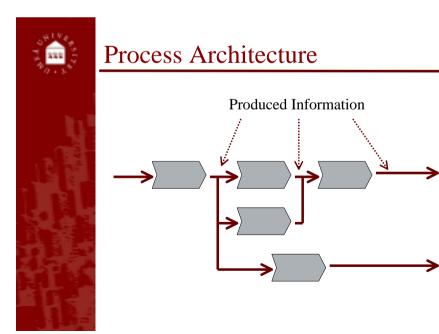
How?

Improve by....


- ... better adherence to the process
- ◆ ... better processes

PVK--HT00

Copyright © 1997-1999,	jubo@cs.umu.se/epltos@epl.ericsson.se
------------------------	---------------------------------------


5

Processes

- Are we following a established processes?
- Do everyone know how the process works?
- Have we defined it anywhere. (E.g. written in a document.)

Produced Information

- Which information do we choose to produce?
- Why?
- Can we know that this is the best choice?
- Can we know that we use the best way to produce it?

9

PVK--HT00

222

Copyright © 1997-1999, jubo@cs.umu.se/epltos@epl.ericsson.se

Improvement

PSP

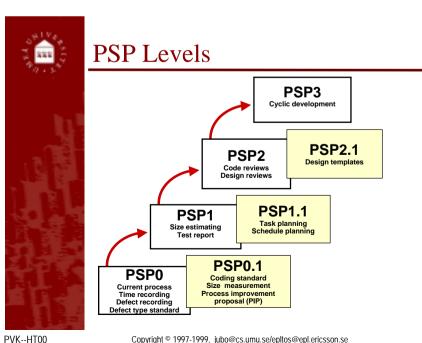
• ...

◆ CMM

◆ ISO9000

Organized approaches to improve the ways we work.

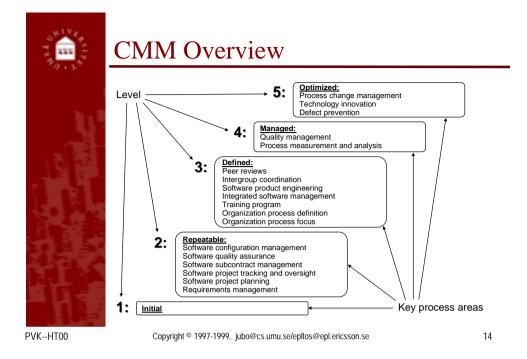
Cleanroom engineering



PSP

- A process for individual developers
 - □ Well-defined process steps (*scripts*)
 - **G** Forms
 - □ Instruction for filling in the forms
 - □ Standards
- Framework for analysis
- Tool for individual process improvements Developers find more errors Developers improve their estimations Developers improve productivity
- ► Improvements at "no" costs

11



CMM

- Capability Maturity Model
- Developed by SEI 1986 (for the DoD)
- Five maturity levels
 - □ Initial (ad-hoc process)
 - □ Repeatable (repeatable process)
 - □ Defined (well-defined, documented process)
 - □ Managed (predictable process)
 - Optimised (continuous process improvements)
- The DoD requires level 3 from all contractors

Copyright © 1997-1999, jubo@cs.umu.se/epltos@epl.ericsson.se

13

CMM Level 2, simplified

- Keep track of requirements and their changes.
- Have a plan on how to go ahead, all the way.
- Keep track of where you are and what is left.
- The big boss decides if quality is good enough.
- Make sure you don't mess up your files.

CMM Level 3, simplified

- The company is aware of its processes characteristics and works to improve them.
- The processes are described somewhere and known by the employees. Deviations are recorded.
- The company makes sure employees get proper training in everything they need.
- Projects actually use the defined processes.
- Employees agree on project goals and cooperate to achieve them.
- Project makes sure that employees review each others work to get rid of faults.

PVK--HT00

CMM Level 4, simplified

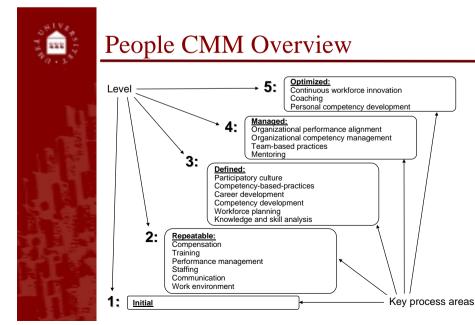
- The company measures objectively how well the processes works.
- Quality is measured and activities makes sure that quality goals are reached.

Copyright © 1997-1999, jubo@cs.umu.se/epltos@epl.ericsson.se

17

CMM Level 5, simplified

- The company learns how to avoid faults.
- The company evaluates and introduces new technology in a planned way to improve quality and productivity.
- All employees take part in continuous improvement of the processes.


Copyright © 1997-1999, jubo@cs.umu.se/epltos@epl.ericsson.se

CMM Results

CMM level	Development time	Person months	Faults detected during dev.	Faults delivered and installed	Total dev. costs in US\$
1	29,8	593,5	1.348	61	5.440.000
2	18,5	143,0	328	12	1.311.000
3	15,2	79,5	182	7	728.000
4	12,5	42,8	97	5	392.000
5	9,0	16,0	37	1	146.000

Model predictions for the development of a 200.000 LOC data processing product (1993), see [Schach 97].

